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ABSTRACT: Synthetic peptides are commonly used in biomedical science for many applications in basic and translational research.
While peptide synthesis is generally easy and reliable, the chemical nature of some amino acids as well as the many steps and
chemical compounds involved can render the synthesis of some peptide sequences difficult. Identification of these problematic
sequences and mitigation of issues they may present can be important for the reliable use of peptide reagents in several contexts.
Here, we assembled a large dataset of peptides that were synthesized using standard Fmoc chemistry and whose identity was
validated using mass spectrometry. We analyzed the mass spectra to identify errors in peptide syntheses and sought to develop a
computational tool to predict the likelihood that any given peptide sequence would be synthesized accurately. Our model, named
Peptide Synthesis Score (PepSySco), is able to predict the likelihood that a peptide will be successfully synthesized based on its
amino acid sequence.

■ INTRODUCTION

Synthetic peptides are commonly used in biomedical science,
including basic biology studies of epitope immunogenicity,
protein−protein interactions, and substrate specificity of
enzymes.1 Peptides are also used as therapeutics, such as in
personalized cancer vaccines.2 The broad use of synthetic
peptides makes it important to understand what peptides can
be synthesized with ease versus those that cannot.
Peptide synthesis is a complex process with multiple steps:

(1) deprotection of the N-terminal of the growing peptide
chain, (2) activation of the incoming amino acid C-terminal by
a coupling agent, and (3) coupling of the C-terminal of the
incoming amino acid chain with the N-terminal of the growing
peptide chain.3 While this process was traditionally performed
manually, today, peptide synthesizers allow for automation and
high-throughput production of peptides.4 Due to the many
steps and chemical compounds involved and the chemical
nature of specific amino acids, the synthesis of some sequences
can be problematic and present challenges. For example, longer
peptide chains are susceptible to incomplete deprotection and
coupling reactions.5

As a means to assess the accuracy of peptide synthesis and to
validate the identity of the synthesized peptides, mass
spectrometry (MS) is often used. A typical tandem MS
experiment results in two types of spectra: (i) MS1 spectra,
wherein each peak depicts the mass-to-charge ratio (m/z) of
the measured peptides that is proportional to the ion’s
molecular weight and, hence, allows the derivation of the
measured peptide mass, and (ii) MS2 spectra, which depict the
m/z of peptide fragment ions upon fragmentation. The latter
type of spectra allows one to derive the precise peptide
sequence in addition to its molecular weight. Here, we make
use of a large set of individually recorded MS1 spectra per
ordered peptide to determine the success of synthesis and to
train our model Peptide Synthesis Score (PepSySco). We
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validate our model using an independent set of MS1 and MS2
spectra recorded from 9604 peptides measured in 8 batches.
While not always true, in general, the highest peak in a MS1

spectrum is the ion with the greatest relative abundance and is
referred to as the base peak; for comparative purposes, the base
peak is assigned a relative intensity of 100% (Figure 1).6

Additional peaks, if present, can be compared to the base peak
and relative abundance values determined.
We use the MS1 results to examine the relative abundance

values associated with each m/z value and compare them with
the expected molecular weight of the peptide of interest. While
MS1 spectra of high-quality syntheses typically include one
prominent peak with a mass weight corresponding to the
desired peptide (Figure 1A), MS1 spectra of lower quality
syntheses generally include more than one peak, representative
of peptides or fragments other than the desired peptide (Figure
1B). Additional peaks are also frequently present due to
common biochemical events such as the reduction or oxidation
of residues or the presence of additional ions such as sodium.
Peptide syntheses for which the MS1 spectrum does not
include any signal for the desired peptide would generally be
considered as failed (Figure 1C).
In the last 2 decades, our groups at the La Jolla Institute for

Immunology (LJI) have ordered tens of thousands of

synthesized peptides. To evaluate the quality of the synthetic
peptides, samples are routinely randomly selected for quality
control by MS1. The primary purpose of these spot-checks is
to provide a fast and cost-efficient quality check (QC) to
determine what particular set of peptides may have systematic
issues, necessitating re-synthesis of the entire set.
In this study, we analyzed a large set of such peptide

synthesis MS1-based QC analyses. We retrieved the
information from the MS1 results and compared them to the
expected peptide sequences. About 3.6% of the peptide
syntheses analyzed showed no or minor signal for the desired
peptide, which would be considered a complete synthesis
failure. Furthermore, in about 14% of the cases, the ordered
peptide was not the majority of the peptide mass in solution,
suggesting a potentially problematic sequence for synthesis.
Due to the importance of peptide synthesis in biomedical

research, we sought to develop a computational tool to predict
the likelihood that any given peptide sequence would be
synthesized accurately. To do so, we analyzed 1917 MS1
spectra of the synthesized peptides measured using a PE
SCIEX150 mass spectrometer and performed statistical
analyses on different aspects of the peptide sequences and
the biochemical properties of the contained amino acids. Using
this data, we trained a machine learning (ML) model that is

Figure 1. Examples of MS1 spectra of failed and successful peptide syntheses. (A) MS1 spectrum of a successful synthesis. A single peak at 100%
relative abundance at a molecular weight of 1644.6 kDa which matches the molecular weight of the expected synthesized peptide. (B) MS1
spectrum of a lower quality synthesis. The peak at 100% relative abundance at a molecular weight of 1264.9 kDa matches the molecular weight of
the expected synthesized peptide. There are, however, additional peaks at other molecular weights with lower relative abundance values. (C) MS1
spectrum of a problematic synthesis. The molecular weight of the expected synthesized peptide is 1566.1 kDa, which corresponds to the right-most
peak. This peak is only fourth in relative abundance, and there are several other peaks at higher and lower relative abundance values. Those peaks
are associated with lower molecular weights indicating the presence of shorter peptides.

Figure 2. Abundance ratio histogram. We calculated the “abundance ratio” as the sum of the relative abundance values of the m/z peaks matching
the ordered peptide divided by the sum of the relative abundance values of all m/z peaks observed in the MS1 spectrum. We considered MS1
spectra with an abundance ratio <50% (red line) as indicative of problematic (or failed) syntheses and MS1 spectra with an abundance ratio >50%
as successful. The MS1 spectra for 87% of the analyzed peptides met the abundance ratio threshold of >50% and were considered as successful
syntheses.
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able to predict the likelihood that a peptide will be successfully
synthesized based on its amino acid sequence. We verified our
new model named PepSySco using a large independent
peptide dataset (9604 peptides) measured via an Orbitrap
Fusion Lumos mass spectrometer. PepSySco predicted
successful peptide syntheses with >80% overall accuracy in
the validation peptide dataset.

■ RESULTS

Vast Majority of Peptides Were Synthesized Cor-
rectly. We analyzed 1917 MS1 spectra measured via a PE
SCIEX150 mass spectrometer corresponding to 1771 unique
synthetic peptides that were picked randomly for QC from
over 23,000 synthesized peptides (Supporting Information
Table 1). Out of the 1917 analyzed MS1 spectra, 28.8% had
only one peak, 30.3% had two peaks, 22.3% had three peaks,
11.2% had four peaks, 4.2% had five peaks, and 4.2% had six
peaks or more. For 92% of the analyzed peptides, the peak at
the peptide’s molecular weight was the highest peak (defined
as 100% relative intensity). 2% of all peptides had their correct
m/z peak as the 2nd highest intensity and only 1% at the 3rd
or worse position. 5% of the analyzed MS1 spectra had no
representation of the desired peptide at all.
For the purpose of further analyses, we wanted to classify

peptide syntheses into two categories: (1) successful and (2)
problematic or, more stringently for our present purpose,
failed. We defined a synthesis to be successful when the
majority of the measured molecular weight peaks were related
to the expected molecular weight of the desired peptide. We
calculated the “abundance ratio” as the sum of the relative
abundance values of the m/z peaks matching the ordered
peptide divided by the sum of the relative abundance values of
all m/z peaks observed in the MS1 spectrum. We considered
MS1 spectra with an abundance ratio <50% as indicative of
problematic (or failed) syntheses and MS1 spectra with an
abundance ratio >50% as successful (Figure 2). The MS1

spectra for 87% of the analyzed peptides met the abundance
ratio threshold of >50% and were considered as successful
syntheses.
Our dataset contained peptides of 8−25 amino acid length.

As expected, for longer peptides (i.e., longer than 12 amino
acids), synthesis was problematic significantly more often than
for shorter peptides: out of the 1408 unique longer peptides,
synthesis failed for 218 peptides (15%), while out of the
unique 363 shorter peptides, only 13 (4%) failed (p-value =
2.468 × 10−11, Fisher’s exact test).

Discrepancies between Expected and Measured
Peptide Molecular Weight. Next, we compared the
measured molecular weight in the peptide MS1 results to the
expected calculated molecular weight and analyzed whether
discrepancies in molecular weight can be explained by artifacts
left over from the synthesis or MS preparation processes. We
considered all m/z 4581 peaks in the analyzed 1917 MS1
spectra. We found 153 cases where the molecular weight
difference indicates a gain of a single or double sodium ion
(NA+), a major component of the buffers used in MS
preparation. 141 peaks had a molecular weight difference of
+56 kDa, which can be explained by a tert-butyl (C4H9)
residue left over from the synthesis process. 143 peaks had a
difference of +96 kDa, which matches the weight of TFA
minus water. TFA is used in the synthesis and MS sample
preparation processes. 128 peaks matched exactly the expected
molecular weight when the molecular weight of a water
molecule was subtracted. None of these variances were
associated with a failed synthesis.
2001 of the 4581 MS1 peaks analyzed had a molecular

weight smaller than expected by more than 20 kDa, which may
indicate an incomplete synthesis. These differences might be
explained by the synthesized peptide missing specific amino
acids. For example, a molecular weight difference of −114 kDa
might be explained by the peptide missing asparagine (N),
isoleucine (I), or leucine (L). 1003 out of the 1917 MS1

Figure 3. Histogram of discrepancies between expected and measured peptide molecular weight. The chart is a histogram highlighting differences
in the molecular weight of various peaks present in a representative spectrum compared to the desired peptide’s molecular weight. The values are
rounded to the nearest 2. A difference of 0, which indicates an exact match, was removed from this chart for visualization purposes. Difference
values higher than 0 indicate the molecular weight gained by the peptide. Difference values lower than 0 indicate that molecular weight dropped
from the peptide. Possible explanations for various gains and losses are provided.
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spectra (52%) had at least one peak with more than 20 kDa
molecular weight difference, which could result from a faulty
addition of two amino acids rather than one in one of the
synthesis steps. Both kinds of synthesis errors could impinge
upon the analysis of post-translationally spliced peptides, which
are efficiently produced by proteasomes and other proteases.7

Pipelines have been developed to avoid identifying putative
spliced peptide products by MS, which, in reality, were
produced by peptide hydrolysis of synthesis error polypep-
tides.8,9

An overview of observed discrepancies between expected
and measured peptide molecular weights is shown by way of
example in Figure 3. A molecular weight difference of −18
occurred 128 times in our dataset and most likely represents
dehydration. Some impurities are formed during TFA
treatment in the peptide synthesis process which would
explain some of the commonly observed molecular weight
differences in our dataset: the difference of +44 occurred 112
times and could represent the addition of Trp(COOH) or the
addition of two sodium ions (NA+). The weight difference of
+96 occurred 143 times and could represent trifluoroacetyla-
tion or addition of TFA−H2O. The weight difference of +56
occurred 141 times and could represent the addition of tBu.
Success of Peptide Synthesis Can Be Predicted Using

Machine Learning. We next wanted to utilize the analyzed
datasets to train a ML method that can predict the likelihood
of a successful synthesis for a given peptide. We defined a set of
22 features to describe the peptide sequences, as detailed in the
Methods section. Some of the features are as simple as the
peptide length or counting the occurrence of each amino acid
in the peptide, while other features are, for example, based on
the biochemical properties of individual amino acids.
We used all of these features (X1−X22) and trained multiple

classification algorithms to predict the likelihood of successful
peptide synthesis (Figure 4): naive Bayes/Gaussian,10 logistic
regression,11 K-nearest neighbor,12 support vector machine,13

decision tree,14 and random forest.15 For each, we performed
10-fold cross-validation, repeated 10 times.16,17 We performed
a receiver operating characteristics (ROC) analysis and
calculated the area under the ROC curve (AUC) to assess
the performance of each model. We found that the best
performance was consistently achieved with the naive Bayes
algorithm.

We next performed feature reduction as a lower number of
features can improve performance and can also reduce the
computational effort and complexity of the model.18 In order
to perform feature reduction, we tested all possible feature
permutations and utilized 2-fold cross-validation and repeated
10 times. We assessed the performance of each feature
combination by calculating AUC and found that the best
results were obtained by combining the features “peptide
length” (X1) and the “Janin index” (X15) with an AUC of
0.773 ± 0.015, while using only peptide length that achieved
an AUC of 0.668 ± 0.007 and using only Janin index that
achieved an AUC of 0.725 ± 0.020 (Supporting Information
Table 2). Using the complete set of features achieved an AUC
of 0.759 ± 0.021 (Supporting Information Table 2).
At this point, we performed a complete re-train on the entire

dataset using a naiv̈e Bayes classifier with the two selected
features and achieved an AUC of 0.773 on the training dataset.
Our final model, PepSySco, provides a score from 0 to 1, with a
higher score indicating more likely success at synthesis.

Validation of the Prediction Model on an Independ-
ent Dataset. To validate the PepSySco prediction model, we
measured a larger and independent dataset of 9604 synthesized
peptides using a more sensitive mass spectrometer, i.e., an
Orbitrap Fusion Lumos (see the Methods section). The MS
method used for the measurement of this dataset recapitulated
what has been used for the identification of peptides bound to
major histocompatibility molecules class I (MHC-I). Peptides
were grouped in 8 library batches, with each measured at two
concentrations (100 and 500 fmol of each peptide were loaded
in the mass spectrometer). These libraries contained 9, 10, or
15 amino acid long peptides related to CD4+ and CD8+ T cell
response to dengue and varicella zoster (VZV) viruses. With
this validation dataset, we adopted an alternative strategy to
estimate the proportion of synthesis errors in the peptide
library. We analyzed the MS2 spectra, which are the result of
the fragmentation of peptide precursors via higher-energy
collisional dissociation (HCD). MS2 spectra are commonly
used for the identification of peptide sequences in complex
samples such as MHC-I bound peptides and can allow the
identification of sequences that slightly differ in their
sequence.19−25 For each original peptide sequence theoretically
contained in the peptide library, we computed all amino acid
combination resulted from the missed insertion of one or more
amino acid as well as the faulty addition of one or more amino

Figure 4. (A) ML process. Shows the process of finding the best features and the best ML algorithm and validating the trained model against other
data sources. (B) 10-fold cross-validation of different predictors. This set of runs shows that naive Bayes consistently provided performed best. (C)
ROC of the final prediction model. Best performance was achieved using a naive Bayes classifier considering the peptide length and amino acid
properties according to the Janin index.
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acid during the peptide synthesis. To this end, we used a
method originally developed to identify post-translationally
spliced peptides.8,26 By doing so, a database was generated that
was used for the identification of MS2 spectra matching the
original peptide sequences and the cognate synthesis errors.
The success ratio R was defined as the ratio of the number of
MS2 spectra matching the original peptide divided by the
number of MS2 spectra matching the associated synthesis error
sequences. A success ratio of R = 1 would indicate a perfect
synthesis with decreasing R values indicating decreasing
synthesis qualities. In the measured peptide library, 2,35,441
MS2 spectra matching the original peptide sequences and

46,842 cognate synthesis errors were identified. Table 1 shows
the summary of different peptide lengths passing different
success rate thresholds and clearly highlights that peptide
syntheses for longer sequences tend to be more problematic:
while 98% of the analyzed 9-mer peptides pass the success
ratio of 0.5, only 70% of the analyzed 15-mer peptides do.
We used PepSySco to also predict the likelihood of a

successful synthesis for all peptides in the validation dataset
and performed an ROC analysis considering the different
success ratio thresholds. Our model consistently achieved
AUC values of >0.8 for success rate thresholds >0.5, indicating

Table 1. Validation Dataset, Success Rate Threshold per Peptide Lengtha

success rate threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9 100.0% 99.9% 99.6% 99.4% 98.4% 97.2% 94.6% 89.0% 79.8% 70.9%
10 99.6% 99.2% 98.8% 97.7% 95.4% 91.9% 85.8% 76.0% 65.2% 53.1%
15 96.3% 91.3% 85.0% 77.0% 69.9% 62.5% 55.2% 47.7% 41.1% 33.9%
total 99.2% 98.3% 97.0% 95.1% 92.6% 89.5% 84.7% 77.1% 67.6% 57.7%

aFor each peptide length and each success rate threshold, the fraction of peptides passing the threshold is summarized.

Figure 5. ROC analysis of peptide synthesis success predictions on the independent MS2-based dataset. We used PepSySco to predict the
likelihood of a successful synthesis for all peptides in the validation dataset and performed an ROC analysis considering the different MS2 success
rate thresholds (shown here in different colors).

Figure 6. ROC analysis for PepSysCo and the ThermoFisher Scientific tool for (A) our training dataset and (B) the independent MS2-based
validation dataset.
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that our method was able to accurately predict synthesis
success on this independent validation dataset (Figure 5).
Comparing Prediction Performance of PepSySco to

the ThermoFisher Scientific Analysis Tool. The peptide
synthesis and proteotypic peptide analyzing tool provided by
ThermoFisher Scientific (https://www.thermofisher.com/us/
en/home/life-science/protein-biology/peptides-proteins/
custom-peptide-synthesis-services/peptide-analyzing-tool.
html) predicts the ease of peptide synthesis and purification.
The tool grades the input peptides on a scale from A to C, with
A predicting no anticipated issues and C predicting a
challenging synthesis. Peptides are additionally graded on a
scale from 1 to 5 to predict compatibility with quantitative MS
workflows based on hydrophobicity, with 1 indicating a very
hydrophilic peptide and 5 a very hydrophobic one.
We used the ThermoFisher Scientific tool to predict ease of

synthesis for our list of 1,771 peptides and performed an ROC
analysis. With an AUC of 0.651, this tool performed worse
than our model PepSysCo (Figure 6A).
We also used the ThermoFisher tool to predict ease of

synthesis of the 9604 synthetic peptides in our validation
peptide dataset. When considering peptide syntheses passing
the success rate threshold of 0.5 as successful, and syntheses
that do not pass this threshold as failed, PepSySco achieved an
AUC of 0.806, while the ThermoFisher Scientific tool only
achieved an AUC of 0.567 (Figure 6B). PepSySco also
outperformed the ThermoFisher Scientific tool when higher
success rate thresholds were considered (Supporting Informa-
tion Figure 1).

■ DISCUSSION
Peptides, which are short amino acid polymers, are a crucial
reagent for research projects designed to study biological
phenomena such as immune system recognition of a wide
variety of perturbations, from infectious disease to auto-
immunity and cancer. For example, generating peptides to
recruit tumor-specific T cells is essential for developing
personalized cancer vaccines, or characterizing peptide targets
of T cells is critical for understanding the immune response to
pathogens, such as SARS-CoV-2. As such, the capacity to
identify and synthesize peptide sets for use in various platforms
is essential.27−30

Peptides are composed of various combinations of the 20
different naturally occurring amino acids and represent
complex molecules from a synthesis standpoint. For many
studies in an immunological context, peptides typically vary in
length from about 8 to 25 amino acids. Out of about 23,000
synthesized peptides at the La Jolla Institute of Immunology,
we analyzed over 1700 peptides with MS for QC. We found
that for 1540 of the 1771 (87%) unique peptides we examined
by MS1, the most abundant MS1 peaks represented the
expected peptide. In 13% of the MS1 spectra, the majority of
the observed peaks did not match the mass of the expected
peptide, and these problematic syntheses were defined
operationally as failed.
We defined 22 different features based on various properties

of the peptide amino acid sequences and trained a ML model
to predict the likelihood of successful peptide synthesis. The
most predictive model was achieved when the features
“peptide length” and “Janin index”31 were combined in a
naiv̈e Bayes model. We expected the peptide length to play an
important role because, with a growing amino acid chain, the
likelihood of peptide fragmentation or missed residues also

grows. Indeed, our analyses showed that longer peptides are
more prone to failed synthesis than shorter ones.
The Janin index being more predictive than other hydro-

phobicity scales we considered was more surprising. The Janin
index was determined by examining proteins with known 3D
structures and defining the hydrophobicity of a residue based
on its localization in the structure, that is, whether the residue
is accessible on the protein surface or buried inside a globular
structure.31 In contrast, the Kyte−Doolittle scale, for example,
which is the most widely known hydrophobicity scale, was
determined by directly inspecting the amino acid structures
and assessing the physicochemical properties of the side
chains.32 It is possible that the way the Janin index is
determined captures unique contexts that are specifically
relevant during the peptide synthesis process.
It is important to note that the peptides being analyzed in

the present study have been produced using high throughput
synthesis methods that are expected to produce crude
materials of at least 70−75% purity, on average. This synthesis
approach is the most cost-effective way to generate the large
peptide sets necessary for probing reactivity to large proteomes
of various viruses, bacteria, or cancer antigens. Other methods
are available that are more likely to produce high-quality
peptides without issues. Still, these methods require additional
steps of HPLC purification, which are costly and not feasible
for large-scale studies, but also do not guarantee successful
synthesis.
The peptides analyzed in this study were all synthesized

using standard Fmoc chemistry.33 The conditions of Fmoc
chemistry are milder as compared to the more senior Boc
chemistry, which led to a shift in the field in the late 1990s, and
Fmoc became the chemistry of choice in a majority of peptide
laboratories.3 However, the solvents commonly used in Fmoc
chemistry, such as DMF, NMP, and dichloromethane (DCM),
are known to be hazardous and considerable research has been
done in recent years to identify less toxic solvents as
alternatives.34−36 It is currently unclear how PepSySco will
perform on peptides produced with synthesis chemistries other
than the standard Fmoc chemistry, and the effectiveness of
PepSySco might be limited to peptides synthesized with this
specific methodology. We plan to evaluate PepSySco on
peptide sets that were synthesized using other methods when
they become available to us in the future.
In this study, we have highlighted commonly occurring

problems during peptide synthesis. Importantly, many
problems can be avoided by expert evaluation of each peptide
and optimizing the synthesis procedure accordingly. For
instance, several impurities are formed during TFA treatment
and could be avoided by optimizing the deprotection
procedure. The goal of our tool is, however, to quickly
evaluate thousands of peptides and pick peptides that are likely
easy to synthesize without the need for expert intervention. It
is also important to note that our current evaluation of
different peaks observed in the MS spectra is simplistic. For
instance, we assumed that a difference of −18 between the
expected and measured mass weight represents the loss of a
water molecule. A mass weight difference of −18 could
however also represent an aspartimide formation at aspartic
acid residues. We plan to further improve such evaluations in
the future when we have more data available for analysis.
We believe PepSySco will be useful for researchers when

assembling sets of peptides for synthesis by identifying
peptides that are very likely to have a successful synthesis
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and identifying potentially problematic sequences. For
instance, PepSySco could be used for the critical planning of
in vitro digestions of synthetic polypeptides by proteases and
the downstream identification and characterization of MHC-I-
restricted epitope candidates.37−44 Users can use different
PepSySco thresholds depending on their needs. For example, a
PepSySco threshold of 0.85 covered about 51% of the peptides
in our dataset and predicted successful synthesis with an
accuracy of 95%. In contrast, a PepSySco threshold of 0.99
covered only 12% of the peptides in our dataset but provided
98% accuracy.
PepSySco is freely available to the scientific community at

http://tools.iedb.org/pepsysco.

■ METHODS
Peptide Synthesis and Mass Spectrometry. All

peptides analyzed in this study were synthesized as crude
material on a 1 mg scale using the SYRO II peptide synthesizer
and using standard Fmoc chemistry. Wang resins were utilized
for all amino acids except Cys and Pro, for which preloaded
chloro-trityl resins were used. The loading capacity of the
resins used was between 0.3−0.4 mmol/g, and the equivalent
of the coupling reagents used was 5. Coupling was done for 40
min at room temperature with O-(benzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU)
and 4-methylmorpholine as reagents. Dimethylformamide
(DMF), ACS certified at >99% purity, was utilized as the
solvent and 40% piperidine in DMF for Fmoc-deprotection.
This step was repeated twice, for 6 min each time, and DMF
washes were performed after Fmoc-deprotection and coupling
steps, six and four times respectively. All peptides were
synthesized identically and subject to QC analysis by MS. The
same vendor was used for all peptides.
MS measurement of the first peptide library (training

dataset) was performed on the ion-spray PE SCIEX150 mass
spectrometer. Briefly, following lyophilization, randomly
selected samples were taken using a pipet tip and dissolved
in methanol. Samples were then infused onto a mass
spectrometer at 100 μL/min, with the instrument mass range
set to 500−2000. Because concentration can vary, enough
events were captured until a clear visual signal was obtained. As
the obtained data tends to reflect doubly charged ions, the
captured data are reprocessed to represent molecular weights
associated with singly charged ions. Final spectra were saved as
pdf files for subsequent analysis.
The synthetic peptide library for the validation dataset

consisted of 9,604 synthetic peptides, which were subdivided
into 8 batches, with each measured at 2 concentrations (100
and 500 fmol of each peptide were loaded in the mass
spectrometer). We obtained 32 MS RAW files (8 synthetic
peptide library batches × 2 concentrations × 2 technical
replicates). The RAW MS data were first converted with ms-
convert 4.1.12 from ProteoWizard45 to the open mzML
format, which is readable by most MS software platforms.
MzML files were analyzed by both Mascot and PEAKS DB.
Two databases in FASTA format were generated: (i) a target
database containing all synthetic peptide sequences included in
the peptide library and (ii) a synthesis error database. Both
databases were used to search the MS1/MS2 spectra of the
validation dataset. As we were only interested in assigning the
exact peptide sequence as found in the target database or the
synthesis error database, enzyme specificities were set to “no
processing” in PEAKS DB. Precursor mass tolerances were set

to 5 ppm, and fragment ion mass tolerances were set to 0.02
Da for measurements on Fusion Lumos. MS2 spectra assigned
by PEAKS, after filtering peptides for 1% FDR, were extracted.
MS measurement of these peptide samples was performed

using an Orbitrap Fusion Lumos mass spectrometer coupled to
an Ultimate 3000 RSLC nano pump (both from ThermoFisher
Scientific). Briefly, peptides were loaded and separated by a
nanoflow HPLC (RSLC Ultimate 3000) on an Easy-spray C18
nano column (50 cm length, 75 mm internal diameter;
ThermoFisher Scientific), coupled on-line to a nano-electro-
spray ionization Orbitrap Fusion Lumos mass spectrometer
(ThermoFisher Scientific). Peptides were eluted with a linear
gradient of 5−45% buffer B (80% ACN, 0.1% formic acid) at a
flow rate of 300 nL/min over 90 min at 50 °C. The instrument
was programmed in Xcalibur 4.1 to acquire MS data using a
“Universal” method by defining a 3s cycle time between a full
MS scan and MS/MS fragmentation. This method takes
advantage of multiple analyzers in the Orbitrap Fusion Lumos
and drives the system to use all available parallelizable time,
resulting in a decreased dependence on method parameters
(such as Data Dependent Acquisition; DDA). We acquired
one full-scan MS spectrum at a resolution of 1,20,000 at 200
m/z with an automatic gain control (AGC) target value of 2 ×
105 ions and a scan range of 350−1550 m/z. The MS2
fragmentation was conducted using HCD collision energy
(30%) with an Orbitrap resolution of 30,000 at 200 m/z. The
AGC target value was set up as 5 × 104 with a max injection
time of 120 ms. A dynamic exclusion of 30 s and 1−4 included
charged states defined within this method.

Peptide Library Datasets. The MS graph batches for the
training dataset were taken from data from the laboratory of
Prof. Sette. The analyzed sets included peptides derived from
sequences from various antigens of Cytomegalovirus, Mycobac-
terium tuberculosis, Zika virus, chikungunya virus, SARS-CoV-2,
pertussis, tetanus, yellow fever virus, rhinovirus, metapneumo-
virus, influenza, Plasmodium falciparum, and other sources. The
sets included peptides predicted for class I and II binding
studies and CD4 and CD8 T cell recognition assays, and sets
of overlapping peptides spanning entire protein antigens.
There were 30 peptide synthesis batches of 23,279 peptides
and 1917 MS1 graphs, out of which 1771 were unique peptide
sequences. We collected the tables detailing the target peptide
sequence for each peptide synthesis batch. We manually
retrieved the relative intensity and molecular weight for each
MS result and each MS1 peak within the result.
The validation peptide library contained 9, 10, or 15 amino

acid long peptides related to CD4+ and CD8+ T cell response
to dengue and VZV viruses. The dengue and VZV synthetic
peptides utilized in this study were selected for analysis
because they were already available in-house and synthesized
for separate epitope identification studies. The selection and
characterization of these peptides were described previ-
ously.46−53 Each of the peptides in synthetic peptide libraries
was derived from respective dengue and VZV proteomes.
Peptides were originally selected for other studies based on
bioinformatic analyses of predicted capacity to bind various
common MHC-I and -II alleles in the general worldwide
population. The set of dengue protein sequences of
provenance represent all four dengue serotypes and several
different variant isolates. The VZV peptides were primarily
derived from the attenuated varicella vaccine strain vOka and a
few variant isolates.
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Databases, Datasets, and Algorithm Availability. The
MS proteomics data we generated have been deposited to the
ProteomeXchange consortium via the PRIDE54 partner
repository with the dataset identifier PXD025346.
The developed tool PepSySco is freely available at http://

tools.iedb.org/pepsysco.
Tools. We used custom JavaScript and Python scripts to

aggregate data and perform calculations. We used Python
packages scikit learn and pandas to train ML models. MS2
post-analysis was performed using custom scripts in R.
Features Considered for Machine Learning. We

considered a total of 22 peptide features for training our
prediction model:
X1 Length of Peptide. The lengths of peptides in our

dataset ranged between 8 and 25 amino acids, with the
majority (58%) being 15 residues. The vast majority of failed
peptide synthesis (98%) appeared at a peptide length of 15.
X2 Number of Aliphatic-Hydrophobic Residues in the

Peptide. Counting the number of peptides that are aliphatic-
hydrophobic (I, L, M, and V).
X3 Length of the Longest Aliphatic-Hydrophobic Stretch

within the Peptide. Counting the highest consecutive
sequence of contiguous residues that are aliphatic-hydrophobic
(I, L, M, and V).
X4 N-Terminal Amino AcidVectorized. Since we

identified in the MS1 spectra analyses that particular amino
acids tend to be more often dropped at the end of the peptide
synthesis, at the N-terminal side of the peptide, we used the
vectorized left amino acid as a feature.
X5 All Amino AcidsVectorized. Vectorization, or “bag of

letters”, measuring the number of each amino acid in the
peptide, is represented as a series of 20 numbers.
X6 N-Terminal Amino Acid Drop. Many spectra indicated

the loss, or dropping, of a single amino acid residue. Often, in
the dataset analyzed, this occurred at the N-terminus. Here, the
spectra are analyzed with this consideration.
X7 Amino Acid Drop at Any Position. As with X6, this

feature considers amino acid drops at any position within the
sequence.
X8 Broken Amino Acid Bonds at Any Position. Here,

instead of considering the dropped amino acid itself, the bond
to the right of the dropped amino acid is considered. There are
20 amino acids; hence, there are 20 × 20 = 400 possible amino
acid bonds.
X9 C-Terminal Amino Acid Drop. As with X6, here, amino

acid drops on the C-terminus were considered.
X10 Kyte−Doolittle Amino Acid Hydrophobicity Index.

Kyle−Doolittle amino acid index conversion was performed,32

averaging the conversion of all amino acids in the peptide and
dividing by the peptide length. This index is a common
measure for peptide hydrophobicity.
X11 Hopp−Woods Amino Acid Hydrophobicity Index.

Hopp−Woods amino acid index conversion was performed,55

averaging the conversion of all amino acids in the peptide and
dividing by the peptide length. This index is a hydrophilicity
scale based on the individual amino acid water solubility.
X12 Cornette Amino Acid Hydrophobicity Index. Cornette

amino acid index conversion was performed,56 averaging the
conversion of all amino acids in the peptide and dividing by
the peptide length. This index is a hydrophobicity scale based
on 28 other published scales computed for optimality.
X13 Eisenberg Amino Acid Hydrophobicity Index.

Eisenberg amino acid index conversion was performed,57

averaging the conversion of all amino acids in the peptide and
dividing by the peptide length. This index is based on the
calculation of hydrophobic dipole moments of areas within a
polypeptide chain and of the energy needed to move the
residue from the inside of the protein to its surface.

X14 Rose Amino Acid Hydrophobicity Index. Rose amino
acid index conversion was performed,58 averaging the
conversion of all amino acids in the peptide and dividing by
the peptide length. This hydrophobicity scale is correlated to
the average area of buried amino acids in globular proteins.

X15 Janin Amino Acid Hydrophobicity Index. Janin amino
acid index conversion was performed,31 averaging the
conversion of all amino acids in the peptide and dividing by
the peptide length. The Janin scale provides an indication for
the surface accessibility of the amino acid residues of globular
proteins.

X16 Engelman GES Amino Acid Hydrophobicity Index.
Engelman GES amino acid index conversion was performed,59

averaging the conversion of all amino acids in the peptide and
dividing by the peptide length. This scale is based on the
energy required for separating amino chains in aqueous
solutions and membranes.

X17 Number of Acidic Residues in the Peptide. The
number of acidic residues was counted (D and E).

X18 Number of Small Polar Residues in the Peptide. The
number of residues that are small and polar was counted (C, S,
and T).

X19 Number of Small Residues in the Peptide. The
number of residues that are small was counted (A, G, and P).

X20 Number of Large Polar Residues in the Peptide. The
number of residues that are large and polar was counted (N
and Q).

X21 Number of Basic Residues in the Peptide. The
number of basic residues was counted (H, K, and R).

X22 Number of Aromatic Residues in the Peptide. The
number of aromatic residues was counted (F, W, and Y).
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