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Abstract: The rising incidence of fatty liver disease (FLD) poses a health challenge, and is expected to
be the leading global cause of liver-related morbidity and mortality in the near future. Early case
identification is crucial for disease intervention. A retrospective cross-sectional study was performed
on 31,930 Taiwanese subjects (25,544 training and 6386 testing sets) who had received health check-
ups and abdominal ultrasounds in Changhua Christian Hospital from January 2009 to January 2019.
Clinical and laboratory factors were included for analysis by different machine-learning algorithms.
In addition, the performance of the machine-learning algorithms was compared with that of the
fatty liver index (FLI). Totally, 6658/25,544 (26.1%) and 1647/6386 (25.8%) subjects had moderate-to-
severe liver disease in the training and testing sets, respectively. Five machine-learning models were
examined and demonstrated exemplary performance in predicting FLD. Among these models, the
xgBoost model revealed the highest area under the receiver operating characteristic (AUROC) (0.882),
accuracy (0.833), F1 score (0.829), sensitivity (0.833), and specificity (0.683) compared with those of
neural network, logistic regression, random forest, and support vector machine-learning models.
The xgBoost, neural network, and logistic regression models had a significantly higher AUROC than
that of FLI. Body mass index was the most important feature to predict FLD according to the feature
ranking scores. The xgBoost model had the best overall prediction ability for diagnosing FLD in our
study. Machine-learning algorithms provide considerable benefits for screening candidates with FLD.

Keywords: machine learning; fatty liver disease; predicting

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a hepatic complication of metabolic
syndrome. With the elimination of hepatitis C and effective vaccination against hepatitis
B, NAFLD is becoming the most common chronic liver disease in the world, affecting
22.28%–51.04% of the Asian population [1]. Identifying potential patients at increased
risk of developing NAFLD [2] is important for early medical interventions to reduce their
subsequent risk of developing liver cirrhosis and hepatocellular carcinoma [1]. The golden
standard diagnosis of NAFLD is liver biopsy, which is invasive and not applicable for
screening purposes. Noninvasive imaging methods, such as the controlled attenuation
parameter (CAP) measurement with the FibroScan [3–6] or abdominal ultrasound, are
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able to screen patients for the presence of NAFLD and stage its severity. However, the
routine use of these imaging tools may not be cost-effective and not widely available for
primary care physicians. An ideal tool should allow for screening to be performed on
a day-to-day basis, and, more importantly, increase the acceptance of screening by the
physicians performing it. The fatty liver index (FLI) [7,8] is developed and validated with
routine laboratory values for screening purposes when an ultrasound is not available. The
FLI includes four parameters but is not easily calculated with simple calculation. Machine
learning (ML) has recently been introduced to manage a large amount of data with the
use of a computer that studies interactions between variables through the minimization of
errors between the predicted and actual outcomes. Several ML techniques, such as logistic
regression (LR), random forest (RF), artificial neural networks (ANNs), support vector
machines, and extreme gradient boosting (xgBoost), show promise in improving predictions
compared with conventional risk scoring systems. There are several previous studies that
used ML methods to show a higher diagnostic value for the presence of fatty liver disease
with clinical variables [9–15]. However, these studies utilized a limited number of datasets,
and most of them did not examine with an additional testing dataset for validation. In this
study, we utilized a health checkup database with a large Taiwanese population to evaluate
the potential usefulness of different types of machine-learning algorithms. The performance
of the machine-learning algorithms was compared with that of the well-known fatty liver
index (FLI).

2. Materials and Methods
2.1. Patients and Data Preparation

The study population was recruited from adults (≥20 years old) who had received
health examinations in the Healthcare Center of Changhua Christian Hospital between Jan
2009 and Jan 2019. The enrollment was limited to participants who had complete records
of clinical and biochemical data, and results of liver ultrasonography with report for the
presence of fatty liver disease. Patients with an ultrasound finding of hepatic malignancy,
liver cirrhosis, ascites, or features of alcoholic liver disease were excluded. A total of
31,930 subjects who fulfilled the criteria were included in the study.

This study only accessed deidentified data retrospectively, so we waived the require-
ment for informed consent; the study was approved by the Institutional Review Board of
Changhua Christian Hospital (approval number: CCH IRB 191012).

2.2. Diagnosis of Fatty Liver Disease (FLD)

The diagnosis of fatty liver disease requires the presence of significant hepatic steatosis
confirmed by ultrasound examination. Three experienced sonographers who were un-
aware of the patients’ clinical and laboratory data performed the hepatic ultrasonography
examinations during the study period. An ultrasound finding of moderate-to-severe fatty
liver was defined as the presence of fatty liver disease.

2.3. Machine-Learning Model Construction and Validation

The dataset was randomly divided into a training set and a testing dataset at a ratio
of 8:2. The training was performed with 10-fold cross-validation of the training data. The
performance of the developed model was evaluated on the testing dataset. All clinical
and biochemical data from the participants were used to build five models to predict the
presence of FLD: extreme gradient boosting (xgBoost), logistic regression (LR), neural
network (NN), random forest (RF), and support vector machine (SVM) models.

2.4. Performance Metrics

The six evaluation indicators of the area under the receiver operating characteristic
curve (AUROC), accuracy, recall, F1 score, precision, and specificity were evaluated to
compare the performance of the five models [16]. The AUROC is a popular and strong
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metric in evaluating binary classifiers. The AUROCs of the fatty liver index [8] and the
developed machine models were compared.

2.5. Statistical Analysis

In our experiment, the machine-learning training testing was performed with the
Orange Data Mining platform [17]. Baseline data were analyzed using IBM SPSS version
28.0 (IBM Corp., Armonk, NY, USA) and medical statistical software MedCalc Version 19.8
(© 2022 MedCalc Software Ltd.). Results were considered to be statistically significant if
the two-tailed p-value was <0.05 for all tests.

3. Results
3.1. Characteristics of the Participant Population

A total of 31,930 subjects who fulfilled the criteria were included in the study, and
26% of the study population had moderate-to-severe fatty liver disease on abdominal
ultrasound examination. Table 1 illustrates the clinical features of the fatty-and nonfatty-
liver populations. A total of 27 features were obtained for the database, and all had
statistical differences in these two populations. The dataset was split into a training dataset
and a testing dataset (Table 2) for machine-learning model training.

Table 1. Comparison of the fatty and nonfatty populations.

No Fatty Liver
(n = 23,625)

Fatty Liver Disease
(n = 8305) p-Value

Categorial variable N (%) N (%)
Male sex 13,484 (57.1%) 6293 (75.8%) <0.0001
Continuous variables Mean ± SD Mean ± SD
Age (years) 48.63 ± 10.92 50.48 ± 9.93 <0.0001
Weight (kg) 63.28 ± 10.6 75.011 ± 12.13 <0.0001
Height (cm) 164.7 ± 8.02 166.34 ± 7.95 <0.0001
BMI (kg/m2) 23.244 ± 2.91 27.044 ± 3.47 <0.0001
Waist (cm) 63.27 ± 10.6 75.01 ± 12.13 <0.0001
SBP (mmHg) 121.11 ± 16.14 130.17 ± 15.77 <0.0001
DBP (mmHg) 77.25 ± 10.42 83.45 ± 10.62 <0.0001
ALT (IU/L) 23.31 ± 20.42 39.64 ± 25.71 <0.0001
AST (IU/L) 23.86 ± 19.344 30.39 ± 16.33 <0.0001
Cr (mg/dL) 0.811 ± 0.23 0.86 ± 0.23 <0.0001
Sugar (mg/dL) 93.88 ± 16.01 104.44 ± 25.56 <0.0001
T-Cho (mg/dL) 191.666 ± 34.5 197.31 ± 36.39 <0.0001
HDL (mg/dL) 52.588 ± 13.53 43.07 ± 9.39 <0.0001
LDL (mg/dL) 118.4 ± 30.38 124.08 ± 32.47 <0.0001
TG (mg/dL) 98.52 ± 69.62 162.64 ± 110.33 <0.0001
r-GT (U/L) 21.91 ± 24.66 35.08 ± 36.76 <0.0001
WBC (×109/L) 5.4 ± 1.45 6.18 ± 1.56 <0.0001
Hb (g/dL) 13.99 ± 1.53 14.7 ± 1.31 <0.0001
MCH (pg) 30.11 ± 2.98 30.17 ± 2.71 0.1025
MCHC (g/dL) 33.455 ± 0.95 33.61 ± 0.94 <0.0001
MCV (fL) 41.8 ± 4.21 43.71 ± 3.63 <0.0001
RBC-RDW (%) 13.53 ± 1.27 13.39 ± 1.04 <0.0001
RBC Count (106/µL) 4.67 ± 0.52 4.9 ± 0.51 <0.0001
RBC Volume (fL) 89.89 ± 7.53 89.67 ± 6.81 0.0166
Platelet (103/µL) 222.64 ± 53.55 229.82 ± 52.68 <0.0001
FIB-4 1.21 ± 0.64 1.17 ± 0.56 <0.0001

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; ALT: alanine aminotransferase;
AST: aspartate aminotransferase; Cr: creatinine; T-Cho: total cholesterol; HDL: high-density lipoprotein; LDL:
low-density lipoprotein; TG: triglyceride; r-GT: r-glutamyl transpeptidase; WBC: white blood cell count; HB:
hemoglobin; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV:
mean corpuscular volume; RBC: red blood cell; RDW: red cell distribution width; FIB-4: fibrosis index based on
the four factors.
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Table 2. Baseline data of the testing and training population.

Testing Population
(n = 6386)

Training Population
(n = 25,544) p-Value

Categorial Variable N % N %
Male sex 3920 61.4% 15857 62.1% 0.3077
Fatty liver disease 1647 25.8% 6658 26.1% 0.6552
Continuous variables Mean SD Mean SD
Age (years) 49.0338 10.6897 49.1273 10.7045 0.5325
Weight (kg) 66.2086 11.8944 66.3478 12.2305 0.4133
Height (cm) 165.1039 8.0304 165.1287 8.0323 0.8254
BMI (kg/m2) 24.1912 3.3860 24.2331 3.5129 0.3896
Waist (cm) 81.3276 9.4895 81.4931 9.6282 0.2178
SBP (mmHg) 123.3472 16.2762 123.4969 16.5927 0.5173
DBP (mmHg) 78.7839 10.8325 78.8869 10.8106 0.4962
ALT (IU/L) 27.6682 20.3123 27.5262 23.6926 0.6599
AST (IU/L) 25.4887 11.4994 25.5720 20.2435 0.7520
Cr (mg/dL) 0.8184 0.2498 0.8216 0.2228 0.3200
Sugar (mg/dL) 96.8274 21.5711 96.5744 18.9770 0.3543
T-Cho (mg/dL) 192.5857 34.7903 193.2651 35.1615 0.1663
HDL(mg/dL) 50.2668 13.2300 50.0619 13.2686 0.2693
LDL (mg/dL) 119.4998 30.8285 119.9765 31.0895 0.2723
TG (mg/dL) 113.8447 101.3611 115.5403 82.8250 0.1629
r-GT (U/L) 25.2388 28.2466 25.3584 29.0509 0.7674
WBC (×109/L) 5.6059 1.5110 5.6049 1.5196 0.9632
Hb (g/dL) 14.1648 1.5050 14.1758 1.5102 0.6019
MCH (pg) 30.1294 2.8629 30.1250 2.9260 0.9135
MCHC (g/dL) 33.4929 0.9346 33.4895 0.9532 0.7981
MCV (fL) 42.2640 4.1367 42.3027 4.1600 0.5058
RBC-RDW (%) 13.5007 1.2364 13.4978 1.2132 0.8666
RBC Count (106/µL) 4.7246 0.5119 4.7314 0.5298 0.3560
RBC volume (fL) 89.8414 7.2438 89.8342 7.3755 0.9443
Platelet (103/µL) 225.1690 52.8910 224.3424 53.5484 0.2688
FIB-4 1.1890 0.6050 1.1966 0.6242 0.3836

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; ALT: alanine aminotransferase;
AST: aspartate aminotransferase; Cr: creatinine; T-Cho: total cholesterol; HDL: high-density lipoprotein; LDL:
low-density lipoprotein; TG: triglyceride; r-GT: r-glutamyl transpeptidase; WBC: white blood cell count; HB:
hemoglobin; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV:
mean corpuscular volume; RBC: red blood cell; RDW: red cell distribution width; FIB-4: fibrosis index based on
the four factors.

3.2. Results of Different Model Performance Metrics

As there was a difference in the features of the fatty and nonfatty groups, we included
all these variables in building the final model. The training of the machine-learning model
was performed with Orange software (Version 3.31.1).

Table 3 illustrates the performance metrics of five different machine models. The
xgBoost model had the highest AUROC for predicting the presence of fatty liver disease
compared with that of the four other models. The SVM model had the worst performance
metrics in predicting the presence of fatty liver disease. Figure 1 illustrates the top ten
features contributing to the F1 score of the developed xgBoost model.

Table 3. Performance of different machine models on the testing dataset.

Model AUROC Accuracy Recall F1 Specificity Precision

xgBoost 0.882 0.833 0.833 0.829 0.683 0.827
Neural network 0.874 0.824 0.824 0.820 0.683 0.818

Logistic regression 0.870 0.825 0.825 0.815 0.629 0.816
Random forest 0.849 0.818 0.818 0.809 0.629 0.808

SVM 0.551 0.569 0.569 0.595 0.536 0.656
Abbreviations: AUROC: area under receiver operating characteristic curve; SVM: support vector machine.
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3.3. Comparison of the Performance of Machine-Learning Models and the Fatty Liver Index

The fatty liver index (FLI) is a conventional index developed to calculate the likelihood
of fatty liver disease utilizing four clinical parameters: BMI, waist, serum triglyceride, and
serum gamma-glutamyl transpeptidase (rGT) levels. FLI = (e0.953 × loge (triglycerides) +
0.139 × BMI + 0.718 × loge (rGT) + 0.053 × waist circumference − 15.745)/(1 + e0.953 × loge
(triglycerides) + 0.139 × BMI + 0.718 × loge (rGT) + 0.053 × waist circumference − 15.745)
× 100. A comparison of the developed machine-learning models and the FLI is illustrated
in Table 4.

Table 4. Pairwise comparison of the AUROC of different machine-learning models and the fatty liver
index on the testing dataset.

Difference
between Areas

(p-Value)

Neural
Network

Logistic
Regression

Random
Forest SVM Fatty Liver

Index

xgBoost 0.0076
(p = 0.0105)

0.0114
(p = 0.0001)

0.0327
(p < 0.0001)

0.330
(p < 0.0001)

0.0347
(p < 0.0001)

Neural network 0.00382
(p = 0.2303)

0.0251
(p < 0.0001)

0.323
(p < 0.0001)

0.00204
(p = 0.5978)

Logistic
regression

0.0213
(p < 0.0001)

0.0319
(p < 0.0001)

0.0233
(p < 0.0001)

Random forest 0.298
(p < 0.0001)

0.00204
(p = 0.5978)

SVM 0.295
(p < 0.0001)

Abbreviations: AUROC: area under receiver operating characteristic curve; SVM: support vector machine.

FLI had a statistically lower AUROC than those of the xgBoost and logistic regression
models in the testing dataset, but a higher AUROC than that of the SVM model (Figure 2).
Figure 3 illustrates the comparison of the precision–recall curve of the xgBoost model and
fatty liver index. The xgBoost model had a larger AUC in the precision–recall curve than
that of the fatty liver index.
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The area under the curve of the fatty liver index was 0.648 (0.624 to 0.671), and that of
the xgBoost model was 0.723 (0.701 to 0.744).

4. Discussion

Our study compared the performance of machine-learning models and the fatty liver
index for the diagnosis of fatty liver disease in a hospital setting of a Taiwanese population.
Fatty liver disease was observed in 26.2% of our patients. To our knowledge, only a few
studies reported the use of machine learning for the diagnosis of fatty liver disease, and
our study utilized a large dataset for model training and testing. The machine-learning
algorithms achieved better performance than that of the conventional fatty liver index.

After hepatitis B vaccination and hepatitis C elimination [18–20], fatty liver disease has
become the most health-threatening liver disease in the world [1,21,22]. The prevalence of
fatty liver disease has seen a rapid rise in the Asian population, with the highest prevalence
in Iran (64.29%) and the lowest in Taiwan (30.79%) [1]. Thus, identifying patients at risk for
harboring fatty liver disease is important for subsequent lifestyle intervention to prevent
liver damage progression. An abdominal ultrasound is radiation-free and noninvasive in
screening the liver for the presence of fatty liver disease. A good sensitivity (85%–96%) and
specificity of up to 98% could be achieved when moderate-to-severe fatty liver is detected
by the abdominal ultrasound [14]. Despite its usefulness, an abdominal ultrasound cannot
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be available for every primary care setting or for population-based screening. In the 2022
clinical practice guideline by the American Association of Clinical Endocrinology and
American Association for the Study of Liver Diseases [23], screening high-risk patients
(prediabetes, type 2 diabetes, obesity, and/or metabolic syndromes) with noninvasive
biomarkers such as the fatty liver index is recommended, followed by referral ultrasound
examination. Such two-step screening is feasible, and may reduce screening time and
costs [24]. A machine-learning model could be built into the hospital electronic system or
in the form of internet apps, which may further decrease the difficulty for clinical use.

Recent advances in the field of machine learning have improved the discovery of
new biomarkers for disease diagnosis or helped in designing treatment plans [14,25–27].
Dundar et al. [28] utilized a proposed machine-learning surgical planning and found that it
significantly contributed to positive outcomes for neurosurgery. Sakatani et al. [29] utilized
a machine-learning approach to estimate human cerebral atrophy on the basis of metabolic
status. Shiba et al. [30] identified high risk factors for COVID-19 infection and hospitaliza-
tion utilizing UK biobank data with machine-learning-based analysis. In addition, there
are several previous works applying machine-learning methods for diagnosing NAFLD by
utilizing electronic medical records or biochemical variables (Table 5). Even in the same
ethnic population, the proportion of fatty liver disease could range from the 26.2% in our
study to the 65.3% in a previously published study [15]. The rank of feature importance can,
therefore, be different among different studies. Thus, the high accuracy of the developed
model [15] may not be applicable to other populations. Different studies utilized different
features for model training, and their performance could not be compared head-to-head.
The machine-learning models should be compared with other validated tools such as the
fatty liver index in the present study to show their superiority.

Table 5. Literature review of previous studies of machine learning for fatty liver disease.

Author/Year Setting/Country Fatty/Total
Population, (%) Validation Method ML Model Accuracy (%) Area under

Curve (%)

Ma [31] 2018 Hospital/China 2522/10,508 (24%) 10-fold cross
validation LR 82.92% N/A

Wu [15] 2018 Hospital/Taiwan 377/577 (65.3%) 10-fold cross
validation Random forest 87.48% 92.25%

Liu [14] 2021 Hospital/China 5878/15,315 (38.4%) 32% of dataset as
testing data xgBoost 79.5% 87.3%

Atsawarungru-
angkit [13] 2021 Population/USA 817/3235 (25.3%) 30% of dataset as

testing data

Ensemble of
subspace

discriminant
77.7% 78%

Pei [32] 2021 Hospital/China 845/3419 (24.7%) 30% of dataset as
testing data xgBoost 94.15% 93.06%

Zhao [33] 2021 Hospital/China 9173/39,884 (23%) 30% of dataset as
testing data xgBoost 89% N/A

Our Study 2022 Hospital/Taiwan 8375/31,930 (26.2%) 20% of dataset as
testing data xgBoost 83.3% 88.2%

Our study evaluated five commonly utilized machine-learning models on the basis
of available clinical biochemical variables in a health checkup setting. We compared the
predictive capability of seven advanced machine-learning methods and confirmed that the
xgBoost model demonstrated the best performance, with the highest AUROC (0.882). High
accuracy was found in previous studies utilizing machine-learning methods [14,15,31,32],
and the xgBoost model achieved better performance in our study. The xgBoost model has
many advantages over other machine-learning models. For example, xgBoost performs a
second-order Taylor expansion on the cost function for more accurate results. This model
adds a regular term to the cost function to control the complexity of the model, simplifying
it and preventing overfitting with improved training speed. In addition, xgBoost is a model
based on the decision tree model, and it is more explanatory than neural networks and
other algorithms are [33].
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Our study has the strength of having had a large dataset for model training and testing
as compared to those in previous reports. The use of big data may avoid overfitting the
trained model. Despite the utilization of a large dataset for model training in a previous
study [33], there was no comparison of the model’s performance with that of an existing
validated index as in the present study. The use of the developed model may require
validation before its application in clinical practice. In addition, our study included labora-
tory markers there are readily available in health check-ups in the majority of hospitals in
Taiwan. Thus, our developed model may be more practicable in clinical practice.

Our findings were consistent with the findings of Atsawarungruangkit et al. [13], who
demonstrated the superiority of a machine-learning model over the fatty liver index in
predicting the presence of fatty liver disease, although the machine model utilized more
features than the fatty liver index did and could not be calculated with a calculator. The
calculation of the fatty liver index was also not simple and required the use of a spreadsheet
or an internet app that would be similar to the use of a machine model. Utilizing a machine-
learning model with better performance could assist in effectively identifying fatty liver
disease in future clinical practice.

There are several limitations to the present study. First, we did not incorporate the
clinical information of the patients that was not included in our database. The presence of
diabetes mellitus, hepatitis B, hepatitis C, and medication used may influence the findings
of the ML models in predicting the presence of fatty liver disease. Further studies are
required to include this information to improve the models’ performance. Second, the
database did not include a history of alcohol consumption. Although we could exclude
the presence of significant liver disease or alcoholic liver disease, we may have included a
small proportion of patients with alcoholic fatty liver disease in our analysis. Thus, the final
prediction of fatty liver disease may not be valid for other patient or ethnic populations.
Third, our laboratory values did not include the level of uric acid, which is not a routine
examination in our cohort for health check-ups. As uric acid level was identified as a
potential marker for predicting fatty liver disease [32], the lack of this parameter may
have influenced the predicting ability of our ML models. In addition, as a health check-up
cohort, there were no biopsy data to confirm the extent of steatosis and the severity of
liver fibrosis. Further studies including these parameters as features may further improve
such ML models by providing more information on the likelihood of disease severity, and
predicting patient mortality risk, and the extent of steatosis and fibrosis.

5. Conclusions

The present study utilized a large dataset, and the xgBoost model had the best overall
prediction ability for diagnosing FLD in our population. Furthermore, machine-learning
algorithms provided considerable benefits for screening candidates with FLD.
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