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Calcium channels are crucial to a number of cellular functions. The high voltage-gated
calcium channel family comprise four heteromeric channels (Cav1.1-1.4) that function
in a similar manner, but that have distinct expression profiles. Three of the pore-forming
α1 subunits are located on autosomes and the forth on the X chromosome, which
has consequences for the type of pathogenic mutation and the disease mechanism
associated with each gene. Mutations in this family of channels are associated with
malignant hyperthermia (Cav1.1), various QT syndromes (Cav1.2), deafness (Cav1.3),
and incomplete congenital stationary night blindness (iCSNB; Cav1.4). In this study we
performed a bioinformatic analysis on reported mutations in all four Cav α1 subunits and
correlated these with variant frequency in the general population, phenotype and the
effect on channel conductance to produce a comprehensive composite Cav1 mutation
analysis. We describe regions of mutation clustering, identify conserved residues that
are mutated in multiple family members and regions likely to cause a loss- or gain-of-
function in Cav1.4. Our research highlights that therapeutic treatments for each of the
Cav1 channels will have to consider channel-specific mechanisms, especially for the
treatment of X-linked iCSNB.

Keywords: L-type calcium channels, mutation analysis, incomplete congenital stationary night blindness,
treatment, CaV1.4 calcium channel

INTRODUCTION

Voltage-gated calcium channels perform multiple functions including signaling, hormone and
neurotransmitter secretion, muscle contraction, and gene expression (Catterall et al., 2005). The
family is grouped on the voltage sensitivities of the α1 subunits, with Cav1.1-1.4 comprising the
high voltage L-type channels (Catterall et al., 2005). Cav1.1-1.3 channels are encoded by autosomal
genes; the Cav1.4 channel is encoded by the X-linked CACNA1F gene. Cav1 channels diverged from
a common evolutionary ancestor and have 60–75% overall polypeptide sequence identity.
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Within the voltage-gated calcium channels, the α subunit
forms the conductive pore. It associates with a β subunit, an
α2δ subunit, and, for some channels, a γ unit, in an equal
ratio (Catterall et al., 2005; Supplementary Figure 1). The α1
protein structure consists of four homologous transmembrane
repeats (I–IV), each comprising of six helical segments (S1–S6)
connected by extracellular or cytoplasmic loops. The fourth
segment of each repeat carries positively charged amino acids
at every third position that function as voltage-sensor domains
(VSDs) sensitive to membrane depolarization impulses (Catterall
et al., 2005). The S5 and S6 segments form the pore, which is
lined by the S5–S6 loops. Each of these S5–S6 loops contains
a conserved glutamate residue that forms a negatively charged
ring that functions as the ion-selectivity filter (Yang et al., 1993).
Thus, their conserved properties enable the four Cav1 channels to
function in a similar fashion, albeit in different temporo-spatial
circumstances, for calcium homeostasis (Zamponi et al., 2015):
The α1 subunit of Cav1.1 is encoded by the CACNA1S gene
located on chromosome 1q32.1 and is exclusively expressed in
skeletal muscle (Catterall et al., 2005). The Cav1.4 α1 subunit
is located at Xp11.23 (encoded by CACNA1F) and is expressed
in retinal interneurons (Bech-Hansen et al., 1998). Cav1.2
(CACNA1C, Chr12p13.33) and Cav1.3 (CACNA1D, Chr3p21.1)
are expressed in many electrically excitable cells and are often
expressed in the same cell (e.g., adrenal chromaffin cells,
sinoatrial node, neurons, and atrial cardiomyocytes) (Zamponi
et al., 2015). The channels’ unique tissue expression profiles are
reflected in their different voltage-dependencies i.e., they activate
and inactivate at different voltages.

Missense mutations in the autosomal Cav1.1-1.3 α genes,
although variously described as gain-of-function (GoF) and loss-
of-function (LoF), mostly cause a gain of activity that is associated
with autosomal dominant phenotypes. For instance, Timothy
syndrome (TS) is an autosomal dominant, multiorgan condition,
that is predominantly caused by GoF Cav1.2 mutations [e.g.,
p.Gly406Arg (Splawski et al., 2005)]. A smaller number of
LoF variants have been described and are generally associated
with autosomal recessive traits, such as Cav1.3 insertion
mutations that result in autosomal recessive congenital deafness
(Baig et al., 2011).

X-linked congenital stationary night blindness (X-linked
iCSNB) is a static monogenic disorder that results in visual
disability predominantly in males. Pathogenic CACNA1F
mutations disrupt Cav1.4 function and impair normal retinal
synaptic transmission (Strom et al., 1998). There is a small
number of reports of affected females, presumably as a result
of skewed X-inactivation (Rigaudière et al., 2003; Hemara-
Wahanui et al., 2005). In the majority of cases, recessive
X-linked mutations in CACNA1F abolish or decrease Cav1.4
calcium current density. Missense mutations can increase
or decrease current density. Null (amorphic) alleles abolish
calcium currents, and hypomorphs reduce currents by either
dysregulating the current window (e.g., a shift in the voltage
dependence of activation or inactivation) or the quantity of
calcium influx. These changes may be through the production of
no active protein products (null), or by reducing transcription
or producing a protein lacking full functionality (hypomorph).

By contrast, hypermorphs result in hyperactive channels by
either increasing the current window or calcium influx. These
consequences are seen in electrophysiological recordings by
a shift in the voltage dependence of activation or inactivation
(hyperpolarized leftward shift or depolarized rightward shift), or
by changing the amount of calcium influx.

In this study, we collate and analyze reported mutations in
the α1 subunit-encoding genes of L-type channels to identify
the similarities and differences between the autosomal Cav1.1-
1.3 and X-linked Cav1.4 channels with the aim to inform
the pathophysiology of Cav1.4 variants, which is an important
prerequisite for future therapeutic intervention.

MATERIALS AND METHODS

Reported Mutations
Mutations in the α1 subunits of Cav1.1-1.4 genes were
retrieved from the Human Gene Mutation Database (HGMD,
licensed version accessed on June 2020; Stenson et al.,
2017) and functional studies were collated from PubMed.
These were classed as missense, nonsense, splicing, deletion,
insertion/duplications, or other (complex rearrangements or
regulatory substitutions). The associated phenotypes and mode
of inheritance were recorded from HGMD and Online Mendelian
Inheritance in Man (OMIM; Amberger et al., 2009).

Population Database Search (gnomAD)
The tolerance and constraint scores of mutation types in
Cav1 genes and their minor allele frequencies (MAFs) in
the general population were derived from The Genome
Aggregation Database (gnomAD; Karczewski et al., 2019). The
most common version of a gene in a population is referred
to as the wildtype allele and variations are annotated relative
to it; the MAF is the number of times a variant allele
occurs in a population for any data set. A high Z score
indicates more constraints and intolerance to synonymous
and missense variations, and pLI score close to 1 implies
that the gene is intolerant to protein-truncating variants (i.e.,
nonsense, frameshift, splice sites variants), which likely cause LoF
(predicted LoF; pLoF). In addition, the observed/expected (oe)
ratio compares the observed pLoF to the expected frequency of
the variation in the general population, supporting the Z and pLI
probabilities (90% CI).

Physicochemical and Pathogenicity
Prediction
The physicochemical properties of each mutation were manually
analyzed using NCBI’s Amino Acid Explorer tools “Structure
and Chemistry” and “Common Substitutions” (Bulka et al.,
2006).1 These tools compare specific physicochemical constraints
of the amino acid pair such as a change in amino acid
size, charge, and hydrophobicity. The latter tool relies on
BLOSUM62 matrix to sort the frequency of the substitution
(Henikoff and Henikoff, 1992). Pathogenicity was predicted using

1https://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi
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polymorphism phenotyping v2 (PolyPhen-2; Adzhubei et al.,
2010), which considers protein structural properties such as
amino acid surface area accessibility and generates a score where
1 is damaging and 0 is benign.

UniProt was used to annotate channel-specific domains and
amino acids (The UniProt Consortium, 2018). Functionally
characterized mutations were assigned as null, hypomorphic, or
hypermorphic, dependent on the published electrophysiological
properties and protein expression.

Conservation Analysis
Evolutionary constraints were analyzed by comparing protein
conservation between Cav1 paralogs (protein accession
numbers: Cav1.1 NP_000060.2; Cav1.2 NP_955630.3; Cav1.3
NP_000711.1; and Cav1.4 NP_005174.2) and 10 orthologs (Mus
musculus, Rattus norvegicus, Canis lupus familiaris, Felis catus,
Macaca mulatta, Sus scrofa, Danio rerio, Halichoerus grypus,
Zootoca vivipara, and Xenopus tropicalis), using Clustal Omega
(Sievers et al., 2011). Xenopus was not included for Cav1.3 as
only low-quality sequences are available.

RESULTS

Cav1 Proteins: Incidence of
Loss-of-Function (LoF) Mutations
For the four Cav1 encoding genes the population frequencies
of LoF variants were examined and respective scores were
ascertained from gnomAD. Cav1.1 has a total of 76 different LoF
variants recorded on gnomAD with pLI = 0; oe = 0.39; the total
number of Cav1.1 LoF alleles was 686. The low pLI score predicts
that Cav1.1 is tolerant to LoF variants and therefore tolerant of
haploinsufficiency (i.e., there will be sufficient protein function
from the remaining wildtype allele). By contrast, Cav1.2 and
Cav1.3 have a lower incidence of LoF variations in the population
than Cav1.1. There are 31 LoF variants for Cav1.2, comprising
81 alleles (pLI = 1; oe = 0.1). For Cav1.3 there are 36 different
LoF allele that collectively occur 296 times (pLI = 1; oe = 0.21).
The low incidence of LoF variants in these channels indicates
they are less tolerant of haploinsufficiency. It should be stressed
that despite these statistical predictions only functional analyses
will confirm if a LoF variant is associated with a loss of protein
function, i.e., reduced current density and changes in protein
expression. In Cav1.4 there are 35 different LoF variants collated
in gnomAD, with an allele count of 54. Most of these occur only
once in a single individual with 17 hemizygote males and 37
heterozygote females. A LoF pLI= 0 and oe= 0.45 indicates that
Cav1.4 is not under selection against such variants.

Cav1 Mutation Spectrum in Disease
Overall, for monogenic disorders caused by pathogenic variation
in Cav 1 channels, the proportion of missense vs LoF variants
is very different (Figure 1). Cav1.1-1.3 have 0–6% nonsense
mutations, whereas, Cav1.4 has 18% nonsense mutations.
Cav1.1-1.3 have 81–85% missense mutations and Cav1.4 has 35%
missense mutations.

Cav 1.1
There are 66 Cav1.1 mutations reported in HGMD, of which,
56 are missense mutations (85%). These missense alterations
are the sole group of pathogenic variants associated with
common Mendelian Cav1.1 conditions: malignant hyperthermia
(MH; Monnier et al., 1997), muscular dystrophy (Zenagui
et al., 2018), primary and hypokalemia periodic paralysis
(hypoPP; Ptácek et al., 1994), exertional heat illness (Fiszer
et al., 2015), and rhabdomyolysis (Vivante et al., 2017).
These all follow an autosomal dominant inheritance, apart
from muscular dystrophy and rhabdomyolysis, which are also
inherited recessively. Overall, 60% of the reported mutations
result in MH (16 mutations), myopathy (12 mutations), and
hypoPP (11 mutations), with hypoPP being a monogenic
condition; caused by Cav1.1 mutations only.

The 10 reported LoF variants (five deletions, four nonsense,
one splicing) have been associated with complex and
multifactorial diseases such as autism spectrum disorder
(ASD) (Torrico et al., 2019), schizophrenia (Purcell et al., 2014),
exertional heat illness, and myopathy (Hunter et al., 2015). While
such Cav1.1 variants can be considered risk factors for these
disorders, it is not possible to make definitive correlations due to
variable expression and incomplete penetrance.

Six missense mutations in Cav1.1 have previously been
functionally characterized in vitro – these are associated with
hypoPP and MH (Supplementary Figure 2A). Interestingly,
these result in both hypermorphic (one mutation) and
hypomorphic (five mutations) proteins, although the latter
are the most common (Table 1). Mutations reducing the
current density are due to the loss of a positive charge in
S4 VSDs, and three of these also delay the time course of
activation [p.Arg528His (Morrill et al., 1998), p.Arg1239His and
p.Arg1239Gly (Morrill and Cannon, 1999)].

Two of the functionally analyzed mutations (p.Arg175Trp,
p.Arg1086His) are reported in the heterozygous state in gnomAD
and have very low MAFs (0.00003 and 0.000004, respectively); no
other analyzed mutation is present in gnomAD.

Cav1.2
There are 85 Cav1.2 mutations reported in HGMD, with 72
missense mutations (85%). These result in three monogenic
cardiovascular disorders including Long QT syndrome 8 (LQT8;
Boczek et al., 2013), Brugada syndrome 3 (BRGDA3; Antzelevitch
et al., 2007), and TS (Splawski et al., 2004), which are
autosomal dominant traits. These account for 60% of the reported
mutations: LQT8 (25 mutations), BRGDA3 (12 mutations), and
TS (11 mutations). In addition, Cav1.2 mutations cause a range of
common disorders including cardiomyopathy (D’Argenio et al.,
2014), atrial or ventricular fibrillation (Maltese et al., 2019),
bradycardia (Zhu et al., 2018), and cerebellar ataxia (Chen
et al., 2019), which are both autosomal dominant and recessively
inherited. Cav1.2 has been reported in association with four
complex diseases: ASD (Jiang et al., 2013), intellectual disability
(Hu et al., 2019), schizophrenia (Roussos et al., 2014), and
epileptic encephalopathies (Bozarth et al., 2018).

Missense mutations are the most frequent type associated with
Cav1.2 disease. However, a small number of LoF variants (two
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FIGURE 1 | Comparison of the type of mutations in Cav1 genes reported on HGMD. Pie chart of the type of mutations cataloged for Cav1.1-1.4 genes. Mutation
key and numbers are shown on the right: ins/dup: insertion/duplication, other: complex rearrangements or regulatory substitutions, n: number of reported mutations.

TABLE 1 | Summary of functionally analyzed Cav1 missense mutations.

Channel
(gene)

Number of tested
mutations

Effect on current Details

Cav1.1
(CACNA1S)

6 5 decreased currents.
1 increased currents.

1 null and 4 hypomorphs are all Arg substitution that reduce the current density due to the
loss of charge in the VSDs.

1 hypermorph in S5-S6 loop lines the pore and results in faster activation of currents upon
depolarisation.

Cav1.2
(CACNA1C)

17 5 decreased currents.
12 increased currents.

2 hypermorph in S6 affect the pore charge or hydrophobicity.

14 mutations are in cytoplasmic loops: 10 hyper- and 4 hypo-morphs.

4/5 hypomorphs affect trafficking and reduce membrane expression.

All hypermorphs causing LQT8 increase the current window, which is consistent with a long
QT interval.

p.Ile1186Thr increase the current window and causes both LQT8 and TS but substitution to
Val only seen in LQT8.

Cav1.3
(CACNA1D)

14 2 decreased currents.
12 increased currents.

6 hypermorph in S6 affect the pore charge or hydrophobicity and cause 3 phenotypes.

2 hypomorph mutations: 1 Arg substitution reduces the current density due to the loss of
charge in the VSDs. 1 His substitution unbalances the charge on an extracellular loop and
reduces expression on the membrane.

6 hypermorphs are in cytoplasmic loops that mostly cause a hyperpolarised shift.

Cav1.4
(CACNA1F )

10 7 decreased currents.
3 increased currents.

3 hypermorph in S6 affect the pore charge or hydrophobicity.

3 hypomorphs mutations: 2 affect trafficking and reduce protein expression. 1 reduce the
current density with normal protein expression.

4 null mutations have no currents with normal protein expression.
(p.Gly1007Arg introduces an extra charge to the VSDs).

VSDs, voltage sensor domains, LQT8, Long QT syndrome 8, TS, Timothy syndrome. Additional details in Supplementary Table 1.

splicing and one insertion mutations) are described in patients
with BRGDA3 and cerebellar ataxia. Ten other mutation types
have been described associated with two complex disorders;
schizophrenia (including four regulatory substitutions, two
deletions, one splicing, and one nonsense mutation), and ASD

(two insertions). As for Cav1.1, the genetic heterogeneity of
polygenic disorders makes it difficult to be conclusive regarding
their correlation.

Seventeen Cav1.2 missense mutations have previously
been functionally characterized by cell electrophysiology
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(Table 1). These are associated with BRGDA3, LQT8, and
TS (Supplementary Figure 2B). Hypermorphs are the
most common and mutations in transmembrane domains
increase the current window by different mechanisms
including a shift in the activation and/or inactivation or
by increasing the maximum ion conductance (detailed in
Supplementary Table 1). There are five hypomorphs that
reduce the current density, most of which express poorly
at the plasma membrane [p.Ala39Val (Antzelevitch et al.,
2007), p.Asn300Asp (Béziau et al., 2014), p.Arg518Cys/His
(Boczek et al., 2015)].

Three functionally analyzed mutations (two hypermorphs:
p.Ala28Thr, p.Gly406Arg, and one hypomorph: p.Arg518His)
are present in the general population with very low MAFs
(0.00006, 0.0004, and 0.00003, respectively), and only in the
heterozygous state. The other 13 functionally analyzed mutations
are absent in gnomAD.

Cav1.3
Cav1.3 has 16 reported mutations in HGMD, of which, 13
are missense mutations (81%). These are associated with
four Mendelian diseases including the autosomal dominant
conditions primary aldosteronism with seizures and neurologic
abnormalities (PASNA; Semenova et al., 2018), aldosterone-
producing adenomas (APAs; Scholl et al., 2013), and epilepsy
(Tumiene et al., 2018), and the autosomal recessive condition
sinoatrial node dysfunction and deafness (SANDD; Liaqat et al.,
2019). Five other complex conditions [ASD (O’Roak et al.,
2012), bipolar disorder (Ross et al., 2016), developmental
delays (Di Gregorio et al., 2017), and hearing impairment
and intellectual disability (Garza-Lopez et al., 2018)] have
been associated with Cav1.3 variants, but the exact causality
remains unclear.

Missense mutations are the most frequent mutation
type, however, three other mutation types have been
associated with recessive (SANDD; one insertion) or
complex (developmental delay; one insertion and ASD; one
duplication) conditions.

The channel function of 14 missense mutations have
previously been analyzed and are associated with APAs, ASD,
hearing impairment and intellectual disability, and PASNA
(Supplementary Figure 2C). Hypermorphs that increase the
current density is the most frequent mechanism causing these
conditions (Table 1). The hypomorphs have charge differences
that reduce the current density.

None of the functionally analyzed mutations are present
in gnomAD.

Cav1.4
Cav1.4 is the only X-linked Cav1 channel. 261 mutations have
been reported in HGMD, of which, 92 are missense mutations
(35%). 206 of all mutations are associated with iCSNB (Strom
et al., 1998), the remainder causing cone-rod dystrophy (Jalkanen
et al., 2006) and Aland island eye disease (Jalkanen et al., 2007).
Retinitis pigmentosa (Xu et al., 2015), high myopia (Sun et al.,
2015), and Usher syndrome (Song et al., 2011) have all been
described although these remain unconfirmed.

About 169 truncating variants are predominantly associated
with recessive iCSNB (48 nonsense, 42 deletions, 41 splicing, 25
insertion/duplications, and 4 complex rearrangements), and a
small number are reportedly associated with cone-rod dystrophy
[two deletions (Hauke et al., 2013; Huang et al., 2016) and one
insertion (Jalkanen et al., 2006)] and Aland island eye disease [one
deletion (Jalkanen et al., 2007)], or high myopia [one deletion
and one splicing (Sun et al., 2015)] and retinitis pigmentosa
(two splicing (Xu et al., 2015; Jespersgaard et al., 2019) and one
deletion (Martin-Merida et al., 2019)].

Reduction or loss of activity from the single X chromosome
allele is presumed to be the pathogenic mechanism for most
truncating alleles in males since most will result in a lack of
protein due to nonsense mediated decay (NMD; Sharma et al.,
2020). The 48 nonsense alleles (out of 261 reported mutations,
18%) in Cav1.4 are predicted to be degraded through NMD.
Nonsense mutations in the final exon often escape NMD, which
may have different mechanistic consequences.

Ten iCSNB missense mutations have previously been
functionally characterized. As expected for a gene associated with
a large number of LoF mutations, hypomorphic alleles are the
most common: seven hypomorphic or null alleles that reduce
or abolish channel conductance. However, three hypermorphs
increase channel conductance (Supplementary Figure 2D); these
are in the S6 repeats. All mutations in loops are hypomorphic
or null alleles (Table 1). The four null alleles express at normal
global protein levels, which suggests that the proteins are
unstable and escaped degradation and are not trafficked to the
membrane correctly.

The null p.Gly1007Arg mutant has a very low MAF (0.00003)
in the general population and there are no homozygous
individuals. No other functionally analyzed mutations are
present in gnomAD.

Composite Cav1 Mutation Analysis
In order to understand the mechanistic consequences of missense
alleles we next analyzed the missense mutations reported in
the four Cav1 α1 genes. However, since causality is so hard in
complex diseases we only looked at the mutations associated with
verified monogenic phenotypes.

In total 429 mutations have been described in the Cav1
α1 genes and are associated with 35 phenotypes. 234 are
missense variants, of which, 47 have previously been functionally
characterized by in vitro assays and are pathogenic in 10
phenotypes (Figure 2). Of the functionally analyzed mutations,
hyperactive channels are the most common and most are
associated with autosomal dominant conditions, although
this predominance is likely a result of bias by researchers
selecting what mutants to study. Twenty-eight hypermorphic
alleles increase the current density, and 19 hypomorphic
or null alleles reduce it (Table 2). Supplementary Table 1
summarizes the functionally characterized mutations reported
for Cav1 channels.

By plotting all mutations on the composite Cav1 channel
(Figure 2) it is possible to identify mutated residues that overlap
between the channels and have specific consequences that are
either shared or that are distinct between the channels. There are
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FIGURE 2 | Combined analysis of Cav1 mutation positions. (A) Location of Cav1 α1 subunit mutations. (Left) The number of mutations in transmembrane (blue),
extracellular (purple) and cytoplasmic (red) regions. (Right) The 47 functionally tested missense mutations are shown as red (GoF) and green (LoF) stars. Stars
represent a mutated residue and may include multiple amino acid substitution. The cytoplasmic loops are the most frequently mutated regions (222 mutations), of
which, 86 are in the C-terminal tail, whereas the extracellular loops have 97 mutations, and the transmembrane domains have 110 mutations. 114 mutations are in
the pore-forming domains, and 25 are in the S4 VSDs. (B) Three functionally characterized hypermorphs in S6 repeats I and II of Cav1.4 [p.Gly369Asp (Hoda et al.,
2005), p.Phe753Cys (Hope et al., 2005), p.Ile756Thr (Peloquin et al., 2007)] (red) are present at the equivalent position in Cav1.2: p.Gly402Ser (Splawski et al., 2005)
(equivalent to p.Gly369Asp) (blue) and Cav1.3: p.Gly403Asp/Arg (Scholl et al., 2013) (equivalent to p.Gly369Asp), p.Ile750Met (Scholl et al., 2013) (equivalent to
p.Ile756Thr), p.Phe747Leu (Pinggera et al., 2018) (equivalent to p.Phe753Cys) (green). (C) Five mutations to the VSDs (four hypomorphs and one null) are
functionally analyzed mutants that damage the sensor’s voltage sensitivity and reduce the channel’s conductance in Cav1.1 [p.Arg174Trp (Bannister and Beam,
2013), p.Arg528His (Morrill et al., 1998), p.Arg1239His/Gly (Morrill and Cannon, 1999)] (purple), Cav1.3 [p.Arg990His (Monteleone et al., 2017)] (green), and Cav1.4
[p.Gly1007Arg (Peloquin et al., 2007)] (red). The conservation in paralogs is shown for each residue.

46 missense mutations in the C-terminal tail, which may interfere
with the calcium-dependent inactivation (CDI) machinery. The
unique regulatory functions of this region in Cav1.4 suggest that
mutations will have different effects in Cav1.1-1.3 than in Cav1.4.

There are 114 pathogenic mutations in the pore-
forming domains (S5, S6, and S5–S6 loops), 10 of which
are transmembrane and have been functionally analyzed in vitro
(Figure 2B). Most of these amino acid substitutions result in a
charge change (e.g., uncharged non-polar glycine to positively
charged arginine) or the hydrophobicity (e.g., hydrophobic
isoleucine to hydrophilic threonine). All increase the time
course of inactivation, resulting in a net current increase. Taken
together the amino acid substitutions at these three positions are
likely to have a similar hypermorphic effect across all channels.
Similarly, mutations to the S4 VSDs result in similar functional
consequences across the channels (Figure 2C). The functionally
analyzed hypomorphs are due to the loss of the positively charged
arginine residue, which delays the channel’s opening and reduces
the net current. These charged residues are highly conserved and
sensitive to change that even the arginine substitution to another
positively charged amino acid (histidine) has a deleterious
effect in Cav1.1 and Cav1.3. This is possibly because histidine
has a shorter R-chain than arginine. Interestingly, in Cav1.4
the addition of a positive amino acid in this already charged
region abolishes the channel’s currents (p.Gly1007Arg). These
accumulative consequences demonstrate that the smallest charge

difference effects the fine-tuning of the VSDs and have a similar
hypomorphic effect for all Cav1 channels.

DISCUSSION

The different chromosomal location of the four Cav1 genes
suggests that there are more similarities in the type of mutations
in autosomal Cav1.1–1.3 genes than there are when comparing
all Cav1 genes; Cav1.1–1.3 are predominantly associated with
missense mutations (81–85%), whereas missense mutations
in Cav1.4 account for 35% of all mutations (Figure 1).
Missense mutations in the autosomal Cav1 channels mostly
result in hyperactive channels and manifest dominant Mendelian
diseases. This implies that in dominant disorders the main
disease mechanism is likely to be via GoF rather than
LoF/haploinsufficiency. As Cav1 channels are heteromers, to
decrease the function the mutant α-subunit protein must
aggregate with the wildtype protein or preferentially bind with
the interacting protein subunits to reduce their binding to the
wildtype α-subunit protein.

Conversely, for Cav1.4, hypomorphic and null alleles are
associated with recessive X-linked disease. This explains the
high incidence of LoF mutations in Cav1.4 where there is no
compensating wildtype allele in hemizygous males, underlining
the observation that these are ’hypomorphic phenotypes’,
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TABLE 2 | Collated summary of Cav1 mutations.

Number of
tested
mutations

Effect on
current

Details

47 19 decreased
currents.
28 increased
currents.

Cav1.1-1.3 are predominantly missense
mutations (85%) and more tolerant of
truncating mutations.

Cav1.4 is intolerant to missense and
truncating mutations.

Cav1.1-1.3 mutations mostly cause
hyperactive channels (n = 25 hyperactive
and n = 12 hypoactive).

Cav1.4 predominantly cause hypoactive
channels (n = 7 hypoactive and n = 3
hyperactive).

Mutations in S4 are hypomorphs – VSDs
change of charge.
n = 5 (3 in Cav1.1, 1 in Cav1.3, 1 in
Cav1.4).

Apart from S4, all mutations to helix are
hypermorphs.
n = 9 (2 in Cav1.2, 4 in Cav1.3, 3 in
Cav1.4).

Two hotspots in S6 of repeat I and II are all
hypomorphs due to dysregulating the pore.
n = 10 (1 in Cav1.2, 6 in Cav1.3, 3 in
Cav1.4).

Introducing a Pro constrains the loop
resulting in less flexibility and hypomorphic
alleles.
Ser229Pro, Leu860Pro, Leu1068Pro
(Cav1.4).

Gly is important in a helix. Small size
enables helix flexibility and substituting it
results in hypermorphs.
Gly402Ser (Cav1.2), Gly403Asp/Arg
(Cav1.3), and Gly369Asp (Cav1.4).

VSDs, voltage sensor domains. Detailed analysis on the effect on current is
presented in Supplementary Table 1.

which suggests that LoF is likely the predominant disease
mechanism in Cav1.4 channelopathies. Nevertheless, a small
number of CACNA1F mutations result in increased overall
calcium currents by increasing the current density or by
causing larger currents at more hyperpolarized potentials
(Hemara-Wahanui et al., 2005; Hoda et al., 2005; Peloquin
et al., 2007). For example, the p.Il756Thr mutation is
electrophysiologically a GoF mutation as it shifts the voltage
dependence of activation to more negative potentials and
reduced the inactivation, however, in the retina it causes
a LoF with respect to the retinal function by damaging
photoreceptors signaling to bipolar cells (second-order neurons)
(Hemara-Wahanui et al., 2005).

The large number (85) of mutations in the C-terminal tail
indicate that mutations in this important regulatory region
disturb proper channel inactivation, and so, tissue function
(Figure 2A). The morphological changes required for the
inactivation of the channels are controlled by the voltage-
dependent inactivation (VDI) and CDI. Transient calcium influx
is controlled by CDI via the proximal C-terminal regulatory

domains (PCRD) that require the coupling of the IQ and
pre-IQ calmodulin-binding domains to an EF hand domain
motif when calmodulin (CaM) is bound by four calcium ions
(Hulme et al., 2006; Singh et al., 2006). As neurotransmitting
photoreceptors require a sustained calcium influx the CDI in
Cav1.4 is inhibited by distal C-terminal regulatory domain
(DCRD), although, the binding site and precise mechanism
is currently unknown. This negative inhibitory CDI (ICDI)
feedback mechanism ensures that Cav1.4 is non-inactivating. The
absence of CDI is unique to Cav1.4 and changes the voltage
dependencies (electrophysiologically recorded as a leftward shift
of the IV curve which changes the steepness, relative to
Cav1.1–1.3) (Singh et al., 2006). The domain differences of this
region between the channels suggest that mutations in Cav1.1–
1.3 PCRD are likely to dysregulate the inactivation properties,
which prevents transient influxes. In Cav1.4 the functional
consequence is dependent on whether the mutation is in the
PCRD or DCRD tail regions; mutations in the CDI may be
tolerated to a degree as it is usually inhibited by ICDI, whereas
mutations in the ICDI are likely to have a hypomorphic effect by
preventing the inhibition of CDI and consequently allowing the
channel to close prematurely.

From this analysis, we predict that there are similar functional
consequences across Cav1 channels. For example, mutations in
specific residues (Cav1.4: p.Gly369, p.Phe753, p.Ile756 in S6,
Figure 2B) will have similar hypermorphic effects, and mutations
in the VSDs will have similar hypomorphic consequences
(Figure 2C). The extent of these effects is mutation specific.

There are some conflicting studies of CACNA1F mutations.
One study reported no electrophysiological changes in a missense
(p.Gly369Asp) and nonsense (p.Trp1459∗) mutation (McRory
et al., 2004), whereas a second study reported both to be
deleterious (Hoda et al., 2005). Our analyses suggest that both are
likely to be pathogenic. The p.Gly369Asp mutation is consistent
with the equivalent glycine residue being pathogenic in Cav1.2
and Cav1.3 (Figure 2B) and is predicted to be damaging by
PolyPhen-2 (Supplementary Table 1). No protein expression
was found for p.Trp1459∗ channels (Hoda et al., 2005), probably
due to NMD. Functional investigations into these mutations and
variants within close proximity will enhance these predictions
and validate their pathogenicity.

The diverse functional consequences of Cav1 mutations
suggests that certain therapies will be more pertinent to different
channel dysfunctions. Over 60% of Cav1 pathogenic mutations
are missense mutations, and 40% of these are associated
with hypomorphic or null alleles. The differences between
autosomal and X-linked channels suggest that therapeutic
approaches for Cav1.4 X-linked iCSNB will differ from
Cav1.1–1.3 channelopathies since the predominant mechanism
for X-linked iCSNB is LoF. Treating GoF variants will require
a different approach such as the use of inhibitors that
act locally and specifically to inhibit or reduce the excess
function. Although a reduced function as a consequence of
protein dysregulation could potentially be corrected, a complete
LoF can be embryonically lethal for all Cav1 channels as
reported in Cav1.2 α1 knockout mice which died in utero
(Zamponi et al., 2015).
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For X-linked iCSNB caused through null alleles, gene
replacement therapy would compensate for the lack of channel
expression by providing a functional product sufficient to restore
neurotransmission to normal levels. However, when Cav1.4
channels with reduced function are present then augmentation
therapy may be more appropriate. Specific modulation drugs
target different protein defects. Hypomorphs causing trafficking
abnormalities and protein instability may be amenable to
modulation drugs that increase or decrease protein expression,
stabilize the protein, and open or close the channel gate. Drug
“correctors” can stabilize protein folding and trafficking to the
cell surface [e.g., elexacaftor or tezacaftor used to modulate
the cystic fibrosis transmembrane conductance regulator protein
(CFTR; Hoy, 2019)], or drug ‘potentiators’ that can bind
proteins that are correctly localised but inactive and help them
open to restore ion influx [e.g., ivacaftor used to activate
mutant CFTR (Van Goor et al., 2009)]. As for cystic fibrosis,
a combination therapy of both correctors and potentiators
may be effective to facilitate protein stability, trafficking, and
channel activation.

CONCLUSION

Although Cav1 channels function in a similar way, genetic
mutations have distinct consequences depending on whether
the inheritance pattern is autosomal or X-linked. Functional
in vitro studies have shown that a change in normal function
that either increases or decreases conductance is pathogenic.
Understanding the different mechanistic effect of Cav1 mutations
reveals that effective therapeutic approaches for X-linked
Cav1.4 diseases will be different from autosomal Cav1.1–1.3
channelopathies.

The Cav1.4 α1 gene has been known for over 20 years and
a number of studies have contributed to our understanding
of how this channel functions. Since its discovery, nearly 300
pathogenic mutations (92 missense) in CACNA1F have been
cataloged, with functionally analyzed mutations affecting the
channel’s ability to conduct calcium ions. Our analyses clarify
the genetic mechanisms driving Cav1.4 channelopathies and
differentiate the types of mutation and effect they have on channel

function. This has highlighted that some mutated residues or
domains are likely to have similar hypomorphic or hypermorphic
effects across all Cav1 channels.

Our analyses have shown that LoF is the predominant
mechanism causing Cav1.4 channelopathies through missense
and truncating variations. However, as the number of
variants that have been functionally analyzed in Cav1.4 is
small, further studies are warranted to better understand the
potentially treatable mutation types, as well as facilitating the
prediction of variants of unknown significance identified during
molecular diagnosis.
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