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Abstract

Background: Advanced non-invasive neuroimaging techniques offer new approaches to study functions and
structures of human brains. Whole-brain functional networks obtained from resting state functional magnetic
resonance imaging has been widely used to study brain diseases like autism spectrum disorder (ASD). Auto-
classification of ASD has become an important issue. Existing classification methods for ASD are based on features
extracted from the whole-brain functional networks, which may be not discriminant enough for good performance.

Methods: In this study, we propose a network clustering based feature selection strategy for classifying ASD. In our
proposed method, we first apply symmetric non-negative matrix factorization to divide brain networks into four
modules. Then we extract features from one of four modules called default mode network (DMN) and use them to
train several classifiers for ASD classification.

Results: The computational experiments show that our proposed method achieves better performances than those
trained with features extracted from the whole brain network.

Conclusion: It is a good strategy to train the classifiers for ASD based on features from the default mode subnetwork.

Keywords: Autism spectrum disorder, Brain networks, Non-negative matrix factorization, Network clustering, Feature
selection, Classification

Background
Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder characterized by repetitive social behav-
ior, restricted interests and mental inflexibility [1]. It
is estimated that 1% of global population are suffer-
ing from ASD [2]. Clinical diagnosis of ASD relies
heavily on interview- or observation-based instruments
[3, 4] which include interactions with clinical profession-
als. Thus diagnosing results could be biased by misinter-
preted communication or subjective opinions of clinicians
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[5]. Also, diagnostic stability of such methods could be
relatively low when concerning very young children [6].
Functional magnetic resonance imaging (fMRI) provides
an additional approach to study brain diseases. Measur-
ing blood oxygen level-dependent (BOLD) signals, fMRI
is a non-invasive scanning technique showing fluctua-
tions of functional activities of a whole brain. As the
center of nervous system, a human brain can be consid-
ered as a complex system where different regions have
different functions and regions cooperate with each other
to perform certain cognitive functions. Correlation of
BOLD signals among brain regions indicate underlying
functional interactions.Biswal et al. [7] demonstrates that
even though brain is at the resting state, regions that
frequently interact with each other at the normal state
can still have strong correlations. Thus, the resting-state
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fMRI (rs-fMRI) can provide an intrinsic functional map-
ping and has been widely used in studying the functional
organization of brains.

Considering the massive functional correlations
between brain regions, we can naturally view a brain as a
network, where regions are vertices and functional cor-
relations are edges [8]. Previous studies have shown that
functional brain networks (FBN) have certain small-world
properties, such as high clustering coefficient or short
characteristic path length [9]. Vertices in such networks
are prone to form modules. This agrees with our under-
standing that brains are modular systems where different
brain parts have separated functions. Implementations of
network clustering methods have successfully identified
modules in different contexts. Power et al. [10] identify
modules using rs-fMRI images and mapped modules to
cognitive function. Crossley et al. [11] use task-evoked
fMRI images and link their identified modules to 4 types
of behaviours. In addition, alterations in modules with
aging or cognitive status are also studied [12]. These
studies successfully map the functional organization of
brain to FBNs.

Previous researches have revealed associations between
alterations in rs-fMRI images or derived FBNs and pathol-
ogy of ASD. A majority of studies have discovered that
children with ASD have increased total brain volumes
[13]. A decrease of global network efficiency is also
reported via studying FBNs [14]. Recent researches have
also successfully implemented machine learning algo-
rithms in analyzing FBNs of ASD subjects, perform-
ing automated classification and offering complementary
methods for clinical diagnosis. Several classifiers and
forms of features have been implemented to diagnose
ASD. Plitt et al. [15] use functional correlations as features
to train different classifiers such as linear support vec-
tor machine (SVM), random forest (RF), linear discrimi-
nant analysis (LDA), Lasso-regularized logistic regression
(LRLR) and k nearest neighbors (kNN). In particular,
classifiers are trained with correlation values in FBNs.
Chen et al. [16] use two feature selection strategies named
particle swarm optimization (PSO) and recursive fea-
ture elimination (RFE), combined with SVM classifier and
obtains accuracies about 80% and 100%, respectively, on
training data but much less on testing data. PSO iteratively
optimizes the positions of particles according to certain
cost function measuring the quality [17]. For feature selec-
tion purpose, the position of a particle is represented by
a binary vector whose components indicate whether a
feature participates the training process. The cost func-
tion usually measures the performance of the classifier
[18]. RFE ranks all the features and recursively eliminate
bottom-ranked ones [19]. Price et al. [20] use dynamic
functional correlations obtained from multiple networks
from large time scales and Tolan et al. [21] add centrality-

based indices to the collection of features. Developments
in deep learning also inspire new methods for ASD diag-
nosis. Guo et al. [22] use deep neural networks in feature
selection and classification, achieving accuracy over 80%.
Autoencoders, as another form of artificial neural net-
work, is implemented for the identification of ASD [23]
with accuracy about 70%.

Aforementioned studies about classification extract fea-
tures from the whole brain network. Therefore, the
dimension of feature vectors could be relatively large and
thus not very discriminant. In addition, high dimensional
feature vectors could cause overfitting issue and increase
computational complexity. In this study, we introduce a
new strategy to extract the features for classifiers from a
network module. In particular we present the joint sym-
metrical non-negative matrix factorization (JSNMF) to
cluster FBNs into several modules. Non-negative matrix
factorization (NMF) is an unsupervised machine learning
method. NMF has been widely used in identifying com-
munities in complex networks such as social networks
[24] or biomolecular networks [25]. Ordinary NMF meth-
ods factorize one matrix a time, but real-world datasets
may contain multiple views, or attributes which comple-
ment each other. Liu et al. [26] introduces a multi-view
clustering algorithm by formulating a joint cost function
meanwhile keeping clustering results meaningful. Ou [27]
and Zong [28] add regularization terms in cost func-
tions to preserve local geometrical structures. Such joint
NMF methods are also successfully implemented on bio-
logical datasets. Zhang et al. [29, 30] propose methods
for clustering ovarian cancer samples with several types
of data including gene expression data, microRNA data,
etc. Breast cancer samples are also studied with simi-
lar types of data [31]. For network clustering propose,
Zhang et al. [32] identify communities from social net-
works at different time points. For brain networks, we can
also regard each individual FBN as a view since it repre-
sents a different organization of connectivity that human
brain may have. Although individual FBNs vary at local
connections, all subjects may have similar modular struc-
ture, considering that cortical regions of different subjects
are similar if they share one cognitive function. Our pro-
posed JSNMF method solves a regular symmetrical NMF
cost function but in a joint form to obtain a consen-
sus that contains lower dimensional features valid for all
individual FBNs.

We extract features from one module and train sev-
eral commonly used classifiers [15, 16, 22]. The flowchart
showing our whole pipeline is given in Fig. 1. We compare
classification performance between features extracted
from one module and the whole brain. The results show
that the performances of classifiers trained with the
features from a module are better than those trained with
features from a whole network.
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Fig. 1 A flowchart showing the whole pipeline, including building FBNs, module identification, feature extraction and classification

Methods
Dataset
Acquisition and preprocessing of rs-fMRI data
All rs-fMRI data were acquired at UCLA on a Siemens
3 T Trio scanner. Configuration of the scanning can
be found in [33] and image data can be obtained from
ABIDE dataset [34]. The rs-fMRI images are preprocessed
with FMRIB Software Library (FSL) [35] and Analysis
of Functional NeuroImages (AFNI) [36], by following
a pipeline introduced in [33]. Brain-only images are
extracted from surrounding skulls and tissues with AFNI.

Functional volumes along time are motion corrected with
FSL MCFLIRT [37] and registered to a mean volume using
a normalized correlation cost function and sinc interpola-
tion. 6 parameters of rigid body movement are calculated
for each volume and if the average displacement over all
voxels between two consecutive volumes is above 2.5 mm,
we consider this subject as a outlier and stop any further
processing. 9 nuisance regressors, including 6 rigid body
movement parameters and average BOLD signals of white
matter, cerebrospinal fluid and whole-brain, are regressed
out of all volumes. White matter and cerebrospinal fluid
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are segmented with FSL FAST [38].Images are applied a
Gaussian kernel with full width at half maximum of 5 mm
for spatial smoothing and filtered with a band-pass filter
of Hz to reduce influence of heart beat and breath. Images
of all subjects are registered to MNI 152 standard space
using FSL FLIRT with affine transformation and mutual
information cost function.

Constructing FBNS
A recent study introduced a whole-brain parcellation
based on meta-analysis of fMRI, yielding 264 ROIs in MNI
152 standard space. Compared with traditional anatomi-
cal atlases, this parcellation avoids large ROIs containing
several different functional regions, so that BOLD sig-
nals representing different functions will not be mixed.
Then we calculated the Pearson correlation coefficients
of average signals between every pari of ROIs to obtain a
264 × 264 adjacency matrix for each subject.

JSNMF
Given a multiview dataset A = {

A(1) . . . A(n)
}

, where A(v)

in our case is a 264 × 264 FBN adjacencey matrix of a sub-
ject and n = 37. JSNMF solves an optimization problem
by minimizing the following objective function

OJSNMF =
n∑

v=1

∥∥∥A(v) − HS(v)HT
∥∥∥

2

F
+ 4α

K∑

k=1

∣∣∣hk

∣∣∣
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s.t. H ≥ 0 and S(v) ≥ 0 for v = 1, . . . , n (1)

where
∥∥∥ ∗

∥∥∥
F

represents the Frobenius norm of a matrix,
hk is the k-th column of matrix H ∈ RN×K where K is
the number of modules desired, and

∥∥∥ ∗
∥∥∥

1
represents the

L1 − norm of a vector to make it sparse, α is a positive
regularization factor.

To minimize OJSNMF , we can introduce Lagrangian mul-
tiplier � ∈ RN×K and rewrite equation 1 as

OL =
n∑

v=1

∥∥∥A(v)−HS(v)HT
∥∥∥

2

F
+ 4α

K∑
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+Tr(HT�),

(2)

where TR(∗) is the trace of a matrix. The partial deriva-
tives of equation 2 with respect of S(v) and H are respec-
tively as follows

∂OL
∂S(v) = −2HT A(v)H + 2HT HS(v)HT H (3)

∂OL
∂H

=
n∑

v=1

(
−4A(v)HS(v) + 4HS(v)HT HS(v)

)

+ � + 4αE, (4)

where E = 1N×K . Solving ∂OL
∂S(v) = 0, we get

S(v) = (HT H)−1HT A(v)H(HT H)−1. (5)

According to the Karush-Kuhn-Tucker (KKT) conditions
[39], we obtain

H �
( n∑

v=1

(
−4A(v)HS(v) + 4HS(v)HT HS(v)

)
+ αE

)

= 0,

(6)

where � represents Hadamard production. Therefore, we
can obtian the following update rules

H ← H �
( n∑

v=1
(A(v)HS(v)) �

( n∑

v=1
(HS(v)HT HS(v))

)

+ αE
)

, (7)

where � represents element-wise division of matrices.
The non-negative matrix H and S(v) is randomly ini-
tialized and updated by following equations 6 and 8 until
converged. Guarantee of convergence can be easily proved
as in the literature [40–42].

The matrix H is the cluster indicator and it is normal-
ized so that the maximum value of each column equals to
1 to balance the sizes of modules. A vertex is assigned to a
module where the element value of its corresponding row
reaches the maximum, i.e., vertex i belongs to module k if
the Hi,k is the largest one in i-th row of normalized H.

Evaluation indices of clustering performance
We use three indices to measure the quality of modules:
modularity, conductance and coverage. Let A be a FBN
adjacency matrix and (M1, . . . , MK ) represent the K mod-
ules identified. Let Vk = ∑

i∈Mk

∑N
j=1 Ai,j and Wk =∑

i∈Mk ,j∈Mk
Ai,j for k = 1, . . . , K .

Modularity measures the quality of modules of higher
intra-community connections than the expected random
connections of the vertices with probabilities proportional
to their degrees and is calculated as follows [43]:

Mod(M1, . . . , MK ) =
K∑

k=1
(Wk − V 2

k ). (8)

The higher modularity is, the better the clustering
method is.

Conductance measures the possibility of a one-step ran-
dom walk entering or leaving a module [43] and it is
defined as

Con(M1, . . . , MK ) = 1
K

K∑

k=1

Wk
Vk

. (9)

The more difficult a random walk leaving or entering a
module, the stronger connectivity is inside the module,
which means the modules is more compact.
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Coverage measures the fraction of intra-module con-
nections over all connections [43] and is calculated as

Cov(M1, . . . , MK ) =
K∑

k=1
Wk . (10)

The denser a module is, the higher the coverage value is.

Measuring performances of classifiers
In this study, we measure the performances of classifiers
by drawing ROC curves and calculating AUCs. The ROC
curves are plotted with the true positive rate (TPR) against
the false positive rate (FPR) over a series of classification
thresholds. TPR, also called sensitivity, measures the pro-
portion of positive samples that are correctly predicted
over all actual positive samples, while FPR measures the
proportion of samples wrongly predicted as positive over
all actual negative ones. Thus, TPR and FPR can be respec-
tively defined as

TPR = TP
P

(11)

FPR = FP
N

, (12)

where TP and FP are the numbers of samples correctly
or wrongly predicted as positive, respectively, and P and
N are numbers of actual positive or negative samples,
respectively. In medical diagnosis, TPR is the ability of a
test to correctly identify diseased samples, while FPR mea-
sures the rate of healthy samples misdiagnosed with the
disease.

To draw the ROC curves, we need to set up a series of
classification thresholds. In classification, the thresholds
are designed for the output value of a classifier to deter-
mine which class a sample belongs to. ROC curves depicts
the performance of classifiers under different thresholds
and help choose the threshold yielding best performance.
The ROC curve of a perfect classifier should reach point
(0, 1) in ROC space, representing 100% TPR and 0% FPR.

AUC is the area under the ROC curve and measures the
general performance of a classifier. If the AUC is large, it
means the ROC curve is close to point (0, 1), or at least it
partially has high TPR or low FPR. AUC is defined as

AUC =
∫ 1

0
TPR dFPR. (13)

In practice, AUC is approximated by the trapezoidal
numerical integration.

Results and discussions
Clustering of FBNS
We first implement our network clustering algorithm,
JSNMF, and run it on a dataset collected from UCLA
Multimodal Connectivity Database [44]. This dataset con-
tains 42 individual functional networks of subjects from

Table 1 Performance of JSNMF with different settings of K when
α fixed to 1

K Modularity

Average over all individual networks

2 0.2696

3 0.3290

4 0.3454

5 0.3245

6 0.3056

7 0.2901

8 0.2754

9 0.2632

10 0.2532

Average network

2 0.2727

3 0.3325

4 0.3473

5 0.3258

6 0.3076

7 0.2925

8 0.2760

9 0.2635

10 0.2528

ASD group and 37 individual functional networks from
typically developed (TD) group. Each of these functional
networks is a weighted network consisting of 264 nodes
(regions of interest, ROIs) and the edges are weighted
by the Pearson correlation coefficient of the time series
BOLD of two ROIs. AS in the literature [33], all nega-
tive weights are firstly removed. To filter out the edges

Table 2 Performance of JSNMF with different settings of α when
K fixed to 4

α Modularity Conductance Coverage

Average over all individual networks

0 0.3449 0.5905 0.6101

0.1 0.3451 0.5905 0.6105

1 0.3454 0.5909 0.6105

10 0.3453 0.5908 0.6103

100 0.3452 0.5909 0.6101

Average network

0 0.3470 0.5930 0.6084

0.1 0.3473 0.5929 0.6084

1 0.3475 0.5933 0.6088

10 0.3474 0.5933 0.6086

100 0.3473 0.5933 0.6084
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with small weights which are possibly generated by noise
[9] while keeping all individual networks connected, the
edges with their weights less than a threshold of 0.35
are further removed. Note that the adjacency matrices
of resultant networks are symmetric and nonnegative.
At this stage, for clustering purpose, we only use TD
networks to guarantee the quality of the identified mod-
ules, since ASD could alter the modular organization
of brains [45].

We run the JSNMF algorithm in MATLAB R2013a with
different settings of parameters: K, the number of mod-
ules and α, the regularization factor. The performance
of the algorithm is measured by modularity, conductance
and coverage [43] and these 3 indices are calculated on an
average network and each individual network. The per-
formance of our method JSNMF are shown in Tables 1
and 2, where we fix one parameter and change the
other one. For both tables, top half are the average val-
ues of three indices over 37 individual networks, while
the bottom half are the values of those three indices on
the average network. We calculate the indices on indi-
vidual networks because we believe the clustering results
should be valid for all subjects, even though their FBNs
are not quite similar. As shown in Table 1, modular-
ity reaches the maximum when K = 4 and α fixed
to 1 while Table 2 shows that all three indices is maxi-
mized when α = 1. Therefore, we set the parameters as
K = 4 and α = 1.

To demonstrate our method has better performance,
we compare it with two other methods: multiclass spec-
tral clustering (MSC) [46] and co-regularized multi-view
spectral clustering (CMSC) [47]. We consider them as
competing methods because all three methods are based
on matrix factorization and dimension reduction. The two

Table 3 Comparison of performances of different methods

Methods Modularity Conductance Coverage

Average over all individual networks

MSC 0.3441 0.5937 0.6040

CMSC 0.3451 0.5920 0.6119

JSNMF 0.3454 0.5909 0.6105

Average network

MSC 0.3454 0.5953 0.6016

CMSC 0.3469 0.5939 0.6099

JSNMF 0.3475 0.5933 0.6088

competing methods are also implemented in MATLAB
R2013a and different parameter settings are tested to find
their best performance. Table 3 collects the results of all
three methods. From Table 3, we can see that our method
perform the best in terms of modularity while ranking at
the second or the third in terms of coverage or conduc-
tance. However, it is believed that the modularity is the
most powerful index to measure the quality of the network
clustering [48].

Since our algorithm is randomly initialized, the resul-
tant modules may be different in each run. Using the
adjusted rand index (ARI) [49], we calculate similari-
ties between modules of any two runs. We find that
the lowest ARI value among all pairs is 0.91 which
is pretty high, indicating high similarities among runs
and the robustness of our algorithm. Therefore, we
choose the result from one run that is most sim-
ilar to results of all other runs for the following
stages.

Fig. 2 Three dimensional views show the average FBN. The vertices are aligned with coordinates in MNI 152 standard space. Only correlations
higher than 0.8 are displayed. Vertices in DMN are shown in green
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Fig. 3 The ROC curves of classifiers trained with DMN features and whole-brain features. For SVM based classifiers, the classifying thresholds range
from the smallest values the test data can reach, to the largest ones. And for other classifiers, the thresholds range from 0 to 1

Classification of ASD with default mode network features
Default mode network (DMN) which is a brain mod-
ule identified in several researches based on fMRI
images or FBNs [50] and considered to be responsi-
ble for many cognitive functions [51]. Figure 2 shows
the 4 different color-coded modules identified with our

JSNMF. The green module is corresponding to the DMN,
which mainly expands in middle and inferior tempo-
ral gyrus, cigulate gyrus, hippocampal gyrus, frontal
gyrus and their surrounding regions and contains sev-
eral previously identified core regions of DMN including
Medial prefrontal cortex, posterior cingulate cortex and

Table 4 AUCs of classifiers trained with DMN and whole-brain features

Classifier Linear SVM PSOSVM RFESVM RF LDA LRLR kNN

DNM features 0.6264 0.7215 0.9640 0.5769 0.7754 0.9775 0.6541

Whole-brain features 0.5171 0.5822 0.9675 0.4678 0.6943 0.9762 0.5347
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hippocampal formation [50]. In addition, studies [45] have
reported the participation of temporal lobule in DMN for
certain functions. Medial prefrontal cortex shows increas-
ing volumes in ASD subjects [52, 53]. Average FBN and
integration of DMN are also reported to decrease with
severity of ASD [54–56]. Therefore, we extract features
from this green module in this study.

Specifically, the Pearson correlation coefficients are
extracted from all pairs of ROIs in DMN and whole-brain
networks for each of all ASD and TD subjects, respec-
tively and are arranged as their feature vectors to train
several classifiers. We compare the performances of clas-
sifiers trained with features from DMN and whole-brain
networks. The classifiers include linear SVM, particle
swarm optimization SVM (PSOSVM) [18], recursive fea-
ture elimination SVM (RFESVM) [19], RF, LDA, LRLR
and kNN. We choose these classifiers because they were
previously trained with the features defined by Pearson
correlation coefficients from the whole-brain network[15,
16]. In addition, in those studies the networks are built
following a similar pipeline as in this study. All classifiers
are implemented in MATLAB Machine Learning Tool-
box and Scikit-learn in Python and are evaluated with the
leave-one-out cross validation.

We draw the receiver operating characteristic (ROC)
curves and calculate the area under curves (AUC) to mea-
sure the performance of each classifier. Figure 3 shows
that for all classifiers, except for RFESVM, DMN fea-
tures yield higher AUC than whole-brain features. For
RFESVM, the performances of two feature sets are basi-
cally the same and they are both relatively high. We can
also see that DMN features outperform whole-brain fea-
tures especially at low false positive rate (FPR). Consider-
ing the application in clinical diagnosis, which requires the
low misdiagnosis rate, DMN features have more potential
for clinical trials. In addition, we can see from Table 4 that
both PSOSVM and RFESVM classifiers with extra feature
selection stages have higher AUCs than most of the others,
indicating the potential of classification performance can
be further improved with the feature selection strategy.

Compared with previously developed classification
methods [22, 57, 58], our strategy is easier to imple-
ment because modular information is highly accessible.
In this study, we develop a new clustering algorithm to
find functional modules but it is possible to use other cor-
tex parcellation schemes [10, 11, 59], including anatom-
ical parcellations which has been integrated in many
brain image analysis tools. Some previously used feature
selection strategies are quite complicated, especially when
neural networks are involved [22, 57, 58, 60]. Our strat-
egy takes less time and can also achieve high performance.
In addition, our strategy can be integrated with other
classification methods. Previous methods can be easily
implemented on modular features, and since number of

features is smaller, it would take less time to train the
classifiers or select more discriminant features with other
strategies.

Conclusion
In this study, we have proposed a new strategy to select
discriminant features for the classification of ASD. The
experiment results show that classifiers trained with fea-
tures extracted from a single brain module named DMN
generally perform better than those trained with features
extracted from a corresponding whole-brain network. In
addition, this strategy can greatly reduce the numbers of
features, which not only yield less computational com-
plexity and shorter training time, but also potentially avoid
the overfitting problem.

As indicated with PSOSVM and RFESVM classifiers,
further feature selection could improve the performance
of classifiers. Therefore, one direction of our future work
is to effectively incorporate our proposed strategy in
this study with other feature selection method to further
improve the performance of classifiers. Beside the func-
tional MRIs, there are also other brain imaging modalities
such DTI and CT. Another direction of out future work is
to integrate multi-modalities of brain imaging to study the
classification of ASD.
Abbreviations
AFNI: Analysis of functional neuroimages; ARI: Adjusted rand index; ASD:
Autism spectrum disorder; AUC: Area under curve; BOLD: Blood oxygen
level-dependent signals; CMSC: Co-regularized multi-view spectral clustering;
DMN: Default mode network; FBN: Functional brain networks; fMRI: Functional
magnetic resonance imaging; FPR: False positive rate; FSL: FMRIB software
library; JSNMF: Joint symmetrical non-negative matrix factorization; KKT:
Karush-Kuhn-Tucker; kNN: k nearest neighbors; LDA: Linear discriminant
analysis; LRLR: Lasso-regularized logistic regression; MSC: Multiclass spectral
clustering; NMF: Non-negative matrix factorization; PSO: Particle swarm
optimization; PSOSVM: Particle swarm optimization support vector machine;
RF: Random forest; RFE: Recursive feature elimination; RFESVM: Recursive
feature elimination support vector machine; ROC: Receiver operating
characteristics; ROI: Region of interest; rs-fMRI: Resting state functional
magnetic resonance imaging; SVM: Support vector machine; TD: Typically
developed; TPR: True positive rate; UCLA: University of California, Los Angeles

Acknowledgements
We thank the reviewers for their helpful suggestions and comments. The part
of this work was previously presented in the conference of the 14th
International Symposium on Bioinformatics Research and Applications (ISBRA
2018).

About this supplement
This article has been published as part of BMC Medical Genomics, Volume 12
Supplement 7, 2019: Selected articles from the 14th International Symposium
on Bioinformatics Research and Applications (ISBRA-18): medical genomics.
The full contents of the supplement are available at https://bmcmedgenomics.
biomedcentral.com/articles/supplements/volume-12-supplement-7.

Authors’ contributions
FXW conceived this study. LT implemented the algorithm, and performed the
experiments. SM and BL participated in discussion about machine learning
algorithm. LT and FXW wrote the manuscript. All authors read and approved
the final manuscript.

Funding
Publication costs are funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC). The funding has no role in the design of the study
and collection analysis, and interpretation of data and writing the manuscript.

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-7


Tang et al. BMC Medical Genomics 2019, 12(Suppl 7):153 Page 9 of 10

Availability of data and materials
The dataset analyzed during the current study are available in UCLA
Multimodal Connectivity Database. http://umcd.humanconnectomeproject.
org

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Mechanical Engineering, University of Saskatchewan, S7N 5A9
Saskatoon, Canada. 2Division of Biomedical Engineering, University of
Saskatchewan, S7N 5A9 Saskatoon, Canada. 3School of Mathematics and
Statistics, Hainan Normal University, 571158 Haikou, China.

Received: 10 July 2019 Accepted: 9 October 2019
Published: 30 December 2019

References
1. American Psychiatric Association. Diagnostic and statistical manual of

mental disorders. BMC Med. 2013;17:133–7.
2. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey

DC, Charlson FJ, Chen AZ, et al. Global, regional, and national incidence,
prevalence, and years lived with disability for 310 diseases and injuries,
1990–2015: a systematic analysis for the global burden of disease study
2015. Lancet. 2016;388(10053):1545–602.

3. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a
revised version of a diagnostic interview for caregivers of individuals with
possible pervasive developmental disorders. J Autism Develop Disorders.
1994;24(5):659–85.

4. Lord C, Rutter ML, Goode S, Heemsbergen J, Jordan H, Mawhood L,
Schopler E. Autism diagnostic observation schedule: a standardized
observation of communicative and social behavior. J Autism Develop
Disorders. 1989;19(2):185–212.

5. Mandell DS, Ittenbach RF, Levy SE, Pinto-Martin JA. Disparities in
diagnoses received prior to a diagnosis of autism spectrum disorder. J
Autism Develop Disorders. 2007;37(9):1795–802.

6. Kleinman JM, Ventola PE, Pandey J, Verbalis AD, Barton M, Hodgson S,
Green J, Dumont-Mathieu T, Robins DL, Fein D. Diagnostic stability in
very young children with autism spectrum disorders. J Autism Develop
Disorders. 2008;38(4):606–15.

7. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity
in the motor cortex of resting human brain using echo-planar mri.
Magnetic Resonance Med. 1995;34(4):537–41.

8. Sporns O. Structure and function of complex brain networks. Dialogues
Clin Neurosci. 2013;15(3):247.

9. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient,
low-frequency, small-world human brain functional network with highly
connected association cortical hubs. J Neurosci. 2006;26(1):63–72.

10. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel
AC, Laumann TO, Miezin FM, Schlaggar BL, et al. Functional network
organization of the human brain. Neuron. 2011;72(4):665–78.

11. Crossley NA, Mechelli A, Vértes PE, Winton-Brown TT, Patel AX, Ginestet
CE, McGuire P, Bullmore ET. Cognitive relevance of the community
structure of the human brain functional coactivation network. Proc Nat
Acad Sci. 2013;110(28):11583–8.

12. Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in
modular organization of human brain functional networks. Neuroimage.
2009;44(3):715–23.

13. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM.
Towards a neuroanatomy of autism: a systematic review and
meta-analysis of structural magnetic resonance imaging studies. Eur
Psych. 2008;23(4):289–99.

14. Lewis JD, Theilmann R, Townsend J, Evans A. Network efficiency in
autism spectrum disorder and its relation to brain overgrowth. Front
Human Neurosci. 2013;7:845.

15. Plitt M, Barnes KA, Martin A. Functional connectivity classification of
autism identifies highly predictive brain features but falls short of
biomarker standards. NeuroImage: Clin. 2015;7:359–66.

16. Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller R-A.
Diagnostic classification of intrinsic functional connectivity highlights
somatosensory, default mode, and visual regions in autism. NeuroImage:
Clin. 2015;8:238–45.

17. Clerc M. Particle swarm optimization: Wiley; 2010.
18. Wang X, Yang J, Teng X, Xia W, Jensen R. Feature selection based on

rough sets and particle swarm optimization. Patt Recogn Lett. 2007;28(4):
459–71.

19. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer
classification using support vector machines. Mach Learn. 2002;46(1-3):
389–422.

20. Price T, Wee C-Y, Gao W, et al. Multiple-network classification of
childhood autism using functional connectivity dynamics. In: Proceedings
of the International Conference on Medical Image Computing and
Computer-Assisted Intervention. Cham: Springer; 2014. p. 177–84.

21. Tolan E, Isik Z. Graph Theory Based Classification of Brain Connectivity
Network for Autism Spectrum Disorder. In: Proceedings of the
International Conference on Bioinformatics and Biomedical Engineering.
Cham: Springer; 2018. p. 520–30.

22. Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing
autism spectrum disorder from brain resting-state functional connectivity
patterns using a deep neural network with a novel feature selection
method. Front Neurosci. 2017;11:460.

23. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F.
Identification of autism spectrum disorder using deep learning and the
abide dataset. NeuroImage: Clin. 2018;17:16–23.

24. Cao X, Wang X, Jin D, Cao Y, He D. Identifying overlapping communities
as well as hubs and outliers via nonnegative matrix factorization. Sci Rep.
2013;3:2993.

25. Wang R-S, Zhang S, Wang Y, Zhang X-S, Chen L. Clustering complex
networks and biological networks by nonnegative matrix factorization
with various similarity measures. Neurocomputing. 2008;72(1-3):134–41.

26. Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative
matrix factorization. In: Proceedings of the 2013 SIAM International
Conference on Data Mining. Society for Industrial and Applied
Mathematics. SIAM; 2013. p. 252–60.

27. Ou W, Yu S, Li G, Lu J, Zhang K, Xie G. Multi-view non-negative matrix
factorization by patch alignment framework with view consistency.
Neurocomputing. 2016;204:116–24.

28. Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via
multi-manifold regularized non-negative matrix factorization. Neural
Netw. 2017;88:74–89.

29. Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ. Discovery of
multi-dimensional modules by integrative analysis of cancer genomic
data. Nucleic Acids Res. 2012;40(19):9379–91.

30. Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for
simultaneous integration of multiple types of genomic data to identify
microrna-gene regulatory modules. Bioinformatics. 2011;27(13):401–9.

31. Chen J, Zhang S. Discovery of two-level modular organization from
matched genomic data via joint matrix tri-factorization. Nucleic Acids Res.
2018;46(12):5967–76.

32. Zhang S, Zhao J, Zhang X-S. Common community structure in
time-varying networks. Phys Rev E. 2012;85(5):056110.

33. Rudie JD, Brown J, Beck-Pancer D, Hernandez L, Dennis E, Thompson P,
Bookheimer S, Dapretto M. Altered functional and structural brain
network organization in autism. NeuroImage: Clin. 2013;2:79–94.

34. Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K,
Anderson JS, Assaf M, Bookheimer SY, Dapretto M, et al. The autism
brain imaging data exchange: towards a large-scale evaluation of the
intrinsic brain architecture in autism. Mole Psych. 2014;19(6):659.

35. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl.
Neuroimage. 2012;62(2):782–90.

36. Cox RW. Afni: software for analysis and visualization of functional magnetic
resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.

37. Jenkinson M, Bannister P, Brady J, Smith S. Improved optimisation for
the robust and accurate linear registration and motion correction of brain
images. Neuroimage. 2002;17:825–841. View Article PubMed/NCBI
Google Scholar.

http://umcd.humanconnectomeproject.org
http://umcd.humanconnectomeproject.org


Tang et al. BMC Medical Genomics 2019, 12(Suppl 7):153 Page 10 of 10

38. Zhang Y, Brady M, Smith S. Segmentation of brain mr images through a
hidden markov random field model and the expectation-maximization
algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.

39. Boyd S, Vandenberghe L. Convex Optimization. Cambridge, UK:
Cambridge University Press; 2004.

40. Wang H, Huang H, Ding C. Simultaneous clustering of multi-type
relational data via symmetric nonnegative matrix tri-factorization. In:
Proceedings of the 20th ACM international conference on Information
and knowledge management. ACM; 2011. p. 279–284.

41. Li L, Wu L, Zhang H, Wu F-X. A fast algorithm for nonnegative matrix
factorization and its convergence. IEEE Trans Neural Netw Learn Syst.
2014;25(10):1855–63.

42. Tian L-P, Luo P, Wang H, Huiru Z, Wu F-X. Casnmf: A converged
algorithm for symmetrical nonnegative matrix factorization.
Neurocomputing. 2018;275:2031–40.

43. Bolla M. Spectral clustering and biclustering: Learning large graphs and
contingency tables: Wiley; 2013.

44. Brown JA, Rudie JD, Bandrowski A, Van Horn JD, Bookheimer SY. The
ucla multimodal connectivity database: a web-based platform for brain
connectivity matrix sharing and analysis. Front Neuroinforma. 2012;6:28.

45. Kennedy DP, Courchesne E. The intrinsic functional organization of the
brain is altered in autism. Neuroimage. 2008;39(4):1877–85.

46. Stella XY, Shi J. Multiclass spectral clustering. In: Proceedings of the Ninth
IEEE International Conference on Computer Vision. IEEE; 2003. p. 313.

47. Kumar A, Rai P, Daume H. Co-regularized multi-view spectral clustering.
In: Proceedings of Advances in neural information processing systems;
2011. p. 1413–21.

48. Newman ME, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E. 2004;69(2):026113.

49. Hubert L, Arabie P. Comparing partitions journal of classification. Google
Scholar. 1985;2:193–218.

50. Buckner R, Andrews-Hanna J, Schacter D. The brain’s default
network-Anatomy, function, and relevance to disease. Year Cogn
Neurosci 2008. 2008;1124:1–38.

51. Andrews-Hanna JR. The brain’s default network and its adaptive role in
internal mentation. Neurosci. 2012;18(3):251–70.

52. McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai K, Yip L,
Murphy DG, Chua SE. Mapping the brain in autism. a voxel-based mri
study of volumetric differences and intercorrelations in autism. Brain.
2004;128(2):268–76.

53. Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R,
Happé F, Frith C, Frith U. The neuroanatomy of autism: a voxel-based
whole brain analysis of structural scans. Neuroreport. 1999;10(8):1647–51.

54. Washington SD, Gordon EM, Brar J, Warburton S, Sawyer AT, Wolfe A,
Mease-Ference ER, Girton L, Hailu A, Mbwana J, et al. Dysmaturation of
the default mode network in autism. Human Brain Map. 2014;35(4):
1284–96.

55. Yerys BE, Gordon EM, Abrams DN, Satterthwaite TD, Weinblatt R,
Jankowski KF, Strang J, Kenworthy L, Gaillard WD, Vaidya CJ. Default
mode network segregation and social deficits in autism spectrum
disorder: Evidence from non-medicated children. NeuroImage: Clin.
2015;9:223–32.

56. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R,
O’boyle JG, Schultz RT, Pearlson GD. Abnormal functional connectivity of
default mode sub-networks in autism spectrum disorder patients.
Neuroimage. 2010;53(1):247–56.

57. Bi X-A, Liu Y, Jiang Q, Shu Q, Sun Q, Dai J. The diagnosis of autism
spectrum disorder based on the random neural network cluster. Front
Human Neurosci. 2018;12:257.

58. Iidaka T. Resting state functional magnetic resonance imaging and neural
network classified autism and control. Cortex. 2015;63:55–67.

59. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D,
Buckner RL, Dale AM, Maguire RP, Hyman BT, et al. An automated
labeling system for subdividing the human cerebral cortex on mri scans
into gyral based regions of interest. Neuroimage. 2006;31(3):968–80.

60. Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J. Classification of autism
spectrum disorder by combining brain connectivity and deep neural
network classifier. Neurocomputing. 2019;324:63–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Dataset
	Acquisition and preprocessing of rs-fMRI data
	Constructing FBNS

	JSNMF
	Evaluation indices of clustering performance
	Measuring performances of classifiers

	Results and discussions
	Clustering of FBNS
	Classification of ASD with default mode network features

	Conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

