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Photons, phonons, and plasmons 
with orbital angular momentum  
in plasmas
Qiang Chen1,2, Hong Qin1,3 & Jian Liu1

Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized 
homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, 
phonons, and plasmons. The OAM of different plasma components are closely related to the charge 
polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite 
direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are 
carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored 
for potential applications in plasma physics and accelerator physics.

During the last quarter century, the generation, transmission, conversion and detection techniques of photon 
orbital angular momentum (OAM) experienced significant advances, due to their wide applications in quantum 
information, particle manipulation, non-classical imaging, nanotechnology and astronomy1–18. In 1990, Tamm 
et al. generated Laguerre-Gaussian (LG) mode laser beams which have helical wave fronts and can drive neutral 
atoms and molecules1. Allen et al. first demonstrated that light beams with an azimuthal phase distribution carries 
an angular momentum independent of the polarization photon state2. The lost part of photon angular momentum 
embedded in twisted electromagnetic beam or optical vortex was found. Recently, the extension of photon OAM 
technology from visible to radio frequencies and the discovery of efficient OAM modes generation and sorting 
methods lead to more potential application in science and engineering8,11,14,19. Most of the previous studies are 
based on paraxial optics with slow varying envelope approximation in vacuum or crystal, as this approximation is 
valid in most experimental conditions. Recently, the LG modes have been corroborated by particle-in-cell (PIC) 
simulations of intense laser-plasma interactions20,21. Exact solutions of photons with OAM in vacuum can be 
obtained without invoking the paraxial approximation, which have general theoretical significance22.

Electromagnetic waves in plasmas and their interaction with charged particles play a crucial role in plasma 
physics and accelerator physics. RF waves are employed to accelerate particles in modern accelerators23,24, and to 
heat plasmas and drive current in magnetic fusion devices25. They are also the most effective plasma diagnostic 
tools. The coupling from injection waves to fusion plasmas can excite abundant eigen modes, such as the electron 
cyclotron wave, ion cyclotron wave and Bernstein wave. Different modes have different propagation properties, 
such as the accessibility and absorption characteristics, which determine their applicability26. Although this clas-
sical problem has been studied extensively with wide applications, attentions have been paid to the OAM phe-
nomena in plasmas only in recent years13,20,21,27–37.

Does a plasma support exact electromagnetic or other type of eigen modes with OAM? If so, can they be 
utilized to achieve better diagnostics, heating, current drive, and particle acceleration? In the present study, we 
address these two questions. In the past, measurements of the interaction between a RF wave with OAM and 
plasma vortex was made, and theoretical descriptions for plasma waves with OAM based on the LG modes were 
given by Mendonça and collaborators20,21,27–38. Also using the LG modes, electromagnetic and electrostatic waves 
in the fluid model27–32, inverse Faraday effect38, kinetic description33,34 and Landau damping for twisted waves 
were studied35,36. Additionally, Shukla studied the twisted shear Alfvén waves13. However, LG modes are solutions 
under the scalar paraxial approximation assuming a slowly varying envelope. They are not rigorous solutions of 
the vector Maxwell equations. Especially, in the complex media of plasmas, detailed and careful analysis should 
be performed on the vector Maxwell equation with a proper self-consistent model for plasmas. In this paper, 
we adopt a two-fluid system which self-consistently couples the dynamics of electrons and ions with the vector 
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Maxwell equations. We describe three classes of rigorous solutions of the system that can be identified as photons, 
phonons, and plasmons with OAM. They correspond to the electromagnetic, ion acoustic, and Langmuir waves 
in plasmas. The OAM of different plasma components are closely related to the charge polarities. For photons, 
the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried 
by the field. For phonons and plasmons, all OAM are carried by the electrons and ions. When the thermal effects 
are considered, there is a non-zero global OAM in general. Based on their spectrum modulation, power concen-
tration structure and rotation properties, the OAM eigen modes have important potential applications in plasma 
diagnostics, heating, current drive in magnetic fusion devices and driving rotating charged particle beams with 
enhanced stability in high-intensity accelerators.

Physical model
To study the small amplitude electromagnetic waves in a plasma, we start from a linearized two-fluid system with 
self-consistent electromagnetic field determined by the Maxwell equations,
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where the subscript α denotes electron (e) or ion (i) component, (E, B, Vα, n1α) represent the first order perturbed 
fields, n0α is the equilibrium density, and other variables have their usual meanings. The equilibrium is assumed 
to be cold, homogeneous, unmagnetized, zero flow and satisfies the neutrality condition ∑ α=e,iqαn0α =  0. The 
thermal effects will be considered in the second half of the paper.

The linear system (1)–(6) admits two approximations. The first is the electromagnetic approximation where 
the quasi-neutrality condition ∑ α=e,iqαn1α =  0 is assumed and the system is reduced to
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0 0 . The second is the electrostatic approximation where the per-

turbed magnetic field is negligible and the system is reduced to
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It turns out that a monochromatic mode with OAM can be constructed in the cylindrical coordinates with azi-
muthal phase distribution eilφ, where the integer l is the azimuthal mode number. In quantum optics, it is known 
as topological charge describing the degree of phase helicity12. The mode assumes the form of

∑ ∑φ= =
β
β β

β
β

φ ω
β

+ −E r z E rE e e( , , ) ( )e ,
(11)

i l kz t( )

where the subscript β =  r, φ, or z denotes cylindrical coordinates, and Eβ(r) is a function of the radial coordinate. 
The z–direction is the space-time averaged propagation axis.

Photons with OAM in plasmas
We first look at the electromagnetic modes, i.e., photons, with OAM. Substituting Eq. (11) into Eq. (7), we obtain 
the eigen equation of the electromagnetic modes,
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where D =  2l/r2, and other matrix elements are defined as,
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In terms of E±(r) ≡  Er(r) ±  iEφ(r), Eq. (12) can be rewritten as
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which shows that the E+(r), E−(r), and Ez(r) components are decoupled. These components are analogues of the 
angular momentum operators L± and Lz in quantum mechanics. A class of special solutions of eigen equation 
which satisfies the finite boundary condition at axis are µ=+ +

+
E r E J r( ) ( )l 1 , µ=− −

−
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µ= E r E J r( ) ( )z z l , where Jl(μr) is the l–th order Bessel function, and 
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−
E  and Ez are undetermined constants. 

Here, μ is a constant that can be viewed as a special kind of wave number in the r-direction, because any function 
f(r) defined on the domain of 0 ≤  r ≤  R can be expanded using the l–th order Bessel function Jl but with different 
values of μ. This expansion is of course the familiar Bessel-Fourier expansion f(r) =  ∑ ncnJl(μnr), where Rμn is the 
n–th positive root of Jl(r) and cn is an expansion coefficient determined by f(r). As discussed by Barnett et al.22, the 
paraxial waves, e.g. LG modes, can be obtained by Bessel mode superposition. For the LG mode Lp
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, which can verified by direct substitution22. Here, 

u(l, p) is a constant and zR is the Rayleigh range, and μ is continuously varying.
All three mode components have the same dispersion relation,

ω ω µ= + +k c( ) , (16)p
2 2 2 2 2

which indicates that the three modes are degenerate states. However, the divergence free condition, i.e., Eq. (8), 
puts on a constraint on the E+(r), E−(r), and Ez(r) components,
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In terms of 
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For a given pair of k and μ, the mode has two degrees of freedom or degeneracy.
The electromagnetic mode with OAM is localized around the wave axis, and the amplitude envelope decays 

approximately as r1/  for large r. Because Jl(0) =  0 when l ≠  0, there is no phase singularity of photon OAM at 
axis. The power density of the mode maximized on a ring with a radius determined by the maximum of the 
z-component of the momentum in Eq. (21).
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From Eqs. (19) and (20), the time averaged momentum and angular momentum densities are
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The radial component of 〈 M〉  and the azimuthal components of 〈 P〉  and 〈 M〉  are symmetric about the axis, 
thus spatial average leaves only the z-components, which shows that the eigen modes carry z-photon OAM. From 
Eqs (2)–(4), we can also find that the OAM of electrons is opposite to that of ions, and the total OAM carried by 
charged particles s is zero.

Different from the scalar paraxial solutions with slow varying envelope approximation, the OAM eigen modes 
obtained above are rigorous analytical solutions admitted by plasmas, which are orthogonal and complete. It is 
not surprising to find similarities and differences between our solutions specified by Eqs. (19) and (20) and the 
familiar Bessel modes,
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Their radial dependencies are all expressed in terms of Bessel functions, and they are both diffraction free, 
as there is no radial momentum component. However, there are major differences. Equations (19) and (20) 
give an azimuthal phase distribution, which forms a helical wave front. On the other hand, the familiar Bessel 
modes have two degenerate polarization components, which have orthogonal azimuthal amplitude distributions. 
Another important difference is that the Bessel modes carry no OAM, which can be verified by direct calculation. 
Interestingly, an electromagnetic mode with OAM can be constructed from two Bessel modes without OAM as

= | + | .β β φ β φA A iA (25)l lcos( ) sin( )

Here, Aβ denotes mode components of the electromagnetic modes with OAM obtained from Eq. (15), and 
Aβ|cos(lφ ) and Aβ|sin(lφ ) are the degenerate Bessel modes without OAM. The Euler formula eilφ =  cos(lφ) +  isin(lφ) 
realizes the conversion from orthogonal azimuthal amplitude distributions to a topological charge (Fig. 1). One 
may wonder why one OAM mode can be excited by two modes without OAM? This effect can be attributed to the 
familiar coherent interference. To wit, we have

∫ ∫× + × + = × × + ×⁎ ⁎ ⁎ ⁎i i V Vr E E B B r E B E BRe[( ) ( )]d Im( )d , (26)1 2 1 2 1 2 2 1

where the superscripts 1 and 2 denote two degenerate states without OAM in Eq. (25). The cross product between 
electric and magnetic fields of different modes leads to an azimuthal momentum distribution, and thus a twisted 

Figure 1. Conversion from orthogonal azimuthal amplitude distributions to a topological charge. (a) and 
(d) are the amplitude and phase distributions of the mode Aβ|cos(lφ ). (b) and (e) are those of the mode Aβ|sin(lφ ). 
(c) and (f) are those of the modes with OAM. The azimuthal mode number l is 2. The amplitudes are normalized 
by their maximum values and the coordinates are normalized by μr. The phases are measured by rad. It shows 
that a photon with OAM can be constructed from modes without OAM via the coherent interference.
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beam. This phenomenon is similar to the process that a circularly polarized wave with spin can be excited by two 
linearly polarized waves without spin.

Plasmons and phonons with OAM in plasmas
We now investigate the electrostatic modes with OAM. Substituting Eq. (11) into Eq. (9), we obtain the electric 
field eigen equations of electrostatic modes with OAM. These equations can be written in a vector form as,
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The dispersion relation obtained from Eq. (27) is that for plasma oscillation, i.e., ω =  ωp, which should not 
be surprising. This mode can be viewed as a plasmon with OAM. The components Er(r), Eφ(r) and Ez(r) should 
satisfy the rotation free condition, i.e., Eq. (10),
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Because the rank of the coefficient matrix in Eq. (28) is 2, there are two constraints and one independent mode 
component. In another word, the mode is non-degenerate. Solving Eq. (28), we obtain
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where Ez(r) is an arbitrary function of r. However, in order to avoid phase singularity, it should satisfy the follow-
ing conditions,
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The polarization properties described by Eq. (29) show that for the electrostatic mode with OAM, the elec-
trical field is not parallel to the space-time averaged propagation axis, which is in the z-direction. This situation 
is similar to the fact that for the electromagnetic mode with OAM, the electrical field is not perpendicular to the 
space-time averaged propagation axis.

We note that the electrostatic mode, or the plasmon, with OAM is a non-propagating oscillation under the 
cold plasma approximation. We now investigate finite temperature effects, one of which is the formation of a new 
propagating electrostatic mode with OAM, i.e., phonon with OAM. When the finite temperature is considered, 
Eq. (2) should be modified as
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where the thermal pressures p1α satisfies the polytropic law p1α/p0α =  γαn1α/n0α. The thermal velocities for electron 
and ion are defined as γ γ= =α α α α α α α αV p n m k T m/ /T B0 0 0 , where the γα is the polytropic index. Substituting 
Eq. (1) into Eq. (31), we obtain,
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For the electromagnetic modes, Eqs (7) and (32) lead to Eq. (12), which means that there is no thermal correc-
tion for the electromagnetic modes with OAM. The thermal effect on the electrostatic modes is more interesting. 
It produces phonons with OAM in plasmas. With finite temperature, it is more convenient to derive the eigen 
system using the velocity components. Equations (9) and (32) lead to
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for Vα =  ∑ βVαβ(r, φ, z)eβ =  ∑ βVαβ(r)ei(lφ + kz−ωt)eβ. Here, ω=α α αU V/p T
2 2 , D was defined after Eq. (12), and Sα and 

Pα have similar forms as Eqs (13) and (14), except that c2 is replaced by αVT
2  and ωp

2 is replaced by ω αp
2 , 

respectively.
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Defining new field components = ±α α φα
±V r V r iV r( ) ( ) ( )r , we can rewrite Eq. (33) in the principal axis sys-

tem as
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It shows that the eigen system of the electrostatic mode with OAM in a warm plasma consists of three decou-
pled subsystems + +V V( , )e i , − −V V( , )e i  and (Vze,Vzi). These subsystems have same dispersion relations, representing 
three degenerate states with different polarization. For the subsystem (Vze,Vzi), for example, with 
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The dispersion relation given by Eq. (35) is
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In Eq. (39), the second equal sign is another, probably more transparent, way to write the dispersion relation 
(36). In most cases V VTi Te, and the two branches of Eq. (36) can be simplified as
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Equation (40) describes the Langmuir wave with OAM, which is a propagating plasmon with OAM. 
Equation (41) is the dispersion relation for the electrostatic mode which vanishes in the cold plasma limit. It is the 
low frequency ion acoustic wave with OAM. It can be viewed as a phonon with OAM. The OAM of the modes can 
be calculated from the eigen structure. Because an electrostatic mode does not carry electromagnetic momentum 
density39, the mode contains only kinetic momentum density of the particles. The first order density field of the 
mode is
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The time averaged momentum density and angular momentum density of plasma components are,
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where
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µ µ µ µ µ µ≡
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The radial component of 〈 Mα〉  and the azimuthal components of 〈 Pα〉  and 〈 Mα〉  are symmetric about the 
axis, and integration over space leaves only the z-components, which show that the plasma components carry 
z-plasmon or z-phonon OAM. Furthermore, when men0e +  min0iK2 ≠  0, the OAM symmetry between electrons 
and ions are broken by the thermal effect. As a result, the mode contains a global OAM.

Outlook
The unique properties of the OAM photons, phonons, and plasmons discussed above enable important potential 
applications in plasma physics and accelerator physics. As an intrinsic characteristic of the OAM beam, the highly 
localized power density off the propagation axis can be an effective tool for delivering focused heating and accel-
eration power, which can be used to heat fusion plasmas in a specified position and generate structured charged 
particle beams. It is also a potential plasma diagnostic technique. The OAM states can be modulated by inhomo-
geneous and anisotropic structures in plasmas, such as density and magnetic field fluctuations. By injecting an 
OAM beam and detecting the OAM scattering spectrum, we can infer statistical properties of fluctuations in the 
plasma. For application in accelerator physics, if electromagnetic modes with OAM are introduced as accelerating 
field structures, charged particle beams will be driven by the OAM of the modes to rotate. Rotating particle beams 
are more stable for applications where high beam intensity is required.

In this work, electromagnetic and electrostatic waves with OAM in unmagnetized homogeneous plasmas are 
systematically studied. Exact OAM eigen modes are derived, which are different from approximate solutions in 
scalar paraxial optics with slow varying envelopes. Three classes of OAM modes are discussed: photons, phonons, 
and plasmons, which correspond to the electromagnetic, ion acoustic, and Langmuir waves. The modes have 
azimuthal phase distribution and Bessel-type of radial dependency. It is found that the electromagnetic mode 
with OAM can be excited by two familiar Bessel modes without OAM. For the phonons and plasmons, the OAM 
are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for 
various potential applications. Further studies of the propagation properties of the modes with OAM and their 
interactions with plasmas are expected to reveal new physics previous unknown.
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