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Abstract: To ensure navigation integrity for safety-critical applications, this paper proposes an
efficient Fault Detection and Exclusion (FDE) scheme for tightly coupled navigation system of Global
Navigation Satellite Systems (GNSS) and Inertial Navigation System (INS). Special emphasis is
placed on the potential faults in the Kalman Filter state prediction step (defined as “filter fault”),
which could be caused by the undetected faults occurring previously or the Inertial Measurement
Unit (IMU) failures. The integration model is derived first to capture the features and impacts of
GNSS faults and filter fault. To accommodate various fault conditions, two independent detectors,
which are respectively designated for GNSS fault and filter fault, are rigorously established based on
hypothesis-test methods. Following a detection event, the newly-designed exclusion function enables
(a) identifying and removing the faulty measurements and (b) eliminating the effect of filter fault
through filter recovery. Moreover, we also attempt to avoid wrong exclusion events by analyzing
the underlying causes and optimizing the decision strategy for GNSS fault exclusion accordingly.
The FDE scheme is validated through multiple simulations, where high efficiency and effectiveness
have been achieved in various fault scenarios.
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1. Introduction

Tightly coupled navigation system of Global Navigation Satellite Systems (GNSS)/Inertial
Navigation System (INS) is widely acknowledged as a suitable navigation solution for civil and
military aircraft, aerial photogrammetry, Unmanned Aerial Vehicle (UAV), and Mobile Mapping
Systems (MMS) [1]. It provides better performance than either GNSS or INS stand-alone system
because it combines their advantages to give a continuous and complete navigation solution with
high long- and short-term accuracy [2]. Additionally, tight integration achieves the balance between
efficiency and performance in comparison with loose integration and deep integration [3].

Tight integration is usually implemented with an Extended Kalman Filter (EKF) which is a
recursive estimator to generate optimal current-time state estimates in nominal cases [4]. However,
the EKF-based integration system may produce large errors due to various faults in the system.
The faults that affect current-time state estimates may exist in the measurements of GNSS and/or
Inertial Measurement Unit (IMU), and may occur now and/or in the past.

In Safety-Critical Applications (SCAs), Fault Detection and Exclusion (FDE) is a critical aspect
to prevent users from potential risk caused by rare sensor faults in navigation system. For example,
the position failure of an aircraft or train may threaten the safety of the on-board passengers.
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And when the UAV or Urban Air Mobility (UAM) operates overhead the crowd for missions such
as photogrammetry and cargo transportation [5], a navigation sensor fault may lead to catastrophic
consequences for the ground pedestrians and constructions. In response, Fault Detection (FD) function
provides the ability to alarm when faults occur in order to ensure integrity, and Fault Exclusion (FE)
function enables excluding the faulty measurements to improve continuity [6].

The paper aims at developing an efficient and effective FDE scheme against sensor faults for
tightly coupled GNSS/INS system. Inspired by literature [7] where sensor fault in state prediction
is regarded as a threat to the navigation system, we revisit this problem with special emphasis on
the potential faults in Kalman Filter state prediction step, besides the faults in current-time GNSS
observations. As mentioned in [7], the fault (i.e., estimate bias) in state prediction, called filter fault
(FF) in this paper, may be caused by (a) the faults in IMU measurements and (b) the undetected faults
occurring prior to current time. Particularly, GNSS faults and FF exert negative impacts on the filter in
significantly different ways: the former affects state update, while the latter influences state prediction.
Accordingly, this difference should be highlighted in the design of FDE scheme.

FDE for GNSS-standalone navigation system in aviation applications has been exclusively studied
in literature. For example, FDE is embedded in Receiver Autonomous Integrity Monitoring (RAIM)
and Advanced RAIM (ARAIM) [8,9], where the navigation states are estimated by Least-Squares
(LS) method. However, these techniques cannot be directly applied to the integrated system due
to the significant difference in LS and EKF: the latter is a sequential approach while the former is a
snapshot one.

Some FDE algorithms have been developed for tightly coupled GNSS/INS system over the past
years. Autonomous Integrity Monitoring by Extrapolation [10], Innovation-Based (IB) method [11],
Residual-Based (RB) method [11], Solution Separation (SS) method [12,13], Quality Control (QC) [14],
Generalized Likelihood Ratio (GLR) [15], Extended RAIM (ERAIM) [16], and Rate Detector (RD)
method [17] are the most representative hypothesis-test FDE algorithms. Recently, some novel
methods have been proposed, including Support Vector Machine (SVM) approach [18], neural network
approach [19], robust estimator approaches [20–22] and nonlinear filter approaches [23,24]. However,
these novel methods aim to improve the performance of FD in terms of time-to-detect, but make it
very difficult to evaluate the integrity risk (i.e., the probability of hazardously misleading information).
In practice, integrity risk evaluation is important in SCAs because the navigation system is designed
to satisfy expected levels of integrity and is required to provide the users with timely alerts when
the system cannot meet the integrity requirements [25]. Accordingly, traditional hypothesis-test
approaches are more suitable than these novel methods in SCAs because they are convenient and
straightforward for error-bounding, probability calculation and integrity risk derivation.

The large majority of existing FDE schemes focused on the faults in the current epoch or in
the sliding window. However, the undetected faults occurring previously also impact current-time
innovations and state estimates because they introduce the estimate bias in state prediction in EKF. Ramp
fault in pseudoranges, which represents a typical failure mode in GNSS, is one of the major sources of
these undetected faults. To cope with the undetected faults, several sequential FD algorithms exploiting
both current-time and past-time residuals were developed [4,26], and the sequential innovation-based
detectors were also studied [27]. Although the undetected faults were taken into consideration in
integrity risk evaluation in these methods, there were some obvious shortcomings that need to be
addressed. First, the design of the FE algorithm was absent. Second, it has been proved that the
innovation-based or residual-based fault detector would encounter performance degradation due to
the estimate bias in state prediction caused by undetected faults [18]. Third, the sequential methods
may be computationally expensive because they used a great number of innovations/residuals.

Moreover, the published algorithms shown above mainly aimed at detecting the faults in GNSS,
without regard to IMU failures. Lee et al. proposed an integrity monitoring scheme for multi-sensor
navigation system against IMU faults [7,28], but these studies were conducted from the perspective of
protection level derivation rather than fault detection and exclusion. According to the mechanism
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of EKF, faults in IMU can also lead to the estimate bias in state prediction [28]. Despite the fact that
Hardware Physics Redundancy (HPR) can significantly improve the reliability of IMU, it is necessary
to pay due attention to the faults in IMU measurements. A significant number of serious accidents have
happened due to IMU failures, such as the crashes of the Qantas F72 and Croatia Boeing 737-200 [29].
In addition, given that low-cost IMU sensors may be carried on UAVs for future UAM applications, such
as passenger/cargo air transportation, the output of IMU must be monitored against the possible faults.

In this paper, we rigorously analyze the influence of FF on FDE and state estimates, and further
propose an FDE algorithm to cope with both GNSS faults and FF. With FF being considered, special
attentions should be attached to the mutual interference between GNSS faults and FF due to its adverse
effects on fault detection performance. Accordingly, an FD scheme with parallel detectors, which are
respective designated for GNSS fault and FF, is developed to separate their impacts. Then a two-step
FE scheme including GNSS fault exclusion and filter recovery is presented. GNSS fault exclusion
intends to remove the faulty measurements in GNSS and filter recovery aims to eliminate the estimate
bias in state prediction. Regarding to GNSS fault exclusion, an optimized decision strategy is designed
to improve the success rate of exclusion, and the mechanism of fault separation, a measure of the
fault-exclusion capability, is investigated to reveal the underlying causes of wrong exclusion.

This paper is organized as follows. In Section 2, the mathematical model of GNSS/INS tight
integration is described in detail considering various error sources and failure modes. With these
analyses, we propose a novel fault detection scheme with two parallel detectors in Section 3. Then a
two-step fault exclusion algorithm is presented in Section 4. In Section 5, simulations are carried out
to validate the performance of the proposed algorithm in various fault scenarios. Finally, Section 6
concludes the paper and presents some perspectives.

2. Tightly Coupled GNSS/INS Integration

2.1. Tightly Coupled GNSS/INS Integration Model

In this paper, tightly coupled GNSS/INS integration is implemented by adopting a closed-loop
error-state EKF. The architecture is illustrated in Figure 1. Here, the errors estimated by EKF are fed
back every iteration to correct the system itself, maintaining a linear approximation in the system
model [1].
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Figure 1. Closed-loop error-state Global Navigation Satellite Systems (GNSS)/Inertial Navigation 
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the inertial sensor errors, with GNSS measurements as external aiding. Let 𝑁௖௢௡௦௧ be the number of 
GNSS constellations used in the integration. Then, the (15 + 𝑁௖௢௡௦௧ + 1)-parameter error state in the 
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Figure 1. Closed-loop error-state Global Navigation Satellite Systems (GNSS)/Inertial Navigation
System (INS) tight integration architecture.

The main target of GNSS/INS tight integration is to correct the INS solution and to compensate
the inertial sensor errors, with GNSS measurements as external aiding. Let Nconst be the number of
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GNSS constellations used in the integration. Then, the (15 + Nconst + 1)-parameter error state in the
filter is shown as follows [3]:

x =
[
(δφ)T, (δv)T, (δp)T,∇T

a ,∇T
g , δρu, δ

.
ρu

]T
(1)

where δφ, δv, and δp denote the INS error states of attitude, velocity, and position, respectively; ∇a and
∇g are the accelerometer and gyro bias vectors; δρu and δ

.
ρu respectively represent the GNSS receiver

clock state vectors, i.e., Nconst pseudorange biases caused by clock offset regarding each constellation
and 1 pseudorange rate bias for receiver clock drift. Specifically, the IMU bias drift in each direction is
modelled as a first-order Gauss-Markov process in the filter.

The discrete-time process model and measurement model are shown in
Equations (2) and (3), respectively.

xk = Φk|k−1xk−1 +ωk (2)

zk = Hkxk + νk (3)

where Φk|k−1 is the state transition matrix from epoch (k− 1) to epoch k; Hk denotes the measurement
matrix; zk is the measurement vector; and ωk and νk are the process noise vector and measurement
noise vector, respectively. Both ωk and νk are modeled as Gaussian White Noise (GWN), with process
noise covariance matrix Qk and measurement noise covariance matrix Rk, respectively.

In EKF, prediction and update are two essential steps to obtain an optimal state vector estimate.
As shown in (4) and (5), the prediction step is used to predict the state vector x and the associated
covariance matrix P from the last to the current epoch, using the assumed process model.

x̂−k = Φk|k−1x̂+k−1 (4)

P−k = Φk|k−1P+
k−1ΦT

k|k−1 + Qk (5)

where the superscripts “−” and “+” represent a predicted (a prior) estimate and an updated (a posterior)
estimate, respectively.

As shown in Equations (6) and (7), the update step is used to update the state vector and the
associated covariance matrix according to the measurement model.

x̂+k = x̂−k + Kkrk (6)

P+
k = (I −KkHk)P−k (7)

where Kk is the Kalman gain matrix and rk is the innovation vector. The Kalman gain matrix Kk is
determined as:

Kk = P−k HT
k

(
HkP−k HT

k + Rk
)−1

(8)

The innovation vector is defined as the difference between the actual measurement vector and the
predicted one as shown in Equation (9).

rk = zk −Hkx̂−k (9)

When EKF operates in a closed-loop mode, the predicted state vector x̂−k is zero because of the
feedback process [1]. As a result:

rk = zk = ρG − ρI (10)
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where ρG is the GNSS pseudorange vector and ρI is the predicted pseudorange vector from INS-derived
navigation solution (before update) [3]. If the filter works optimally (i.e., fault-free), the innovation
sequence rk is a zero-mean GWN, whose covariance matrix Vk is given as [3]:

Vk = HkP−k HT
k + Rk (11)

In addition to the error states, we should also pay attention to the absolute states (i.e., attitude,
velocity, position, IMU sensor biases, and receiver clock states) for the following reasons. First, the
navigation system intends to provide the navigation solution rather than the error states to the users.
Second, the predicted measurements ρI and the innovations rk depend on the predicted absolute
navigation information. To illustrate the relationship between the error states and the absolute states
(labeled as y), the system-propagation (prediction) process and the measurement-update (update)
process in GNSS/INS tight integration are shown in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 20 

 

(labeled as 𝑦), the system-propagation (prediction) process and the measurement-update (update) 
process in GNSS/INS tight integration are shown in Figure 2. 

Last Navigation
 Solution

Inertial 
Propagation

Navigation
 Solution

GNSS
Measurements Innovations Update

IMU
Measurements

3

INS-Derived
Measurements

Error States

INS

-

-2

1

 
Figure 2. Prediction process and update process in the integrated system. (Note, 𝑥—error states, and 𝑦—absolute states). 

2.2. Error Analysis of Tight Integration Model 

Navigation errors are unavoidable due to various errors (noises) in the prediction and update 
steps of the filter. According to Figure 2, these errors can be divided into three parts: GNSS 
pseudorange errors, IMU measurement errors, and last navigation solution errors. Table 1 presents 
a brief introduction to the errors that affect the current-time state estimate, including their causes and 
models (a detailed illustration is given in [30]). 

Table 1. Sources, causes, and models of the errors in the integration system. 

Sources Causes Models 

GNSS 
pseudoranges 

They are caused by Signal-In-Space 
errors, ionosphere and troposphere 
propagation delay, multipath and 
receiver noise, etc. 

The measurement noise is modeled as zero-mean 
GWN with covariance matrix Rk. 

IMU 
measurements 

For high-end IMU, only bias drift 
and random noises should be 
considered 1. 

Bias drift is modeled as a first order Gauss-
Markov process and is included in the error 
states; random noises are modeled as zero-mean 
GWN and their covariance is given in Qk. 

Last navigation 
solution 

The noises in last navigation 
solution are caused by the noises in 
previous prediction and update 
steps. 

The noises are described by a zero-mean multi-
dimensional Gaussian distribution, whose 
covariance matrix is PK−1. 

1 For low-cost inertial sensors, the turn-on bias and scale factor should also be considered and they 
should be included in the error states. 

According to Figure 2, both the noises in last navigation solution and those in IMU 
measurements lead to the errors in INS-derived navigation solution and therefore impact the INS-
derived measurements. Based on these analyses, the simplified mathematical models of GNSS 
pseudorange vector 𝜌ீ and the predicted pseudorange vector 𝜌ூ are given as follows: 𝜌ீ =  𝜌ோ + 𝜀ீ (12) 𝜌ூ = 𝜌ோ + 𝜀ூ = 𝜌ோ + 𝐺 ∙ 𝜀௬ (13) 

where 𝜌ோ  is the noise-free (true) pseudorange vector; 𝜀ீ  is the pseudorange noise vector; 𝜀ூ 
represents the INS-derived pseudorange noise vector; 𝜀௬  is the noise vector of INS-derived 

Figure 2. Prediction process and update process in the integrated system. (Note, x—error states, and y
—absolute states).

2.2. Error Analysis of Tight Integration Model

Navigation errors are unavoidable due to various errors (noises) in the prediction and update
steps of the filter. According to Figure 2, these errors can be divided into three parts: GNSS
pseudorange errors, IMU measurement errors, and last navigation solution errors. Table 1 presents a
brief introduction to the errors that affect the current-time state estimate, including their causes and
models (a detailed illustration is given in [30]).

According to Figure 2, both the noises in last navigation solution and those in IMU measurements
lead to the errors in INS-derived navigation solution and therefore impact the INS-derived
measurements. Based on these analyses, the simplified mathematical models of GNSS pseudorange
vector ρG and the predicted pseudorange vector ρI are given as follows:

ρG = ρR + εG (12)

ρI = ρR + εI = ρR + G·εy (13)

where ρR is the noise-free (true) pseudorange vector; εG is the pseudorange noise vector; εI represents
the INS-derived pseudorange noise vector; εy is the noise vector of INS-derived navigation solution;
and G is the geometry matrix of the observations [1]. Substituting Equations (12) and (13) into (10),
we can get:

rk = ρG − ρI = εG −G·εy (14)
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Table 1. Sources, causes, and models of the errors in the integration system.

Sources Causes Models

GNSS pseudoranges
They are caused by Signal-In-Space errors,
ionosphere and troposphere propagation delay,
multipath and receiver noise, etc.

The measurement noise is modeled as zero-mean
GWN with covariance matrix Rk.

IMU measurements For high-end IMU, only bias drift and random noises
should be considered 1.

Bias drift is modeled as a first order Gauss-Markov
process and is included in the error states; random
noises are modeled as zero-mean GWN and their
covariance is given in Qk.

Last navigation solution The noises in last navigation solution are caused by
the noises in previous prediction and update steps.

The noises are described by a zero-mean
multi-dimensional Gaussian distribution, whose
covariance matrix is PK−1.

1 For low-cost inertial sensors, the turn-on bias and scale factor should also be considered and they should be
included in the error states.

2.3. Fault Analysis of Tight Integration Model

The navigation system can occasionally encounter significantly large output errors due to the
potential faults in the integrated system. Similar to the errors, the faults that impact current-time state
estimates can be divided into three parts as shown in Table 2.

Table 2. Sources, causes, and types of the faults in the integration system.

Sources Causes Types

GNSS pseudoranges
(labeled as bG)

They are caused by satellite clock jump, clock drift,
incorrect ephemeris, etc.

Typical fault types include: ramp faults and step
faults [31].

IMU measurements
(included in by)

IMU faults, including bias instability and scale-factor
non-linearity, gyro drift, etc., may occur due to
various internal and external causes, e.g., mechanical
failures, abnormal temperature, excessive humidity,
severe vibration, etc. [32].

Typical faults in IMU are in the form of ramp faults,
step faults, periodic faults, and constant output.

Last navigation solution
(included in by)

The faults in last navigation solution are caused by
the undetected faults occurring prior to current time,
including the previous faults in IMU and GNSS.

The type of this fault is related to the types and
duration of the previous faults in GNSS and IMU
[28], and it can be stepped, ascending or descending.

According to Figure 2 and Table 2, current-time GNSS faults impact the state update step, while
faults in IMU measurements or in the last navigation solution lead to the bias in INS-derived navigation
solution (i.e., state prediction step). The bias is called “filter fault (FF)” in this paper as stated in the
Introduction. All the recursive effects of the undetected faults occurring previously are represented
by FF. It is justified because it is filter fault and current-time GNSS faults that directly impact the
current-time innovations and state estimates. As a result, taking the faults into consideration, ρG and
ρI can be modeled as:

ρG = ρR + εG + bG (15)

ρI = ρR + G·
(
εy + by

)
(16)

where bG denotes the GNSS fault vector and by is the vector of the bias in INS-derived navigation
solution (i.e., FF). Both bG and by represents the effects of various faults on current-time innovations
and state estimates. Then the innovation vector is re-written as:

rk = εG + bG −G·εy −G·by (17)

Equation (17) illustrates the effects of noises and faults on the innovations and lays the foundation
of the design of FDE schemes. Their effects on the navigation solution are given in Appendix A.
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3. FG-AIME: A Novel Fault Detection Scheme with Two Detectors

3.1. Fault Detection Based on AIME

AIME is a typical FD scheme for tightly coupled GNSS/INS system, with better performance in
detecting ramp faults than the snapshot methods [10]. AIME exploits the sequential innovations in the
siding window of length l to build the chi-squared test statistic.

First, batch processing is used to determine the averaged innovation vector ravg as follows:

ravg =
(
V−1

avg

)−1
k∑

i=k−l+1

V−1
i ri (18)

where V−1
avg denotes the inverse of the averaged innovation covariance matrix, determined by:

V−1
avg =

k∑
i=k−l+1

V−1
i (19)

Second, the test statistic is established as follows:

savg = rT
avg

(
V−1

avg

)
ravg (20)

The statistic savg follows a central chi-squared distribution whose degrees of freedom (DOF) is
equal to the number of visible satellites Nsat in fault-free cases, and it follows a non-central chi-squared
distribution in fault scenarios [10].

Third, the detection threshold TA is determined based on the probability of false alarm PFA which
is obtained from the navigation performance requirements. For example, this value is 8 × 10−6 per
approach in LPV-200 [9]. The threshold is determined by:

1− PFA = F(TA
∣∣∣Nsat) (21)

where F(∗
∣∣∣Nsat) denotes the cumulative distribution function (CDF) of the central chi-squared

distribution with Nsat DOF. If savg > TA, a fault alert is raised.
To further interpret AIME, we take an eigenvalue-decomposition perspective. Since the covariance

matrix Vk is symmetric and positive definite, Vk can be expressed as:

Vk = L·V̂k·L−1 (22)

where L denotes an orthogonal matrix of eigenvectors, and V̂k is the diagonal eigenvalue matrix whose
eigenvalues are all positive. Then,

r̂k = LT
·rk (23)

where r̂k denotes the transformed innovation vector whose covariance matrix is V̂k. Hence, the elements
in r̂k are uncorrelated with each other. The test statistic sk is given as:

sk = (r̂k)
T
·

(
V̂−1

k

)
·r̂k = rT

k ·
(
V−1

k

)
·rk (24)

Equations (22)–(24) prove that savg follows Nsat-DOF chi-squared distribution. A detailed proof is
provided in [10].

3.2. Enhanced AIME Scheme Based on Fault Grouping

AIME is designed to detect GNSS faults and it will experience performance degradation when FF
occurs due to the interference between GNSS faults and FF as shown in Equation (17). To separate
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the effects of GNSS faults and FF, an enhanced AIME method, FG-AIME, is proposed based on fault
grouping, which comprises parallel GNSS fault detector and FF detector.

First, the test statistic in GNSS fault detector is constructed as follows. According to Equation (17),
an innovation-based vector unaffected by FF is obtained by:

r̃G = (I −G·S)·rk = (I −G·S)·(εG + bG) (25)

where I denotes the Nsat-by-Nsat identity matrix and S is the least squares coefficient matrix defined as:

S =
(
GTG

)−1
·GT (26)

Then we calculate the corresponding covariance matrix of r̃G as:

ṼG = (I −G·S)·Vk·(I −G·S)T (27)

Using Equation (11), it is easy to prove that:

ṼG = (I −G·S)·Rk·(I −G·S)T (28)

It is worth noting that ṼG is singular with rank of (Nsat − 3−Nconst) [33]. Consequently, before
building the test statistic, eigenvalue decomposition of ṼG must be performed:

ṼG = LG·V̂G·L−1
G (29)

where LG denotes the orthogonal matrix of eigenvectors and V̂G is the diagonal eigenvalue matrix.
The eigenvalues comprise (Nsat − 3−Nconst) non-zero elements and (3 + Nconst) zero elements
(including 3 position elements and Nconst receiver clock element). We define Le

G and V̂e
G as the

parts, which are corresponding to non-zero eigenvalues, of LG and V̂G, respectively. Then we transform
r̃G into r̃e

G by:

r̃e
G =

(
Le

G

)T
·̃rG (30)

The test statistic sG
avg in GNSS fault detector is constructed with r̃e

G and V̂e
G in the same way as

AIME approach (i.e., Equations (18)–(20)). This statistic follows a central and non-central chi-squared
distribution with (Nsat − 3−Nconst) DOF in fault-free cases and faulty cases, respectively.

Second, the test statistic in FF detector is built as follows. The innovation-based vector r̃F for FF
detection is obtained as:

r̃F = S·rk = S·(εG + bG) − εy − by (31)

Unfortunately, as shown in Equation (31), r̃F is affected by GNSS faults because which satellites
are faulty is unknown before FE. The test statistic based on r̃F reflects, therefore, the effects of both
GNSS faults and FF. After excluding the faulty satellites in FE, the FF detector should be repeated using
the new innovation vector free of the effects of GNSS faults (see Figure 3 in Section 4.1).Sensors 2019, 19, x FOR PEER REVIEW 9 of 20 
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Then we calculate the corresponding covariance matrix of r̃F as:

ṼF = S·Vk·ST (32)

where ṼF is also singular, whose rank is (3 + Nconst). The derivation of test statistic sF
avg in FF detector

is the same as that in AIME, and it is omitted for the sake of brevity.
In FG-AIME, PFA should be properly allocated to the two fault detectors. A simple principle

for the allocation is provided: PF
FA should be high if the prior probability of FF is larger than that of

GNSS faults, e.g., using low-cost IMU in the system; otherwise PG
FA should be high to enhance the FD

capability for GNSS faults. Specially, only GNSS faults will be detected when PG
FA = PFA. Therefore,

the adjustable allocation of PFA indeed enhances the adaptability of the proposed FD scheme to various
scenarios. In fact, the optimal allocation should be determined considering both the FD capability and
the integrity risk, but this is beyond the scope of this paper.

4. Fault Exclusion with Two Steps: GNSS Fault Exclusion and Filter Recovery

4.1. Complete Fault Detection and Exclusion Scheme

A complete architecture of the proposed FDE scheme is shown in Figure 3. For the purpose
of ensuring navigation continuity, the proposed FE scheme performs two functions: excluding the
faulty satellites, and recovering the filter after GNSS fault exclusion or FF detector’s alarm. Filter
recovery represents the process of correcting the estimate bias in state prediction (i.e., by), which will
be illustrated in detail in Section 4.3. Additionally, as stated in Section 3.2., the FF detector should
be repeated after GNSS fault exclusion. Finally, after the entire FE process, FD should be repeated to
make sure that the system has no fault alarm before outputting the navigation solution.

4.2. GNSS Fault Exclusion: Statistics and Decision Strategy

4.2.1. Alternative Hypotheses and Statistics for GNSS Fault Exclusion

GNSS fault exclusion is attempted when GNSS fault detector alarms. There are a set of alternative
hypotheses for exclusion. Each of them is linked to a subset which labels the satellites as faulty/healthy
according to the associated hypothesis. Figure 4 provides an example of various subsets.
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To avoid calculating the statistics for all the subsets, we pre-set the probability Pignored accounting
for unconsidered fault modes to filter out the subsets with low probabilities. Then the maximum
number Nmax of simultaneous faults that need to be considered is determined based on the prior fault
probability of each subset. The method to determine Nmax and the monitored subsets is provided in
ARAIM baseline algorithm description [9].

For each subset determined above, the statistic is constructed based on the corresponding
hypothesis. For subset j, a new innovation-based vector is given as:

r̃( j)
G =

(
I −G·S( j)

)
·rk (33)
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where S( j) denotes the least squares coefficient matrix corresponding to subset j, determined by:

S( j) =
((

G( j)
)T

G( j)
)−1
·

(
G( j)

)T
(34)

where G( j) denotes the geometry matrix for subset j. It is obtained by substituting the rows in G, which
is corresponding to the satellites labeled as faulty in subset j, with vectors whose entries are all zero.

Substituting (17) into (33), we get:

r̃( j)
G =

(
I −G·S( j)

)
·(εG + bG) (35)

According to Equation (35), r̃( j)
G is only affected by the noises and faults in GNSS measurements.

Let A( j) =
(
I −G·S( j)

)
for brevity. Then we define r( j)

H as the elements of r̃( j)
G corresponding to the

satellites labeled as healthy in subset j, which is determined by:

r( j)
H = A( j)

H ·(εG + bG) (36)

where A( j)
H takes the corresponding rows of A( j). We then compute the covariance matrix V( j)

H of r( j)
H as:

V( j)
H = A( j)

H ·Vk·

(
A( j)

H

)T
= A( j)

H ·Rk·

(
A( j)

H

)T
(37)

where V( j)
H is singular with a rank of

(
Nsat − 3−Nconst −N( j)

F

)
and N( j)

F is the number of satellites

assumed faulty in subset j.
The test statistic s( j)

FE of subset j for fault exclusion is constructed based on r( j)
H and V( j)

H in the
same way as the derivation of sG

avg. If all the faulty satellites are labeled as faulty in subset j, each

element of r( j)
H should follow a zero-mean Gaussian distribution and therefore s( j)

FE should follow a

central chi-squared distribution. Otherwise, s( j)
FE should follow a non-central chi-squared distribution.

4.2.2. Decision Strategy for GNSS Fault Exclusion

To allow the navigation service to continue without loss of continuity in fault scenarios, FE is
required to accurately exclude the faulty measurements. Consequently, when designing the GNSS
fault exclusion scheme, we should take special measures to avoid wrong exclusions, including over
exclusion and incomplete exclusion, as shown in Table 3. The proposed decision strategy for GNSS
fault exclusion with the use of the statistics determined above is illustrated below and a flowchart of
the algorithm implementation is provided for summarization.

Table 3. Possible results in GNSS fault exclusion process.

Results Exclude All Faulty Satellites? Exclude Any Healthy Satellites?

Right exclusion YES NO
Over exclusion YES YES

Incomplete exclusion NO YES/NO

If GNSS fault detector alarms, a set of satellites of size Ne should be excluded. A basic strategy to
determine the best candidate set of satellites for exclusion is provided in ARAIM [9], which is shown as
follows. For each possible size Ne of the set, we determine the best candidate for exclusion by finding
the subset with the smallest chi-squared statistic [9]:

jNe = argmin
j

{
s( j)

FE

∣∣∣∣N( j)
F = Ne

}
(38)



Sensors 2020, 20, 590 11 of 21

For the candidate subset jNe , a chi-squared test should be performed for consistency check [9],

and the threshold T(new)
G is computed as:

1− PG
FA = F

(
T(new)

G

∣∣∣∣Nsat − 3−Nconst −Ne

)
(39)

The subset is deemed to pass the test when s( jNe )

FE ≤ T(new)
G . The search for the effective candidate

for exclusion starts from Ne = 1 and stops when the best candidate of Ne passes the test above.
In addition to the previous process, extra measures should be taken to reduce the probability of

wrong exclusion. We provide an efficient approach based on the comparison between the candidate
subsets jNe and jNe+1 for this purpose. Figure 5 presents the complete process of determining the best
candidate for GNSS fault exclusion. In Figure 5, the procedures in the red-dotted box are used to
cope with wrong exclusion, where the COMPARE module aims to determine whether there is over
exclusion or incomplete exclusion.
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The output of the COMPARE module is Y only when the following two statements are both true:

1. All the satellites labeled as faulty in subset jNe are labeled as faulty in subset jNe′ ;
2. The difference of the statistics ∆s between subset jNe and subset jNe′ is smaller than the

corresponding threshold T∆s. The determination of ∆s and T∆s is given in Appendix B.

In this module, statement 1 is used to determine whether healthy satellites are excluded in jNe and
statement 2 is to avoid over exclusion. Detailed illustration will be given in Section 5.3.

4.2.3. Analysis of Fault Separation Problem

Fault separation represents the separability [16] between two fault modes. Fault separation
intends to quantitatively analyze the possibility of the event that satellite 2 is flagged as faulty when
fault actually occurs in satellite 1. Fault separation also attempts to reveal the underlying causes of
wrong exclusion, which is significant for FE performance improvement in future researches.

Assuming hypothesis j0 is right, then the statistic s( j0)
FE follows a central chi-squared distribution

and s( j)
FE follows a non-central chi-squared distribution when N( j)

F ≤ N( j0)
F ( j , j0). Based on this,

we present an indicator to reveal the separability between hypothesis j0 and hypothesis j as follows.
An innovation-based vector for hypothesis j is given by:

r̃( j) = L̃( j)
·r( j)

H = L̃( j)
·A( j)

H ·(εG + bG) (40)

where L̃( j), a
(
Nsat − 3−Nconst −N( j)

F

)
-by-

(
Nsat −N( j)

F

)
transformation matrix, satisfies:

L̃( j)
·V( j)

H ·
(̃
L( j)

)T
= Ṽ( j) (41)
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where Ṽ( j) is a diagonal matrix whose diagonal elements are non-zero eigenvalues of ṼH. Based on
Equation (24), the non-central parameter δ( j) is determined by:

δ( j) =
(̃
L( j)
·A( j)

H ·bG

)T
·

(
Ṽ( j)

)−1
·

(̃
L( j)
·A( j)

H ·bG

)
(42)

For single-fault scenarios, a correlation coefficient C j
j0

for fault separation independent of fault
magnitude is calculated as:

C j
j0
=

(̃
L( j)
·A( j)

H ·q
( j0)

)T
·

(
Ṽ( j)

)−1
·

(̃
L( j)
·A( j)

H ·q
( j0)

)
(43)

where q( j0) represents the normalized fault vector for hypothesis j0, i.e., q( j0) = [0, 0, . . . , 1, 0, . . . 0]T.
Note that the coefficients for multi-faults scenarios can also be obtained based on Equation (43) but
they are dependent on the fault amplitude ratios among different satellites.

According to the decision strategy for GNSS fault exclusion given above, i.e., Equation (38),
hypothesis j may be misjudged as right if C j

j0
or δ( j) is small because the effect of δ( j) on the difference

between s( j0)
FE and s( j)

FE may be subtle compared to that of random noises. So, C j
j0

is an indicator to reveal
the separability between hypotheses, and the bigger it is, the lower the probability of the misjudgment
will be.

4.3. Filter Recovery After GNSS Fault Exclusion

After excluding the faulty satellites, filter recovery attempts to correct the estimate bias by (i.e.,
FF). In this section, two filter recovery schemes are proposed, including bias compensation method
and re-filter method. The schemes presented here are preliminary and should be viewed as examples
of filter recovery for the integrated system.

First, as shown in Figure 3, the FF detector should be repeated after GNSS fault exclusion
as follows:

r′F = S( je)·rk = S( je)·(εG + bG) − εy − by (44)

V′F = S( je)·Vk·
(
S je

)T
(45)

where je corresponds to the best candidate for GNSS fault exclusion determined in Section 4.2. Given
that the hypothesis je is very likely to be right, r′F will be unaffected by GNSS faults, i.e., S( je)·bG = 0.
Consequently, FF detector will only reflect FF. The new test statistic s′F in FF detector is determined
based on r′F and V′F in the same way as sF

avg.
Second, the filter recovery schemes are given as follows. The bias compensation method is to

compensate the INS-derived navigation solution ŷ−k using the estimate b̂y of the estimate bias by. Based
on (44), we have:

b̂y = −r′F (46)

The re-filter method is to store the historical measurements in a preceding horizon of m epochs and
re-run the filter from epoch (k−m + 1) to current epoch k with faulty satellites excluded. Appendix C
presents the method to properly determine the length of the preceding horizon. However, the re-filter
method will be unavailable when faults occur in the unique IMU sensor. To cope with these cases, new
fault exclusion strategies will be investigated for the integrated system with redundant IMU sensors in
future work.
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5. Simulation and Discussion

5.1. Simulation Description

A simulation platform of EKF-based tightly coupled GNSS/INS system is built to demonstrate the
proposed FDE scheme. The simulation parameters of IMU (aviation-grade) and GNSS measurements
are shown in Table 4 [1].

Table 4. Simulation parameters.

Sensors Parameter Value

IMU

Accelerometer noise root PSD 1 20 µg/
√

Hz
Gyro noise root PSD 0.002 ◦/

√
hr

Accelerometer biases (body frame) [30;−45; 26] µg
Gyro biases (body frame) [−0.0009; 0.0013; 0.0008] ◦/hr

Output rate 100 Hz

GNSS
Pseudorange noise (1σ) 2.5 m

Output rate 1 Hz
Number of visible satellites 8

1 PSD: power spectral density.

Various faults are added to GNSS pseudoranges and IMU raw measurements as shown in Table 5.
Ramp fault with slope of 0.1 m/s is a typical failure type in GNSS pseudoranges [31]. The step
faults added to the accelerometer are also justified for the following reasons. First, using closed-loop
integration architecture, slowly growing errors (i.e., ramp faults) exert little influence on both the
navigation solution and the innovations because IMU sensor errors are estimated and fed back to INS
for corrections every epoch. Second, step faults of about 0.2 m/s2 in IMU may be caused by a sudden
change of the constant biases, which is possible, especially for low-cost sensors [34].

Table 5. Fault scenarios in the simulations.

No. Sources Fault Information Fault Duration

1
GNSS

Add 0.1 m/s ramp fault to SV-1 or SV-3 1

200 s-end

2 Add 0.1 m/s ramp faults to SV-1 and SV-3

3 IMU Add 0.2 m/s2 step faults to each accelerometer axis

4 GNSS&IMU Add 0.1m/s ramp fault to SV-1 and 0.2 m/s2 step
faults to each accelerometer axis

1 SV: Space Vehicle = Satellite.

As shown in Figure 6, the trajectory in this simulation is of a 418-s aircraft motion generated by
Spirent SimGen, in a speed of 200 m/s with two 45◦ turns in opposite directions and a 500 m climb [1].

5.2. Fault Detection Based on AIME and FG-AIME

This section demonstrates the proposed FD scheme in various fault scenarios. In the following
simulations, PFA is set to 8e-6 (see [9]) and the length of sliding window l (see Section 3.1) is set to 10 s.

Figures 7 and 8 compare the performance of AIME and FG-AIME in GNSS fault scenario (No. 1 in
Table 5) and IMU fault scenario (No. 3 in Table 5), respectively. Regarding the performance on timely
detection, results show that FG-AIME is superior to AIME with the detection delay reduced by 12 s
and 2 s, respectively. In Figure 8, the decrease of the test statistic in FF detector is caused by the gradual
closed-loop correction process for the step faults in IMU. Additionally, Figure 8 proves that IMU faults
should also be monitored because they can issue a fault alarm and may lead to large navigation errors.
Note that, 90% of PFA is allocated to GNSS fault detector in Figure 7 (scenario No. 1) to enhance the
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detection capability of GNSS faults, while the major part of PFA is assigned to FF detector in Figure 8
because we assume that an unreliable IMU is used and IMU faults are considered in the simulation
(scenario No. 3).
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Figure 9 evaluates the performance of FG-AIME when GNSS faults and IMU faults occur
simultaneously (scenario No. 4). Regarding the detection delay, the performance of AIME and
FG-AIME is quite similar. However, we cannot conclude that FG-AIME is of little significance in this
case. As mentioned earlier, the motivation of FG-AIME is to separate the effects of GNSS faults and FF.
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This is beneficial for the two detectors in FG-AIME to reflect the faults more accurately. Furthermore,
the information of fault sources provided by FG-AIME is essential for FE to determine whether to
exclude GNSS satellites and whether to perform filter recovery. Moreover, from the perspective of
integrity monitoring, this information is also important for integrity risk evaluation because the effects
of GNSS faults and FF on the position errors are quite different [28], which is derived in detail in
Appendix A.
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Figure 9. Fault detection for faults in both SV-1 and accelerometer (PF
FA = 0.9PFA).

5.3. GNSS Fault Exclusion, Fault Separation, and Filter Recovery

This section demonstrates the FE scheme in various fault scenarios. Notes for Figures 10 and 11
are given first. One X-axis tag (SV-I) and one legend tag (SV-J) form a hypothesis (SV-I, SV-J). Both SV-I
and SV-J are assumed faulty in dual-fault hypothesis (SV-I, SV-J, I , J) or hypothesis (SV-J, SV-I, I , J).
Only SV-I is assumed faulty in single-fault hypothesis (SV-I, SV-I) which is marked by black arrow in
the figures.
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Figure 10. Statistics for GNSS fault exclusion when fault occurs in SV-3.

Figure 10 shows the instantaneous statistics for GNSS fault exclusion in a single-fault case (i.e.,
SV-3 is faulty) when the detector starts to alarm (see Figure 7). The following process is an illustration
of Figure 5, i.e., the flowchart of GNSS fault exclusion. Based on Equation (38), the best candidate
j1 is hypothesis (SV-3, SV-3) among single-fault hypotheses (i.e., Ne = 1). This candidate can pass
the consistency-check test because the threshold is 26.6 for Ne = 1 based on Equation (39). Then,
extra steps are taken to avoid wrong exclusion: the best candidate j2 among dual-fault hypotheses

is hypothesis (SV-3, SV-4) or (SV-4, SV-3) and the difference ∆s =
(
s( j1)

FE − s( j2)
FE

)
is significantly small,

which shows that SV-4 is healthy and excluding SV-3 is sufficient. Therefore, SV-3 will be excluded,
which is obviously a right exclusion.
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Figure 11 displays the instantaneous statistics in a dual-fault case (i.e., SV-1 and SV-3 are faulty,
see scenario No. 2 in Table 5). Among single-fault hypotheses, the best candidate j1 is hypothesis (SV-6,
SV-6). This candidate can pass the consistency-check test because the threshold is 26.6 as mentioned
earlier. If there are no extra steps, SV-6 will be excluded, which is apparently a wrong exclusion.
The extra steps are given as follows. The best candidate j2 is hypothesis (SV-1, SV-3) or (SV-3, SV-1).
According to the COMPARE module in Figure 5, candidate j2 is the best candidate for exclusion because
Statement 1 is false, i.e., the satellite (i.e., SV-6) assumed faulty in candidate j1 is assumed healthy
in candidate j2. Therefore, SV-1 and SV-3 will be excluded, which is a right exclusion. Accordingly,
Figure 11 proves the effectiveness of the proposed GNSS FE scheme in avoiding wrong exclusion.

To illustrate the concept of fault separation, Figure 12 presents the reciprocal of correlation
coefficient in single-fault cases. In this figure, we predefine that hypothesis j0 is true and hypothesis j

is false (j , j0). The larger the coefficient
(
C j

j0

)−1
is, the higher the probability of misjudging hypothesis

j as right will be. For example, it is hard to determine whether to exclude SV-3 or SV-6 when ramp

fault occurs in SV-3 because
(
C j→SV6

j0→SV3

)−1
is large and then the statistic corresponding to hypothesis

(SV-6, SV-6) will be small, which has been proved in Figure 10.
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FF detection should be repeated after GNSS fault exclusion to eliminate the effects of GNSS faults.
Figure 13 shows the chi-squared statistics in FF detector before and after GNSS fault exclusion when
faults occur in SV-1 and SV-3. As shown in Equation (31), the innovation-based vector r̃F is affected by
GNSS fault, and thus the test statistics cannot accurately reflect the magnitude of filter fault before
GNSS fault exclusion. As shown in Equation (34), the effects of GNSS faults are eliminated by excluding
the faulty satellites when constructing the new vector r′F. When there is a right exclusion, i.e., excluding
both SV-1 and SV-3, FF can be accurately reflected by the statistic. This also proves that the faults
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occurring previously may lead to the noticeable estimate bias. In contrast, if there is a wrong exclusion
or no exclusion, the test statistics will be affected by GNSS faults and cannot reflect the estimate bias
accurately. Consequently, Figure 13 indeed indicates the importance of repeating FF detection step
after GNSS FE.Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 
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To further reveal the underlying causes of Figure 13, Figure 14 compares the estimate b̂y of the
estimate bias by, including 3 position components and 1 receiver clock component, before and after
GNSS FE when faults occur in SV-1 and SV-3. The associated chi-squared statistics in Figure 13 are
calculated based on these components and the covariance matrix given in Equations (32) and (35).
Noticeable differences between the two subfigures are shown in Figure 14, where the right subfigure
reflects the estimate bias (i.e., by) more accurately owing to the elimination of GNSS faults’ interference
by excluding the faulty satellites (SV-1 and SV-3). Without GNSS exclusion, the estimate is heavily
“polluted” by the effects of GNSS faults, and it cannot track the true status of filter fault consequently.
As a result, it is necessary to estimate the magnitudes of filter fault after GNSS fault exclusion for both
fault detection and filter recovery.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 

 

 

Figure 13. Chi-squared test statistics in filter fault (FF) detector before/after GNSS fault exclusion. 

 

Figure 14. Estimation of the estimate bias (FF) when faults occur in SV-1 and SV-3 (left: estimation 

after excluding SV-1 and SV-3; right: no exclusion). 

 

Figure 15. Position errors (north) with different filter recovery strategies. 

6. Conclusions and Prospects 

This paper presents a comprehensive Fault Detection and Exclusion (FDE) scheme for tightly 

coupled navigation system of Global Navigation Satellite Systems (GNSS)/Inertial Navigation 

System (INS), with special emphasis on the fault in state prediction (called filter fault). The scheme is 

beneficial to ensuring navigation safety of civil and military aircraft, Unmanned Aerial Vehicle (UAV), 

etc. Theoretical analyses quantitatively reveal the different effects of GNSS faults and filter fault on 

the filter, which motivates the design of an effective FDE scheme to handle these faults independently. 

Accordingly, the Fault Detection (FD) scheme, comprising two detectors, is designed to separate the 

effects of GNSS faults and filter fault. And the two-step Fault Exclusion (FE) scheme, with GNSS fault 

exclusion and filter recovery, is developed to exclude the faulty satellites and eliminate the effects of 

filter fault. Multiple simulations are conducted to validate the new scheme in various fault scenarios. 

Figure 14. Estimation of the estimate bias (FF) when faults occur in SV-1 and SV-3 (left: estimation after
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Filter recovery is used to remove the estimate bias in the filter. Figure 15 provides the comparison
of north position errors using different filter recovery strategies when fault occurs in SV-3. Results show
that both the bias compensation method (“Exclusion and Compensation”) and the re-filter method
(“Exclusion and Re-filter”) are conducive to reducing the navigation error after GNSS fault exclusion.
Note that, when using the re-filter method, we simply re-run the integration process from 200 s with
SV-3 excluded to show the performance of this method. Actually, as mentioned in Section 4.3, the start
epoch of the re-filter process can be optimally determined by the method provided in Appendix C.
Figure 15 also verifies the importance of FE by comparing the errors with and without exclusion: the
position errors increase continuously when the faulty measurements are not excluded from the system
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(“No Exclusion” curve) while errors are greatly reduced when the proposed FDE scheme is employed
in fault scenario.
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6. Conclusions and Prospects

This paper presents a comprehensive Fault Detection and Exclusion (FDE) scheme for tightly
coupled navigation system of Global Navigation Satellite Systems (GNSS)/Inertial Navigation System
(INS), with special emphasis on the fault in state prediction (called filter fault). The scheme is beneficial
to ensuring navigation safety of civil and military aircraft, Unmanned Aerial Vehicle (UAV), etc.
Theoretical analyses quantitatively reveal the different effects of GNSS faults and filter fault on the
filter, which motivates the design of an effective FDE scheme to handle these faults independently.
Accordingly, the Fault Detection (FD) scheme, comprising two detectors, is designed to separate the
effects of GNSS faults and filter fault. And the two-step Fault Exclusion (FE) scheme, with GNSS
fault exclusion and filter recovery, is developed to exclude the faulty satellites and eliminate the
effects of filter fault. Multiple simulations are conducted to validate the new scheme in various fault
scenarios. The results show that: (a) this scheme excels in detecting single or multiple GNSS faults,
filter fault, and simultaneous faults in both GNSS and Inertial Measurement Unit; (b) the FE scheme
can accurately identify and exclude the faulty satellites with the optimized decision strategy, and
the filter recovery scheme shows promising performance in eliminating the effects of filter fault; (c)
the indicators for fault-exclusion capability analysis quantify the difficulty in identifying the faulty
satellites, which actually reveals the underlying causes of wrong exclusion.

Possible improvements and future work include: (a) integrity risk derivation for the integrated
system; (b) design of new FDE scheme with redundant IMUs; (c) FE capability enhancement based on
the analysis of fault separation.
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Appendix A. Faults’ Effects on the Navigation Solution

Based on the fault analysis of the integration model in Section 2.3, the faults’ effects on the
navigation solution are derived. According to Figure 2, the navigation solution is given as:

ŷ+k = ŷ−k + x̂+k = ŷ−k + Kk·rk (A1)
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Substituting Equation (17) into (A1), we have:

ŷ+k = yk + εy + by + Kk·
(
εG + bG −Hk·εy −Hk·by

)
(A2)

where yk is the true navigation solution. Then, Equation (A2) can be re-written as:

ŷ+k = yk + (I −Kk·Hk)·
(
εy + by

)
+ Kk·(εG + bG) (A3)

Equations (A2) and (A3) reveal the effects of GNSS faults and filter fault on the navigation solution,
and they also prove the necessity of considering FF and separating the effects of these two faults in
fault detection. Additionally, these equations are the foundations of integrity risk derivation.

Appendix B. Determination of ∆s and T∆s in COMPARE Module

The difference of the statistics between subset j1 and subset j2, i.e., ∆s =
(
s( j1)

FE − s( j2)
FE

)
, is used to

determine whether the candidate j1 is an incomplete exclusion. According to the rank one update
formula [9], we have:

∆s = s( j1)
FE − s( j2)

FE =
1

1− gT
i ·

((
G( j1)

)T
G( j1)

)−1
·gi

×

(
r( j1)

k [i]
)2

(A4)

where i represents the index of the satellite which is assumed faulty in hypothesis j2 but healthy

in hypothesis j1; gi is the ith row of G( j1); and r( j1)
k [i] is the ith entry of r( j1)

k , which forms a normal
distribution. Based on Equation (A4), we get:

∆s = Υ·∆s (A5)

where ∆s follows 1-DOF central chi-squared distribution when satellite i is healthy and Υ is a coefficient
derived from Equation (A4). Then the corresponding threshold T∆s can be obtained based on the CDF
of 1-DOF central chi-squared distribution as shown in Equation (21).

Appendix C. Determination of the Optimal Preceding Horizon Length for Re-Filter Method

First, we derive the expectation of the navigation errors caused by current and previous faults.
Based on Equation (A3), the expectation µk is determined as:

µk = (I −Kk·Hk)·byk + Kk·bGk (A6)

Substituting Equation (2) into Equation (A6), we have:

byk = Φk|k−1µk−1 + bIk (A7)

where bIk is the IMU fault vector. Then,

µk = (I −Kk·Hk)·Φk|k−1·µk−1 + (I −Kk·Hk)·bIk + Kk·bGk (A8)

Let Ak = (I −Kk·Hk) and Bk = (I −Kk·Hk)·Φk|k−1, we get:

µk =

k−m+1∏
i=k

Bi

µk−m +
1∑

t=m


k−t+1∏

i=k

Bi

(Ak−t·bI(k−t) + Kk−t·bG(k−t)

)+ Ak·bIk + Kk·bGk (A9)

where m is the length of the preceding horizon that needs to be determined.
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The first two terms on the right-hand side of Equation (A9) reflect the effects of the navigation
solution bias in epoch (k −m) and the faults in the preceding horizon, respectively. It has been

proved that
(

k−m+1∏
i=k

Bi

)
·µk−m tends to decrease as m becomes large [35]. If m = k, this term will be 0.

Obviously, the determination of the optimal length m shows a tradeoff between the complexity and the

residual errors, i.e.,
(

k−m+1∏
i=k

Bi

)
·µk−m. So, the optimal length should be determined considering both the

computational payload and the acceptable residual errors.
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