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Robust squeezed light 
against mode mismatch using 
a self imaging optical parametric 
oscillator
Chan Roh, Geunhee Gwak & Young‑Sik Ra*

We present squeezed light that is robust against spatial mode mismatch (beam displacement, tilt, 
and beam-size difference), which is generated from a self-imaging optical parametric oscillator below 
the threshold. We investigate the quantum properties of the generated light when the oscillator is 
detuned from the ideal self-imaging condition for stable operation. We find that the generated light 
is more robust to mode mismatch than single-mode squeezed light having the same squeezing level, 
and it even outperforms the single-mode infinitely squeezed light as the strength of mode mismatch 
increases.

Squeezed light is a versatile quantum resource for quantum information technologies1–7. In particular, in quan-
tum metrology, it reduces noises in measurement below the standard quantum limit8–10; a notable application is 
gravitational wave detectors11,12. The quality of squeezed light is typically measured by the squeezing level (the 
degree of noise reduction compared with the vacuum noise), which is reported up to 15 dB by using an optical 
parametric oscillator (OPO)13.

To exploit the full potential of squeezed light in quantum technologies, however, a precise mode matching 
with subsequent operations is required14–16. Mismatch of modes results in a loss of original properties of light, 
e.g. degradation of the squeezing level15. For classical light, mode mismatch is not a critical issue because the loss 
of light can be simply compensated by means of increasing the optical power. However, for squeezed light, there 
is a limit on compensation by increasing the initial squeezing level, e.g., if the mode matching efficiency is less 
than 50%, there is no way to obtain more than 3 dB squeezing. Moreover, if mode mismatch varies dynamically 
or even fluctuates stochastically, its correction is a very challenging problem14,17.

A way of circumventing this problem is to prepare squeezed light in a few additional modes, so that, in case 
of mode mismatch, squeezed light from the additional modes is coupled into a target mode18,19. Recently, such 
an idea is demonstrated by employing an additional OPO operating in a Hermite–Gaussian HG01 mode for a 
vertical mode mismatch16. However, to be robust against more general and stronger mode mismatch, it is required 
to build many phase-locked OPOs, each operating in a different HGmn mode20, which is technically demanding.

Here we show that a single OPO in a self-imaging configuration can generate squeezed light that is robust 
against various cases of mode mismatch. The self-imaging OPO is based on a fully degenerate optical cavity in 
spatial modes, called a self-imaging cavity21,22, hence it can support spatially multimode quantum states generated 
by a parametric down-conversion process23–25. However, the ideal self-imaging condition leads to cavity insta-
bility, and thus, a small detuning is necessary for stable operation22. In this work, we characterize the quantum 
properties of the light from a self-imaging OPO with a small detuning (parametrized by the Gouy phase shift) 
and an intracavity loss, and we find that squeezed vacua at multiple HGmn modes are simultaneously gener-
ated without much degradation from the ideal self-imaging condition. We then investigate the injection of the 
generated multimode light into a target mode in the presence of mode mismatch (beam displacement, tilt, and 
beam-size difference both for horizontal and vertical directions) and optical losses. We find that the multimode 
squeezed light is more robust to mode mismatch than single-mode squeezed light with the same squeezing level, 
and at sufficiently large mode mismatch, it even outperforms the single-mode infinitely squeezed light. Such 
robustness to mode mismatch can be achieved in a detuning range of a self-imaging OPO within reach of the 
experimental control.
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Quantum properties of multimode squeezed light
Spatial properties of parametric down conversion.  To generate squeezed light, we consider a degen-
erate type-I parametric down conversion in a χ(2)nonlinear crystal in the low gain regime26. The interaction 
Hamiltonian can be described as

where �qs(i) is the transverse component of the wave vector for the signal (idler) field, â†(�q) is the creation opera-
tor at �q and t = 0 , and g is the gain parameter proportional to the crystal nonlinearity χ(2) , the length of the 
nonlinear crystal lc , and the maximum pump amplitude Ap . The kernel K(�qs , �qi) determines the spatial properties 
of the generated light, which depends on the pump beam distribution and the phase matching condition. For a 
monochromatic Gaussian pump beam focused at the center of the crystal, the kernel is given by23, 27

where kp and wp are the wavenumber and the waist of the pump beam, respectively. The Gaussian function 
originates from the pump distribution (making the anticorrelation between �qs and �qi ), and the sinc function is 
by the phase matching condition (making the correlation between �qs and �qi).

The Hamiltonian Ĥ  in Eq.  (1) can be described by the transverse position operator 
â†(�x)(= 1

2π

∫

d2�q e−i�q·�x â†(�q)) as well, using the inverse Fourier transform,

The associated kernel K(�xs , �xi) is decomposed with HGmn functions ( ψH
mn(x, y) ) by approximating the sinc func-

tion in K̃(�qs , �qi) to the Gaussian function ( sinc(x2) ≈ exp(−αx2))28,29,

where

The pump beam property has been expressed in terms of the Rayleigh range zp = kpw
2
p/2 , and Hn(x) is the n-th 

order Hermite polynomial. The key parameters determining the kernel are a modified (by α ) focusing parameter 
of the pump ξ and the waist size wH . ξ determines the eigenvalues µm+n , where |µ|m+n < 1 , and wH determines 
the width of HG modes ψH

mn(x, y) . The Schmidt number M, quantifying the average number of modes30, can be 
also expressed as a function of the focusing parameter ξ,

M has the minimum value of one at ξ = 1 , and M increases as ξ deviates from one.
With this kernel decomposition, the Hamiltonian in Eq. (3) can be expressed in a decoupled form

where

are the creation operators of the eigenmodes of the interaction Hamiltonian, which are in the HGmn modes 
ψH
mn(�x) . The operators satisfy the bosonic commutation relation [ÂH

mn,
(
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)†
] = δmn,kl , constructing an ortho-

normal HG mode basis. Note that the Hamiltonian is a direct sum of 
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µm+n are associated with the relative squeezing levels in different modes, which will be discussed in the following 
section.
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Self‑imaging OPO.  Let us construct a cavity that is compatible with the spatially multimode Hamiltonian 
in Eq. (7). While a typical cavity resonates on a single HG00 mode13, for our purpose, we require a degenerate 
cavity resonant on all HGmn modes. The cavity degeneracy is determined by the Gouy phase shift ( θG ) accu-
mulated by the HG00 mode along one cavity round-trip31,32. A confocal cavity has θG = π mod(2π) , which is 
resonant only on half of HGmn modes having either an even or an odd number of m+ n18. On the other hand, a 
self-imaging cavity exhibits θG = 0mod(2π) : it is a fully resonant cavity for all HGmn modes21,22.

Figure 1 describes a self-imaging OPO, which consists of a plane mirror M1 , a lens of focal length f, a nonlinear 
crystal of length lc , and a curved mirror M2 of a radius of curvature R. The lengths l1 and l2 can be expressed as

When �l1 = �l2 = 0 , the OPO becomes fully degenerate for all HGmn modes. This ideal condition, however, 
leads to cavity instability22, and thus, small detunings ( �l1,�l2 ) are required for stable operation. The Gouy 
phase shift with such a detuning is

where we have assumed f = R . As a result, when the cavity is locked for HG00 mode, a high-order HGmn mode 
attains a phase shift of (m+ n)θG

31. The cavity has HG eigenmodes

with the waist size of wc =
√

R�0/2π  ( �0 : the free space wavelength) for small detunings �l1,�l2 ≪ R , and the 
associated creation operators are

To match the cavity modes with the eigenmodes of the Hamiltonian in Eq. (4), we position the crystal at the 
cavity waist and set R = 2πw2

H/�0 , while a more general case of mismatch between the modes will be discussed 
in “Effect of mode mismatch inside the OPO” section. In this configuration, we obtain a decoupled quantum-
Langevin-equation for each Âmn

33,

where Âi
mn and Âl

mn are the annihilation operators of the input and the intra-cavity loss modes, respectively, and 
the corresponding decay rates are given by γi = Ti/2τ and γl = Tl/2τ ( Ti and Tl are shown in Fig. 1, τ : the round 
trip time). As we consider a cavity locked for the HG00 mode, the cavity detuning frequency of HGmn mode, �mn , 
is given by (m+ n)θG/τ . We have used the approximation Ti ,Tl , θG ≪ 1 . Using Eq. (7),

and then, the Fourier transform of Eq. (13) becomes
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mn =

∫

d2�xψmn(�x) â†(�x).
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[Âmn(t), Ĥ] = −gµm+nÂ†

mn(t),

(15)(γi + γl − iω − i�mn)Âmn(ω)+ gµm+nÂ†
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Figure 1.   Self-imaging OPO for generating multimode squeezed light. M1 is a perfect dichroic mirror 
transmitting the pump and reflecting the squeezed light, and M2 is a partially reflective mirror having a 
transmittance of Ti for the squeezed light. Tl is the transmittance associated with the intracavity loss. The 
distances between the mirrors and the lens are l1 and l2 , as represented in Eq. (9), where detunings �l1 and �l2 
are required for stable operation of the OPO22.
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at frequency ω.
To investigate quantum correlations of the generated light at sidebands frequency ω , we employ a vector of 

quadrature operators in HGmn modes,

where X̂mn(ω) = Âmn(ω)+ Â†
mn(−ω) and P̂mn(ω) = (Âmn(ω)− Â†

mn(−ω))/i . Express Eq. (15) with this vector 
operator as

with

where Ikl,mn = δkl,mn,Gkl,mn = gµk+l δkl,mn,Dkl,mn = �kl δkl,mn . Using the input–output relation at the coupler 
Q̂i + Q̂o = √

2γiQ̂ ( Q̂i and Q̂o are the quadrature vectors of input and output modes), Eq. (17) becomes

As the input is the vacuum state, we obtain the covariance matrix generated from the OPO as follows

Note that the covariance matrix V(ω) does not exhibit any coupling between different HGmn modes. We can 
therefore characterize it by considering each HGmn mode individually. The quantum state in each HGmn mode 
turns out to be a squeezed vacuum aligned with rotated quadratures X̂(�)

mn (ω), P̂
(�)
mn (ω):

where all the parameters are real numbers, and
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(�)
mn (ω)� ≥ 1 , and as �̃mn → 0 , the angle � is 0 if 0 ≤ g̃mn or π/2 if g̃mn < 0 . 

Without loss of generality, we will focus on the case of 0 ≤ g̃mn by setting 0 ≤ g and 0 ≤ µ < 1 (equivalently, 
0 < ξ ≤ 1 ). One can further note that the intracavity loss Tl makes reduction on the cavity escape efficiency η.

The generated multimode light from the OPO is therefore a collection of individual squeezed vacua in 
multiple HGmn modes, whose modal structure and quantum correlations are described by Eqs. (5) and (21), 
respectively. In more detail, the spectrum of quantum correlations is determined by the focusing parameter 
ξ , modifying g̃mn in Eq. (22), and the waist size is by ξ and the pump waist wp , as discussed in Eq. (5). For 
ξ = 1 , making µ = 0 , the generated light is a single-mode squeezed vacuum: HG00 contains a squeezed vacuum 
( ��2X̂

(�)
00 (ω)� < 1 ), but all high-order HGmn modes ( m, n  = 0 ) are vacuum states ( ��2X̂

(�)
mn (ω)� = 1 ). On the 

other hand, as ξ becomes smaller than one, µ becomes positive, and high-order modes also exhibit squeezing 
( ��2X̂

(�)
mn (ω)� < 1 ). Figure 2a compares the squeezing levels ��2X̂

(�)
mn (ω)� for different values of ξ . The smaller 

ξ exhibits higher squeezing levels than the larger one for all high orders of HGmn , and the associated Schmidt 
numbers calculated from Eq. (6) are 8.3 ( ξ = 1/9 ) and 20.7 ( ξ = 1/81 ). The angles � for X̂(�)

mn (ω) quadratures 
are all zero as expected.
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Figure 2b,c show the effects of the Gouy phase shift θG on the generated light. The Gouy phase creates the 
detuning �̃mn , which affects both the squeezing level and the squeezing angle. For small detunings, the squeezing 
level and the squeezing angle remain similar to the ideal self-imaging case, but as θG increases, the squeezing level 
��2X̂

(�)
mn (ω)� gradually degrades to zero, and the squeezing angle � increases to π/2 . Such effects are stronger for a 

smaller transmittance Ti and a higher HGmn mode, as expected from Eq. (22). In addition, the squeezing level and 
the squeezing angle depend on the sideband frequency ω̃ , as shown in Fig. 2d,e. As HG00 mode exhibits �̃mn = 0 , 
it behaves as a common OPO, where the squeezing level decreases while the squeezing angle remains constant as 
ω̃ increases. On the other hand, for higher modes where �̃mn �= 0 , both of the squeezing level and the squeezing 
angle depend on the sideband frequency ω̃ . The rotated squeezing angle due to non-zero �̃mn returns to zero as 
ω̃ increases. The squeezing level, in most cases, gradually decreases to zero by increasing ω̃ , but there is a special 
case showing a non-monotonic behavior (the blue dashed line for HG02 in Fig. 2d), which is because a non-zero 
value of ω̃ makes the minimum value for ��2X̂

(�)
mn (ω)� : such a case can take place at ω̃ =

√

�̃2
mn − g̃2mn − 1 for 

�̃2
mn > g̃2mn + 1 , which can be derived from Eq. (21).

Robustness on spatial mode mismatch
Spatial mode mismatch occurs when the mode of quantum light is different from a target mode, e.g. due to beam 
displacement, tilting, and beam size difference. Mode mismatch is especially detrimental for couplings with 
single-mode elements and processes, e.g., optical cavities, optical fibers, frequency conversion, and homodyne 
detection. In this section, we will show that the multimode squeezed light from the self-imaging OPO is robust 

Figure 2.   (a) Squeezing levels of multimode squeezed light for different focusing parameters of ξ = 1/9 and 
ξ = 1/81 , when Ti = 0.1,Tl = 0, ω̃ = 0, g̃00 = 1/2 , and θG = 0 . In both cases, the squeezing levels in HG00 
are 9.5 dB. Effect of the Gouy phase shift θG on the squeezing levels in (b) and the squeezing angles in (c) for 
different HGmn modes and the transmittance Ti of M2 . The solid lines are for Ti = 0.1 , and the dashed lines are 
for Ti = 0.2 . We use ξ = 1/81 , Tl = 0 , ω̃ = 0 , and g̃00 = 1/2 . Dependence of the squeezing levels in (d) and 
the squeezing angles in (e) on the sidebands frequency ω̃ . The solid and dashed lines are for θG/2π = 0.002 
and θG/2π = 0.006 , respectively. We use ξ = 1/81 , Ti = 0.1 , Tl = 0 , and g̃00 = 1/2 . For the later analyses in 
Figs. (5, 6, 8), sideband frequency of ω̃ = π/25 will be used, which is indicated as the vertical dashed lines.
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on various types of spatial mode mismatch. When deriving the result, we will consider mode mismatch only in 
the x-direction, but the same result can be equally obtained for the y-direction because of the symmetry of the 
multimode squeezed light described in Eqs. (4,5,21).

Mode‑mismatch model.  To model the spatial mode mismatch, instead of fixing a target mode and varying 
the modes of quantum light, we will use an equivalent way for the simplicity of mathematical description: we 
fix the quantum light but make deviations on the target mode. We consider a target mode of HG00 with the waist 
size of wt

and its deviations due to mode mismatches [displacement (d), tilt ( ϕ ), and size difference (w)] are

respectively. Figure 3a describes the mode mismatches on a target plane. One can expand a mismatched mode 
φmis based on the HG modes φmn stemming from Eq. (23)

where mis ∈ {disp,tilt,size} and a mode-mismatching parameter p ∈ {d,ϕ,w} , and
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Figure 3.   (a) Types of spatial mode mismatch. The displacement and the tilt are drawn in the x-direction for 
clarity, but they can be generalized to arbitrary directions. (b) 4f system for transformation into the image plane 
(IP). Two lenses of focal lengths f1 and f2 are used. (c) Transformation into the Fourier plane (FP) by employing 
a single lens (focal length: f1).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18991  | https://doi.org/10.1038/s41598-021-98328-7

www.nature.com/scientificreports/

and

Figure 4 shows the coefficients βdisp
mn  , β tilt

mn(−i)m+n , and βsize
mn  , which are all real values. As d,ϕ, and w deviate 

from the ideal mode-matching condition more, HG00 contributes less, which is replaced by the contributions 
from high-order HGmn modes.

By defining the creation operator (B̂mis)† for mode φmis and B̂†mn for mode φmn , Eq. (25) can be expressed as

The effect of mode mismatch can therefore be understood as contributions from high-order HGmn modes due 
to the emergence of non-zero coefficients βmis

mn  . More specifically, a quadrature operator for the mismatched 
mode is written as

When the coefficients are real ( βmn ∈ R ) and no correlation exists between different HGmn and HGkl , i.e., 
��(B̂mn + B̂†mn)�(B̂kl + B̂†kl)� = 0 , the quadrature variance in the mismatched mode is

which is the weighted mean of the quadrature variances in the HGmn modes with the weighting factors of β2
mn . 

As the mode mismatch increases, the weight for HG00 decreases, and the noises from high-order HGmn come in. 
Since single-mode squeezed light exhibits a squeezed noise in HG00 and the vacuum noise in HGmn , the squeez-
ing level quickly degrades to the vacuum noise due to mode mismatch. On the other hand, multimode squeezed 
light exhibits squeezed noises in high-order HGmn modes together. As a result, multimode light can show less 
degradation on the squeezing level, which, therefore, tolerates more mode mismatch than single-mode light does.

Mode‑mismatch tolerance of multimode squeezed light.  We will use the multimode squeezed light 
in “Quantum properties of multimode squeezed light” section to investigate its robustness on mode mismatch. 
We first consider the ideal mode matching of the multimode light with a target mode and then, to account for 
mode mismatch, we will make deviations on the target mode, as discussed in “Mode-mismatch model” section. 
Figure 3b,c depicts linear optical elements through which the multimode light propagate from the OPO to a 
target plane. The optical elements transform the HG modes ψmn in Eq. (11) into new modes I [ψmn] , which can 
be obtained by Huygen-Fresnel’s integral I through the associated ABCD matrix31:

where A, B, C,  and D are the matrix elements, and
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Figure 4.   Coefficients arising from mode mismatch: displacement ( βdisp
mn  ) and tilt ( β tilt

mn ) in (a) and size 
difference ( βsize

mn  ) in (b). As mode mismatch increases, the contribution of HG00 decreases gradually while high-
order HGmn contribute more. Dashed lines represent reduction of contribution from HG00 by 50 % (or 1/

√
2 for 

the coefficient) due to mode mismatch, which takes place at d/wt = πwt sin ϕ/�0 = 0.83 and w/wt = 2.45.
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First, let us consider the transformation into the image plane (IP) in Fig. 3b. By choosing focal lengths satisfy-
ing f2/f1 = wt/wc , the new modes become

which coincides with φmn in Eq. (27) with the additional phase factor (−1)m+n+1 . Denoting the unitary operation 
for I IP by ÛIP , the associated creation operators show a simple relation

Together with Eq. (28),

We thus obtain the expression of a quadrature variance at the mismatched mode at sideband frequency ω:

where the sideband quadrature operator X̂mis(ω) is B̂mis(ω)+ (B̂mis)†(−ω) , the covariance matrix V(ω) is given 
in Eqs. (20,21), and

As V(ω) contains X̂-quadrature squeezed vacua in HGmn modes when θG = 0 and g̃mn > 0 , if γmn ∈ R , only 
squeezed-quadrature noises are coupled into the mismatched mode, which makes the multimode squeezed light 
robust on mode mismatch. In the image plane, such a condition is satisfied for mode mismatches by displace-
ment and beam-size difference,

Second, we investigate the mode mismatch in the Fourier plane (FP), described in Fig. 3c. The focal length 
of the lens is chosen as f1 = wtwcπ/�0 . Denoting the unitary operation for transforming into the Fourier plane 
by ÛFP , the associated creation operators are related as

and thus, the variance by the sideband operator X̂mis(ω) = B̂mis(ω)+ (B̂mis)†(−ω) is

where

Like the case of the image plane, the condition ζmn ∈ R makes the multimode squeezed light robust on mode 
mismatch. In the Fourier plane, mismatches by tilt and beam-size difference with an additional π/2-phase shift 
satisfy the condition,

Figure 5 shows the robustness of the multimode squeezed light V(ω) on mode mismatch, compared with the 
result of a single-mode squeezed light in HG00 . We first consider the multimode light by the ideal self-imaging 
condition ( θG/2π = 0 , black solid line), and more general cases will be discussed later. As shown in Fig. 5a, 
when mode mismatch by displacement (in the image plane) or tilt (in the Fourier plane) occurs, the squeezing 
level by the single-mode light (original squeezing of 9.5 dB, blue dashed line) quickly degrades, e.g., less than 3 
dB for d/wt > 1 or πwt sin ϕ/�0 > 1 . On the other hand, the multimode light with the same squeezing in HG00 
maintains the squeezing level very well by tolerating the mode mismatch, exhibiting more than 7 dB in the same 
condition. It is noteworthy that, at sufficiently large mode mismatch, the multimode light even outperforms 
single-mode light with infinite squeezing (black dashed line). Furthermore, the multimode squeezed light is 
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mnÛFP,

(39)
〈

�2
(

Û†
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robust on beam-size mismatch on both the image plane and the Fourier plane, as shown in Fig. 5b. Similar to the 
previous case, the multimode light maintains the squeezing level very well in the influence of mode mismatch, 
even outperforming the single-mode infinitely squeezed light.

Effect of loss.  Here we investigate the effect of loss on the multimode light in terms of the mode mismatch. 
In Eqs. (21,22), the escape efficiency η accounts for the intracavity loss, but it can be generalized to incorporate 
the total loss in the system, 1− η , e.g. propagation and detection losses. Figure 6 shows the squeezing level by 
mode mismatch for different amounts of losses. η = 1 corresponds to no loss in the total system ( 1− η = 0 ), 
which is identical with the black solid lines ( θG/2π = 0 ) in Fig. 5a,b. As the loss increases by reducing η , the 
squeezing level decreases for all the three cases of infinitely squeezed single-mode light, single-mode squeezed 
light (9.5 dB), and the multimode light (9.5 dB in HG00 mode). Although such losses exist, we still find that the 
multimode light is more robust on mode mismatch than the single-mode light (9.5 dB), and for a sufficiently 
large mismatch, it again outperforms the infinitely squeezed light.

Effect of mode mismatch inside the OPO.  In “Self-imaging OPO”, we assumed that the eigenmodes of 
the interaction Hamiltonian (4) perfectly match with the cavity modes (11), i.e., the same waist size, wH = wc . 
However, mode mismatch can take place inside the OPO due to waist size difference ( wH  = wc ) or the Gaussian 
approximation ( sinc(x2) ≈ exp(−αx2) ) used for the Kernel. We investigate how the mode mismatch inside the 
OPO affects the robustness of multimode light on mode mismatch to a target mode.

At first, we consider the waist size difference ( wH  = wc ) while keeping the Gaussian approximation. To deal 
with the size difference, we employ a change of basis from the eigenmodes of the interaction Hamiltonian to 
the cavity modes

Figure 5.   Robustness of multimode squeezed light on mode mismatch. The squeezing level coupled into a 
target mode is plotted by varying (a) displacement or tilt and (b) beam size. We use Ti = 0.1 , Tl = 0 , ω̃ = π/25 , 
and g̃00 = 1/2 . The black dashed line is for the single-mode infinitely squeezed light, and the blue dashed line 
is for single-mode 9.5-dB squeezed light, and the solid lines are for multimode squeezed light with ξ = 1/81 for 
different Gouy phase shifts of θG.

Figure 6.   Effect of loss on the squeezing level with mode mismatch. 1− η corresponds to the total optical loss 
(e.g. by including the detection inefficiency). For different amounts of η = 1 (black), η = 0.95 (red), and η = 0.9 
(blue), the performances of three different squeezed lights are compared (dot dashed: single-mode infinitely 
squeezed light, dashed: single-mode 9.5-dB squeezed light, and solid: multimode squeezed light with ξ = 1/81 ). 
We use the following parameters for the plots: ω̃ = π/25 , g̃00 = 1/2 , �̃mn = 0.
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where the basis change matrix U(wc ,wH ) is given as34

By describing the interaction Hamiltonian in the cavity mode basis, one obtains a modified gain matrix G′

where G is the original gain matrix in Eq. (18). Differently from G , G′ is a non-diagonal matrix in general. One 
can use G′ instead of G for calculating the covariance matrix (20) and the squeezing levels in target modes (35,39).

Figure 7a,b shows that, even with a large difference in waist sizes ( wH = 1.4wc ), the light from the self-imaging 
OPO still exhibits robustness on mode mismatch: displacement or tilt in Fig. 7a and beam size in Fig. 7b. This 
robustness is due to the multimode nature of the interaction Hamiltonian: although the waist size of the inter-
action Hamiltonian varies, the interaction Hamiltonian can still provide a multimode gain ( G′ ) in the multiple 
cavity modes, which in turn generates multimode squeezed light required for robustness on mode mismatch.

Second, we consider the interaction Hamiltonian without using the Gaussian approximation. Let us rewrite 
the associated kernel (2) using wp , ξ , and α:
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(45)G′ = U(wc ,wH )GU†(wc ,wH ),

Figure 7.   (a,b) Effect of mode mismatch due to difference in the cavity waist ( wc ) and the interaction 
Hamiltonian waist ( wH ). The squeezing level due to a large difference in waists ( wH = 1.4wc , solid blue) is 
compared with the case of no difference in waists ( wH = wc , solid red) and with the single-mode 9.5-dB 
squeezed light (black dot dashed). (c,d) Effect of the Gaussian approximation (4) for the original interaction 
Hamiltonian (2,46). The solid lines are for the original Hamiltonian and the dashed lines are for the Gaussian 
approximation, which are plotted without a Gouy phase (blue) and with a Gouy phase (red). Black dot-
dashed line is for the single-mode 9.5-dB squeezed light. We use the following parameters for the plots: 
ξ = 1/81,Ti = 0.1 , Tl = 0 , ω̃ = π/25 , g̃00 = 1/2 , �̃mn = 0.
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We decompose the kernel numerically since analytical expression is unknown due to the inclusion of the sinc 
function28. The Schmidt number solely depends on ξ/α because wp just acts as the scaling factors of �qs and �qi . To 
compare the properties of the original Hamiltonian (2,46) and those by the approximated one (4), we find, for 
a given ξ , the coefficient α that gives the same Schmidt number as the Gaussian approximation (6); this way of 
choosing α is justified because the robustness on mode mismatch originates from the occupation of squeezed 
light in multiple modes, depending highly on the Schmidt number. For ξ = 1/81 , the corresponding α is 0.46. 
In addition, wp is determined by maximizing the overlap between the first eigenmode of Eq. (46) and the HG00 
cavity mode. A modified gain matrix G′ is then obtained by

where K ′(�xs , �xi) is the inverse Fourier transform of Eq. (46), and ψmn(x, y) are the cavity modes defined in Eq. 
(11). G′ , being a non-diagonal matrix, is used instead of G to find the covariance matrix (20) and the squeezing 
levels in target modes (35,39).

In Fig. 7c,d, we compare the robustness of mode mismatch by the original Hamiltonian and by the approxi-
mated Hamiltonian. It is evident that both cases exhibit robustness on mode mismatch by outperforming the 
single-mode squeezed light. In Fig. 7c with θG/2π = 0 , one can find that the original Hamiltonian shows a 
slightly better performance than the approximated one. It is because, while the Schmidt numbers are the same, the 
eigenvalue spectrum of the original Hamiltonian is distributed more toward lower-order eigenmodes than that of 
the approximated Hamiltonian, which is advantageous for a small amount of mode mismatch. At θG/2π = 0.002 , 
their difference becomes negligible because of the squeezing angle rotation in high-order modes. In Fig. 7d with 
θG/2π = 0 , the original Hamiltonian shows better squeezing level for w/wt > 1 but worse for w/wt < 1 when 
compared with the approximated Hamiltonian: the asymmetry comes from the negative correlations between 
even-order HGmn modes for the original Hamiltonian (e.g., G′

00,04 , G′
00,22 < 0 in Eq. (47)). At θG/2π = 0.001 , 

the difference in the performances of the two Hamiltonians is negligible as in the case of Fig. 7c.

Effect of Gouy phase shift.  Until now, we have explored the robustness on mode mismatch in the ideal 
self-imaging condition. For stable operation of the OPO, however, a small detuning by the Gouy phase shift 
is necessary22. The detuning degrades the squeezing level and rotates the squeezing angle for high-order HG 
modes, as discussed in Fig. 2. Here we investigate whether the robustness on mode mismatch can still be sus-
tained with detunings from the ideal condition.

Figure  5 compares the squeezing levels coupled in a target mode with non-zero Gouy phase shifts, 
θG/2π = 0.002, 0.004 , and 0.006 for the displace/tilt mismatching and θG/2π = 0.001, 0.002 , and 0.003 for the 
size mismatching. As expected, the squeezing level becomes degraded as more Gouy phase shift is introduced. 
For θG/2π = 0.002 in (a) and θG/2π = 0.001 in (b), the generated multimode light can still beat the performance 
of the infinitely squeezed single-mode light for a sufficiently large mismatch. The cases of θG/2π = 0.004 in (a) 
and θG/2π = 0.002 in (b) exhibit a squeezing level worse than the infinitely squeezed light but better than 9.5 dB 
squeezed single-mode light. However, we find no advantage in using the multimode light with θG/2π = 0.006 in 
(a) and θG/2π = 0.003 in (b), being worse than the 9.5 dB single-mode light; in this regime, due to the rotations 
of the squeezing angles of high-order HG modes in Fig. 2c, X̂mn(ω) quadratures exhibit larger noises than the 
vacuum noise. To take advantage of using multimode light, keeping a small-enough Gouy phase shift is required.

We, therefore, investigate how small Gouy phase shift is required to exhibit advantages of using multimode 
squeezed light. For the quantification, we define an enhancement factor F in decibels,

where �2X̂(sin) is the squeezing level by single-mode squeezed light, and �2X̂(mul) is the squeezing level by multi-
mode squeezed light (having the same initial squeezing level in HG00 as the single-mode light). A positive value of 
F indicates that the multimode squeezed light is more robust to mode mismatch than the single-mode squeezed 
light. As the Gouy phase shift is determined by the detuning ratios �l1/R and �l2/R , as given in Eq. (10), we 
calculate the enhancement factor as varying the detunings. Figure 8 shows the enhancement factor of using the 
multimode squeezed light when the mode overlap by mismatch is 50% (corresponding to the dashed lines at 
d/wt = πwt sin ϕ/�0 = 0.83 and w/wt = 2.45 in Fig. 4). A broad range of �l1/R and �l2/R exhibits enhance-
ments compared with the single-mode case. Comparing (a) and (b) in Fig. 8, mode mismatch by size difference 
requires more stringent conditions for the enhancement; this is because size difference involves higher-orders 
of HG modes than those by displacement and tilt, as shown in Fig. 4, and the squeezed lights in higher-order 
modes are more susceptible to the Gouy phase shift as shown in Fig. 2b,c. However, these stringent conditions 
are still achievable using only off-the-shelf positioning devices: a typical OPO employs a curved mirror with the 
radius of the curvature in the order of R = 100 mm, and position controllability in the order of 100 µ m (e.g. by 
using a linear stage) can readily achieve very small values of �l1/R,�l2/R = 0.001.
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Conclusion
In this paper, we have shown that multimode squeezed light generated from a self-imaging OPO is robust on 
spatial mode mismatch. First, we found an analytic form of the quantum properties of the multimode light at 
sidebands frequency by taking into account the Gouy phase shift (required for OPO stability) and the intracavity 
loss. By decomposing mode mismatches of displacement, tilt, and size difference into a HGmn mode basis, we 
found that the mode mismatches induce contributions from high-order HGmn modes, which makes the mul-
timode squeezed light robust on mode mismatch. We showed that the multimode light from the self-imaging 
OPO with a small Gouy phase shift can even outperform the single-mode infinitely squeezed light, in terms 
of displacement and size difference in the image plane and of tilt and size difference in the Fourier plane. Such 
robustness on the multiple cases of mode mismatch is made possible because of the fully degenerate nature of the 
self-imaging OPO, which cannot be accomplished by using a confocal OPO18 or two single-mode OPOs16. Our 
work of mitigating the mode mismatching loss will have broad applications to quantum technologies based on 
squeezed light, e.g., quantum-enhanced gravitational-wave detection11,12, deterministic quantum teleportation7, 
measurement-based quantum computing1–4, and Gaussian boson sampling5,6.
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