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A detrended fluctuation analysis (DFA) method is applied to image analysis. The 2-dimensional (2D) DFA algorithms is proposed
for recharacterizing images of lymph sections. Due to Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), there
is a significant different 5-year survival rates after multiagent chemotherapy. Therefore, distinguishing the difference between BL
and DLBCL is very important. In this study, eighteen BL images were classified as group A, which have one to five cytogenetic
changes. Ten BL images were classified as group B, which have more than five cytogenetic changes. Both groups A and B BLs are
aggressive lymphomas, which grow very fast and require more intensive chemotherapy. Finally, ten DLBCL images were classified
as group C. The short-term correlation exponent a1 values of DFA of groups A, B, and C were 0.370 = 0.033, 0.382 + 0.022, and
0.435 + 0.053, respectively. It was found that a1 value of BL image was significantly lower (P < 0.05) than DLBCL. However, there
is no difference between the groups A and B BLs. Hence, it can be concluded that a1 value based on DFA statistics concept can

clearly distinguish BL and DLBCL image.

1. Introduction

Natural phenomena almost are random, nonlinear, non-
stationary, disordered, and uncertain systems. It is difficult
to follow the traditional Newtonian rules to be completely
forecast or control. Therefore, opening up fractal meth-
ods to investigate complex, rough, fragment shape, and
noninteger dimension naturally objects (trees, coastlines,
clouds, and mountains, etc.) is necessity. In the 1960s, the
mathematician Mandelbrot had been indicated the fractal
objects whose complex geometry cannot be characterized
by an integral dimension [1]. This phenomenon is often
expressed by spatial or time-domain statistical scaling laws
and is mainly characterized by the power-law behavior of
real-world physical systems. It represents fractal applies to
objects in space or fluctuations in time that possess a form

of self-similarity [2]. The object has self-similarity means;
the variant of object expressed same qualitatively, irrespective
reduction or magnification of the object. Self-similarity is
one way to calculate fractal dimension. For example, one can
subdivide a line segment into m self-similar intervals, each
with the same length, and each of which can be magnified
by a factor of n to yield the original segment [3]. Due to the
fractal geometry having an approximately copy of the whole,
the fractal dimension is consistent over a wide range of
scales, which is known as scale invariance [4]. This property
provided a useful measurement of complexity object.

DFA method was developed from a modified root
mean square analysis of a random walk to exclude the
local trend induced by characteristic time scales from the
fluctuations of the multicomponent systems and get a long-
range correlation [5-7]. It was originally a method to
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FiGURrk 1: Fake tree (left hand side) and real lymphoma cell (right
hand side) showed the self-similarity characteristics of pattern
repeated in different zoom scales.

measure scale invariant behavior developed by Peng et al. [6]
that evaluated trends of all sizes in the presence or absence
of fractal correlation properties of time series data [8, 9].
This method has been applied to heart rate dynamics such as
autonomic nervous system [10], congestive heart failure [8],
dilated cardiomyopathy [11], ventricular fibrillation [12],
and other physiological nonstationary time series systems
(DNA sequences [13], neuron spiking [14, 15], human gait
analysis [16], electroencephalogram (EEG) in sleep [17—
20], stock returns [21], periodic trends [22], estimating
dependence [23], etc.). Experience has shown that monodi-
mensional detrended fluctuation analysis (DFA) used in the
scaling analysis of fractal time series is accurate and easy to
implement regardless in long-term and short-term time scale
series [24, 25]. In recent years, there are some modified DFA
method researches that are proposed such as generalized
the monodimensional DFA and multifractal detrended fluc-
tuation analysis (MFDFA) to higher-dimensional versions
and derived multifractal detrended cross-correlation analysis
method to investigate the multifractal behaviors in the
power-law cross correlations between two time series or
higher-dimensional quantities recorded [26-28]. The mul-
tifractal detrended cross-correlation analysis based on DFA
(MF-X-DFA) [27] is actually a multifractal generalization of
the detrended cross-correlation analysis (DCCA) [29], which
has other variants such as the multifractal detrended cross-
correlation analysis based on DMA (MF-X-DMA) [30].
Those study results validated well for distinguishing frac-
tal/multifractal properties of synthetic surfaces (including
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fractional Brownian and multifractal surfaces), one/two-
dimensional cross correlation of two financial time series,
and linear/nonlinear correlation analysis of traffic time series
(to find the cross correlation of traffic flow and volume data).

Although there are many varieties of malignant lym-
phomas, one of them is aggressive B-cell lymphoma. Diffuse
large B-cell lymphoma (DLBCL) is the largest category of
aggressive B-cell lymphomas. Less than 50% of patients can
be cured by combination chemotherapy [31]. DLBCL has
two important subgroups, which are germinal center B-cell-
like (GCB) and activated B-cell-like (ABC) lymphoma. In
medicine, cDNA microarrays method can successfully use
to distinguish GCB and ABC DLBCL. The advantage of dis-
tinguish GCB and ABC DLBCL subgroups has significantly
different 5-year survival rates after multiagent chemotherapy
(GCB over 60%) [32, 33]. A similar situation exists between
Burkitt lymphoma (BL) and DLBCL. Both lymphomas were
all classified as aggressive B-cell non-Hodgkin’s lymphoma
in the World Health Organization [34]. Therefore, how
to distinguish the difference between BL and DLBCL is a
challenge, as the two diseases require different treatment and
have different cure rate. Existing diagnosis and classifica-
tion between BL and DLBCL evaluated their morphologic,
immunophenotypic, and cytogenetic features and clinical
outcomes [35, 36]. Recently, the Cui et al. study [37] had
successful applied nonmedical methods (i.e., statistical and
engineering methods, linguistic analysis, and ensembled
artificial neural networks) to classify two types of GCB and
ABC DLBCL. Because fractal temporal process may generate
fluctuations on different area scales that are statistically
self-similarity [38], therefore, the same concept of fractal
temporal process and the statistically self-similarity of cell
image are used as shown in Figure 1 because the lymphoma
cells exist big and small cells at the same time which can easily
display statistical self-similarity characteristics. In this paper,
a nonmedical method/two-dimensional (2D) algorithms of
DFA has been proposed based on the original design method
concepts. The proposed method was used to recharacterize
the images of lymph sections. It is anticipated that 2D
DFA could be helpful to distinguish BL and DLBCL section
images.

2. Material and Methods

2.1. Material. A total of 38 lymph section images cataloged
into 3 lymphoma groups were used in the classification
as shown in Table 1. Eighteen BL images were classified as
group A, which have one to five cytogenetic changes. Ten BL
images were classified as group B, which have more than five
cytogenetic changes. Both group A and B BLs are high grade
aggressive lymphomas, which grow very fast and require
more intensive chemotherapy. Finally, ten DLBCL images
were grouped as C. Some images of healthy cell, BL and
DLBCL (4080 x 3072 pixels), are shown in Figure 2.

2.2. Two-Dimensional Analysis Algorithm of DFA. The algo-
rithm of monodimensional DFA method described in [6]
quantifies fractal-like correlation properties by calculating
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FIGURE 2: Healthy cell images, BL and DLBCL. (a) Healthy cell image, (b) BL image (one to five cytogenetic changes), (c) BL image (more
than five cytogenetic changes), and (d) DLBCL image, which image is 4080 X 3072 pixels.

TasLE 1: The groups of Burkitt lymphoma (BL) and diffuse large B cell lymphoma (DLBCL) section images and case number.

Groups Case number
A Burkitt lymphoma (BL) One to five cytogenetic .changes 18
B More than five cytogenetic changes 10
C Diffuse large B cell lymphoma (DLBCL) 10

the scaling property of the root-mean-square fluctuation of
the integrated and detrended time series data. To illustrate
the DFA algorithm, a time series signal (with N samples) is
used and analyzed as in the following equations:

k

y(k) = >'[B(i) - B], (1)

i=1

where B(i) is the ith sample of a signal; B is the average of
overall signal; and y(k) is the value of the kth sample of
the integrated time series. Then, the fluctuation of integrated
and detrended time series for a given window with scale of n
is calculated by

N
Fin) = |5 3 ) = ()’ @)
k=1

where F(n) is the fluctuation of an integrated time series for
a given window with scale of #, and y, (k) is the kth point on
the trend derived using a predetermined window with scale
of n. A straight line of log(F(n)) versus log(n) plot indicates

the presence of power law (fractal) correlation between scales
and the fluctuations of the detrended time series. The slope
of log-log plot is defined the DFA scaling exponent «. For
the o exponent, Peng et al. indicate it as an indicator that
describes the “roughness” of the original time series: the
larger the value of «, the smoother the time series [6].

As the application of DFA in image analysis, two-
dimensional algorithm of DFA should be refined in both
integration and detrending processes. Considering the inte-
gration in both dimensions, the formula of integration
should be as the following steps.

Step 1. The color image should be gray-scale processing at
first. Consider a self-similar surface, which is denoted by
a two-dimensional array B(j, j), where i = 1,2,...,M and
j = 1,2,...,N. Content of B(i,j) is the pixel value of
surface image. Like monodimensional DFA method, the first
integrated equation is as follows:

[B(m>j) _Emr] (3)
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for1 <m <M, 1 < n < N, where y(m, n) is the value of the
pixel (m, n) on the integrated image, B(i, n) is the ith pixel on
the nth column, B, is the average of the nth column, B(m, 7)
is the jth pixel on the mth row, and B,,, is the average of the
mth row.

Step 2. The surface is partitioned into M, X N; disjoint square
segments of the same size s X s, where M; = [M/s], N5 =
[N/s], and 4 < s <min (M/4, N/4). y(m,n) can be denoted
by yk1, segments such that yi;(o, p) = y(k; + 0,1, + p) for
l<o,p<s1=<k<M;andl <[=< N,,wherek; = (k—1)s
andl; = (I—1)s.

Step 3. Use least square method to calculate the trend of
matrix yk(s,s) expressed as Pri(s,s). The trend matrix
Pki(s,s) is the mathematical model of linear regression. The
trend decomposes into row and column, two directions.

Step 4. The mean squared error (MSE) represents the
fluctuation of an integrated and detrended segment image
with scale of s X s as

NN
1 A~
B =3 Z Z [yki(o, p) = Prils,s)]* (4)

for E; value expected to be minimized.

Step 5. The overall detrended fluctuation is calculated by
averaging overall the segments, that is

Ms Ns

Z > Ei. (5)

S k=11=1

F(s) =

Substituting (4) into (5) to get (6)
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Then
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Moreover, the least square plans with size of s X s were
used to fit the sth segment of local trends in images. Then,
the sth trend can be removed from the integrated image to
derive the sth fluctuation. DFA scaling exponent is defined as
the power-law correlation between the using scales and the
derived fluctuations. Finally, the DFA scaling exponent « by
the straight line of log(F(s)) versus log(s) plot is obtained.

2.3. Statistical Analysis. Values were expressed as means +
SD. Data were analyzed by one-way analysis of variance
(ANOVA) (SigmaStat statistical software, Jandel Scientific,
San Rafael, CA). The Tukey test was conducted for multiple
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comparisons when the null hypothesis was not applicable for
the same group. It was also used for all pairwise comparisons
of the mean responses to the different treatment groups.
Differences were considered significant at a value of P < 0.05.

3. Results and Discussion

3.1. Simulation. 24 images (4080 X 3072 pixels, same as
lymph section images scale) were used to check the proposed
two-dimensional analysis DFA method for image analysis.
Different shape, color, and size images are used. Some images
of simulation are shown in Figure 3. The image shape has
circle and square, two types, which color has white, black,
red, green, blue, and mix color, six modes, and size has large
and small, two categories. The scaling exponent a can be
estimated by a linear fit on the log-log plot of F(s) versus s.
The monodimensional DFA method has three types « value.
It represents the correlation properties of the statistically self-
similarity. Reflecting on two-dimensional DFA method, the
global scaling exponent « value was calculated within the
range of s between s = 4 and s = min(M/4,N/4), the
short-term correlation exponent al was calculated within
the range between s = 4 and s = 11 [7, 39, 40], and the
long-term correlation exponent a2 was calculated within the
range of s between s = 12 and s = min(M/4, N/4). Plotted
log F(s) versus logs picture by the DFA analysis method
of red small circle image was shown in Figure 4. End of
the plotted curve is displayed nearly the horizon line. This
trend is similar as other 23 simulation images. Because this
curve trend, not displaying the line slope style, is unable to
calculate the & and a2 values, we selected «1 to calculate total
24 simulation images and compared between the different
shape, color, and size as shown in Table 2. The results show
that different shapes, colors, and size images have different
al values. The 24 simulation images show three cases. First
case is similar shape with same color which is all the large
size al value bigger than the small size. The small size
shape means the numbers are more, and the shape area
and length have larger values and complexity which are the
same « exponent roughness concept of monodimensional
DFA method from Peng et al. [6]. It is found that complex
images have lower value of al. Second case is similar size
(i.e., the square diagonal length equal circle diameter) and
color situation where the square shape al value is greater
than or equal (only white large image) the circle shape al
value. This observation corresponds the larger area image
(i.e., circle area) and has lower a1 value as initially observed.
Third case is similar shape and size situation where a1 values
of different colors almost have no significant differences. This
means the image color influence is very low when using
2D DFA method to analysis image characteristic. Therefore,
when clinical images are influenced by light, the resulting
images which are different in colors and cause a change in the
characteristic value can be reduced. In summary, the index
of the al value has distinctive capability and consistency in
image analysis.

3.2. Healthy Cell, BL and DLBCL Lymphoma Image Calculated
Results. Figure 5 shows a healthy cell image plotted using
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FIGURE 3: Simulation images. (a) White large circle, (b) black small circle, (c¢) red large square, and (d) blue small square, which image is
4080 x 3072 pixels. The shape of image has circle and square, two types. Every type’s color has white, black, red, green, blue, and mix color,

six modes, and size has large and small, two categories.
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FIGURE 4: Red small circle image plot of log(F(s)) versus log(s) using
DFA analysis method.

log(F(s)) versus log(s) picture based on the DFA analysis
method. Figure 6 shows a BL image of group B. All the
simulation images show that the lymphoma images have
similar curve trend. Therefore the DFA method was used
to calculate wl value for a healthy cell image for a total of
38 lymphoma images classified into three groups. The «l

45t b
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w
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FiGUre 5: Healthy cell image plot of log(F(s)) versus log(s) using
DFA analysis method.

value for healthy cell of Figure 2(a) is 0.50 which is due to
the clarity of healthy cell images. The mean values of the
short-term correlation exponent a1 of groups A, B, and C are
0.370 = 0.033, 0.382 + 0.022, and 0.435 + 0.053, respectively,
as shown in Table 3. It is observed that the healthy cell «al
value was different from lymphoma cells. Furthermore, the
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FIGURE 6: BL image (more than five cytogenetic changes) plot of
log(F(s)) versus log(s) using DFA analysis method.

a1 value of BL image (both BLs) was significantly lower (P <
0.05) than DLBCL image (including groups A and C, groups
B and C) and has no difference between both BLs (groups A
and B). Hence, it could be concluded that a1 values based on
DFA statistics concept could clearly distinguish pathologic
states between BL and DLBCL images.

4. Conclusions

DFA method was utilized to measure the scale invariant
behavior that evaluates trends in the presence or absence of
fractal correlation properties of time series data [8, 9]. In
this study, 2D DFA method was derived and used to explore
the trend of fractal images where the a1 value can be easily
identified.

In this paper, the DFA method has been applied to image
analysis. The two-dimensional matrix algorithm of DFA,
both integration and detrending processes, was used for time
series data field. The DFA method has been used to inves-
tigate the characteristic of different type of simulated and
lymphoma image. The lymphoma images test results show
that the short-term correlation exponent «al value of DFA
obtained from BL and DLBCL have statistical significant
difference. This result is very encouraging, which al value
could be an index, to help the doctor for distinguishing
between BL and DLBCL.

However, the authors had been testing the matrix perfor-
mance of a two-dimensional image as in equation (1) of [26].
The 2D DFA results calculation of the matrix performance
are very time consuming. For example, one image (4080 X
3072 pixels) takes over three days. This is disadvantageous for
the real-time requirements. Therefore, the 1D DFA concept
is being used to solve the aforementioned image’s problem.
We assume the lymphoma cell shape, color, and size were
influenced by the row and column cells before it. By this
way, the verification results of calculation time were great
reduced for the 2D DFA, about 3 hours for one image.

TaBLE 3: The DFA a1 value of Burkitt and DLBCL images.

Classification ~ Group A Group B Group C P value

0.370 + 0.033* 0.382 + 0.022" 0.435 + 0.053 <0.001

Values are expressed as mean + standard deviation.

P < 0.05 was considered statistically significant difference using the ANOVA
method.

2P < 0.05 for group A versus group C comparison using the Tukey test.

bP < 0.05 for group B versus group C comparison using the Tukey test.

al value

Fortunately, statistical analysis of calculation results can
distinguish between BL and DLBCL lymphoma. However,
groups A and B in BL still cannot be classified in this study.
Therefore, further investigations are needed to improve the
sensitivity and specificity of classification. Results of this
study can be compared to 2D DFA algorithm in [26] or 2D-
DMA algorithm in [41, 42] to investigate how widely this
method can be applied in clinical analysis.
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