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Abstract
Introduction  Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system 
is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated 
in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative 
GC patients.
Objectives  We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential meta-
bolic biomarkers in the process of LNM of GC.
Methods  1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to 
study the metabolic profiling of tissue samples from LNM-positive GC patients (n = 40), LNM-negative GC patients (n = 40) 
and normal controls (n = 40).
Results  There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified 
in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distin-
guishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the 
metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism 
(leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or 
without LNM.
Conclusion  To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing 
metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism 
underlying the carcinogenesis, invasion and metastasis of GC.
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1  Introduction

Gastric cancer (GC) ranks as the fifth most common malig-
nant cancer and is the third mortality of cancer around the 
world. About 951,600 new GC cases and 723,100 associated 
deaths were reported worldwide in 2012 (Torre et al. 2015; 
Song et al. 2017). GC is particularly prevalent in East Asia, 
especially in China and Japan (Torre et al. 2015; Leung 
et al. 2008). Hence, the economic burden on GC is greater 
than other countries (Kanavos 2006). GC is a multistep and 
multifactorial progression, the 5-year survival rate of early 
stage of GC (EGC), which just invaded the mucosal or sub-
mucosal layer, reaches over 90% after surgery (Jung et al. 
2014; Wang et al. 2016). However, EGC is difficult to be 
found because of its asymptomatic. So many patients are 
diagnosed at an advanced stage with lymph node metastasis 
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(LNM) or remote metastasis. As primary pathway for metas-
tasis, the lymphatic system is an important prognostic factor 
for GC patients. LNM is a single indicator in GC patients 
with Borrmann type I (Chen et al. 2007). The 5-year survival 
rate of GC patients with LNM drops to less than 30% (Chen 
et al. 2002). In addition, the prognosis of node-negative GC 
patients is markedly better than that of LNM-positive ones 
(Hyung et al. 2002). The recurrence rises to 10.6–14.8% in 
LNM-positive EGC from 2.7 to 4.4% node-negative EGC, 
even following curative surgical operation with D1 + b or 
D2 lymph node resection (Lai et al. 2009; An et al. 2010). 
Therefore, LNM may be a critical factor for assessment of 
prognosis and therapy of GC (Deng and Liang 2014). The 
overall recurrence rate in LNM-positive GC patients is obvi-
ously higher than that in LNM-negative patients, and the 
overall survival of LNM-positive GC patients is significantly 
shorter than that of LNM-negative patients (Nakamoto et al. 
2007; Sarela et al. 2003). Although the incidence and mor-
tality rates of GC have declined in many countries with the 
economic improvements, the significant challenges of under-
standing and treating of GC continue to exist, especially in 
the process of LNM.

Cancer has been shown to be a metabolic disease, metab-
olism disorder is a significant characteristic (Warburg 1956). 
Metabolomics, a rapidly expanding field of systems biology, 
aims to detect, identify and quantify as many low molecular 
weight metabolites as possible in a cellular or biological sys-
tem at a given time. Metabolites can reflect the minor altera-
tion at the level of genome, transcriptome and proteome. 
Therefore, metabolomics is increasingly used for identify-
ing biomarkers for the early diagnosis and understanding 
the underlying mechanism of various cancers (Wang et al. 
2013; Li et al. 2014; Zhang et al. 2016). Nuclear magnetic 
resonance (NMR) and mass spectrometry (MS) are the most 
common tools to characterize the metabolites in body fluids, 
tissues and cells using targeted or untargeted studies (Griffin 
and Shockcor 2004). Typically, untargeted 1H NMR meta-
bolic profiling, with the advantages of the relative ease of 
sample preparation and non-destructive analysis has been 
a popular technique for metabolomics study in various dis-
eases, including arthritis (Weljie et al. 2007), lung cancer 
(Rocha et al. 2011), melanoma (Wang et al. 2014). Today, 
most studies focus on identifying biomarkers or exploring 
the underlying mechanism of GC (Kuligowski et al. 2016; 
Ramachandran et al. 2016; Gu et al. 2016). However, lit-
tle attention has been paid to metabolic profiling of LNM, 
which is particularly important predictor of survival and 
recurrence in GC (Kunisaki et al. 2009; Lee et al. 2012).

In this study, we demonstrated the metabolic profiling 
between GC tissues and normal controls, especially the met-
abolic changes between LNM-positive and LNM-negative 
GC patients, using an untargeted metabolomics approach 
based on 1H NMR, coupled with multivariate statistical 

analyses. We totally identified 33 distinguishing metabo-
lites between GC tissues and normal controls, especially 
8 of which performed noticeably well in discriminating 
LNM-positive from LNM-negative GC patients, including 
branched-chain amino acids (BCAAs: leucine, isoleucine, 
valine), glutathione, glycine, betaine, tyrosine and hypox-
anthine. To our knowledge, this is the first metabolomics 
report to identify altered metabolites in LNM-positive GC 
patients, with the hope of identifying potential biomarkers 
for early diagnosis, staging and prognostic prediction. We 
also intended to explore the underlying mechanism of LNM 
in GC.

2 � Materials and methods

2.1 � Chemical reagents

Distilled water was prepared by Milli-Q purification system. 
Deuterium water (D2O, 99.8%) was bought from CIL (Cam-
bridge Isotope Laboratories, USA). High-performance liquid 
chromatography (HPLC) grade methanol and HPLC-grade 
chloroform were bought from Merck (Germany). Trimethyl-
silylpropionic acid-d4 sodium salt (TSP) was bought from 
Sigma-Aldrich (USA). All other reagents were of analytic 
grade in our study.

2.2 � Patients and samples collection

The population recruited in this study totally consisted of 80 
patients with primary GC, who underwent surgical resection 
at the West China Hospital of Sichuan University between 
2013 and 2014. The study protocol was approved by the Eth-
ics Committee of the West China Hospital and the written 
informed consents were obtained before samples collection. 
Part of the dissected specimens was used for pathological 
diagnosis, and the other part was immediately frozen in liq-
uid nitrogen and stored at − 80 °C. To ensure the accuracy, 
the patients, who received any radiation, chemotherapy 
or had dissected lymph nodes less than 15, were excluded 
from our study. The pathological diagnosis was confirmed 
by standard hematoxylin and eosin stain, and each dissected 
lymph node was stained with H and E. All patients were 
diagnosed for TNM stages according to the 7th edition of the 
American Joint Commission on Cancer (AJCC).

2.3 � Preparation of tissue extraction and 1H NMR 
spectroscopic analysis

The reagents were ice-cold before use, including distilled 
water, D2O, methanol and chloroform. To extract the inter-
esting metabolites, the 100–400 mg frozen specimen was 
minced in liquid nitrogen, weighted and transferred into a 
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15 mL centrifuge tube. Four milliliter methanol per gram of 
specimen and 0.85 mL distilled water per gram of specimen 
were added into the same centrifuge tube and the mixture 
was vortexed for 1 min. Then 2 mL chloroform per gram of 
specimen was added and the sample was vortexed again, 
followed keeping on ice for 30 min. After centrifuging at 
1000×g at 4 °C for 30 min, the mixture was separated into 
three phases, including the bottom lipid phase, the middle 
protein phase and the top aqueous phase, where the meta-
bolic extraction was contained. Each upper water phase was 
gently absorbed and transferred into a fresh 1.5 mL centri-
fuge tube and evaporated under a stream of nitrogen. The 
dried residue was dissolved in 580 µL of D2O, which con-
tained 30 µM phosphate buffer solution (PBS, pH 7.4), pro-
viding the deuterium lock signal for the NMR spectrometer, 
and 0.5 mM sodium (3-trimethylsilyl)-2,2,3, 3-tetradeute-
riopropionate (TSP), providing the chemical shift reference 
(δ0.0) and internal concentration standard. The suspension 
was vortexed and centrifuged at 12000×g at 4 °C for 5 min, 
and about 550 µL solution was loaded into a 5 mm NMR 
tube for NMR spectroscopy (Beckonert et al. 2007).

2.4 � 1H NMR spectroscopy

The 1H NMR spectra of each samples were recorded on a 
Bruker Avance II 600 spectrometer (Bruker Biospin, Ger-
many) at 600.13 MHz and 20 °C. One-dimensional NMR 
spectrum from each sample was acquired using a standard 
(1D) Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 
to observe metabolite signals and 5 s relaxation delay at 
the water peak position to suppress the residual H2O signal. 
Sixty four free induction decays (FIDs) were collected into 
64 K data points with a spectral width of 12335.5 Hz spec-
tral and an acquisition time of 2.66 s. Therefore, the total 
pulse recycles delay of 7.66 s.

2.5 � NMR data processing

The raw NMR data (FIDs) were manually phased adjusted 
and baseline corrected using MestReNova-6.1.1–6384 soft-
ware after referencing to TSP chemical shift at 0 ppm. To 
reduce the complexity of spectral data before statistical anal-
ysis, spectral binning was used for producing a data set with 
manageable proportion. In our study, the spectral regions 
at 0.5– 9.5 ppm were segmented into 1800 bins with equal 
width of 0.005 ppm. The spectral regions 3.37–3.34 ppm 
(methanol signal), 4.94–4.66 ppm (residual water signal) 
and 7.84–7.62 ppm (chloroform signal) were respectively 
excluded. In order to get the real metabolites changes in sam-
ples, especially for the low concentration metabolites, the 
integral values of all bins were divided by the value of refer-
ence TSP and then normalized to the weight of the measured 
GC tissue used for metabolites extraction. Moreover, the 

normalized data was given the same total integration value 
for each spectra before multivariate data analysis.

2.6 � Multivariate statistical analysis

The normalized NMR data in the form of excel was 
imported into statistical software SIMCA-P (Version 11, 
Umetrics, AB) for multivariate statistical analysis, including 
principal component analysis (PCA), partial least squares-
discriminant analysis (PLS-DA), and orthogonal projection 
to latent structure (OPLS). PCA was firstly performed to 
see an overview and possible outliers. Then PLS-DA was 
cross-validated by a permutation analysis (200 times), and 
the resulting R2 and Q2 values were calculated. OPLS was 
performed to get well separation between GC cases and con-
trols. The parameters R2 and Q2, indicating the interpret-
ability and predictability of the model respectively, were 
used to evaluate the quality of the model. The coefficient 
plot was color-coded with the absolute value of coefficients 
(r) with Matlab scripts, meaning the red colored metabolites 
being more significant than the blue colored ones (Feng et al. 
2011). The ROC analysis was performed using predicted Y 
values of PLS-DA or the relative expression of the specific 
metabolites in SPSS 22.0.

To identify the interesting spectrum peaks, the vari-
able importance in the projection (VIP) > 1 was considered 
responsible for group discrimination, which was analyzed 
and taken as a coefficient from OPLS models. Moreover, 
unpaired Student’s t-test (p < 0.05) to the chemical shifts was 
also used to evaluate the reliability of each metabolite. The 
identified metabolites were chosen as distinguishing ones, 
which both met VIP > 1 and p < 0.05. The corresponding 
chemical shift and multiplicity of the metabolites were iden-
tified according to the previous literatures and the Human 
Metabolome Database (http://www.hmdb.ca/).

3 � Results

3.1 � Study population

Based on NMR, a total of 120 tissue specimens were 
detected in our study, among which, 80 specimens were the 
matched tumor and control collected from the same patient 
(n = 40). The clinical characteristics were shown in Table 1. 
The GC patients were divided into two subgroups, includ-
ing 40 LNM-negative cases (24 male, 16 female; age range, 
39–78 years, mean age, 59 years) and 40 LNM-positive 
cases (22 male, 18 female; age range, 28–82 years, mean 
age, 60 years). The remaining ones were normal controls 
(28 male, 12 female; age range, 28–78 years, mean age, 
60 years). The recruited patients were all adenocarcinoma 
according to histology examination. The TNM stages were 

http://www.hmdb.ca/
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determined according to the 7th edition of the American 
Joint Commission on Cancer (AJCC). The detailed informa-
tion was presented in Table 1.

3.2 � Metabolic profiling of 1H NMR spectrum of GC 
tissues

Typical NMR spectra of normal control, LNM-negative GC 
and LNM-positive GC were depicted in Fig. 1a-c, respec-
tively. Resonance assignments were performed by chemical 
shift and multiplicity of the metabolites according to the 
previous literatures and the Human Metabolome Database. 
An overview of visible differences among the three classes 
was shown in Fig. 1. Most visible spectra were concentrated 
on the region between 0.5 and 5 ppm, including BCAA, ala-
nine, lactate, glucose, choline/PC, taurine, betaine, and so 
on. The peaks from 5.5 to 9 ppm were few, including uracil, 
fumarate, tyrosine and several unknown signals.

3.3 � Multivariate statistical analysis 
of LNM‑negative GC specimens, LNM‑positive 
GC specimens and normal controls

Firstly, PCA was performed using the raw NMR data. The 
PCA score plot (2PCs, R2X = 0.355, Q2 = 0.146) showed 
clear classification between GC tissues and normal con-
trols (Fig S1a) without any outlier (Fig S1b). Therefore, 
all of specimens were kept in the further analysis to 
obtain maximum information. Then OPLS (R2X = 0.154, 
R2Y = 0.894, Q2 = 0.823) was performed to evaluate 
variable importance responsible for separation among 

LNM-negative GC tissues, LNM-positive GC tissues and 
normal controls. A well separation between GC and con-
trols was shown in Fig. 2a. In the S-plot (Fig. 2b), the vari-
ables far away from the center of the plot were assumed 
to have a greater contribution to the model separation. 
The model parameters (R2 = 0.79, Q2 = 0.77) showed good 
quality of the obtained OPLS model (Fig S1c). A receiver 
operating characteristic curve (ROC) was carried out using 
the predicted Y values from OPLS. Area under the curve 
(AUC) value was 0.852 (Fig. 2c), indicating the OPLS 
model had good predictive ability. This diagnostic model 
was just to identify the tissue metabolic biomarkers rather 
than to replace the established histopathologic diagnostic 
standard for GC.

We firstly identified 56 metabolites according corre-
sponding chemical shift and multiplicity. Then the inappro-
priate ones (VIP < 1, or p > 0.05, or both) were excluded. 
The remaining 30 and 31 significant class-discriminating 
metabolites (VIP > 1 and p < 0.05) were respectively cho-
sen for LNM-negative and LNM-positive GC cases, which 
were summarized in Table 2. Among them, 28 distinguish-
ing metabolites were identified both in the two cases. Color-
coded coefficient plots showed the change trend of identified 
differential metabolites responsible for discriminating GC 
from controls (Fig. 2d). Higher concentration of BACCs 
(Isoleucine, Leucine, Valine), Lactate, Methylamine and 
Taurine in GC specimens compared to the controls were 
illustrated in the positive quadrant signals. On the other 
hand, lower concentration of Choline/PC, Taurine, myo-Ino-
sitol, Glucose, Tyrosine and Hypoxanthine in GC specimens 
were represented in the negative quadrant signals.

Table 1   Clinical characteristics 
of gastric cancer patients and 
normal controls analyzed by 
1H-NMR

PD poorly differentiated, MD moderately differentiated, NA not applicable

LNM-negative GC patients LNM-positive GC patients Normal controls

No. of subjects 40 40 40
Age (mean (range)) 59 (39–78) 58 (28–82) 60 (28–78)
Gender (male/female) 24/16 22/18 28/12
Lauren type
 Intestinal 18 15 41
 Diffuse 9 10
 NA 13 15
 Histology Adenocarcinoma (40) Adenocarcinoma (40)

Pathologic grade
 PD 21 12
 MD 16 26
 NA 3 2

TNM stage
 I IA:3; IB:17 IB:1
 II IIA:10; IIB:7 IIA:1; IIB:9
 III IIIB:3 IIIA:15; IIIB:9
 IV IV:5
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3.4 � Multivariate statistical analysis of LNM‑negative 
GC specimens and LNM‑positive GC specimens

To identify the significantly distinguishing metabolites in 
discriminating between LNM-negative and LNM-positive 
GC patients, further multivariate statistical analysis was 
performed. To our knowledge, this is the first study to 
characterize the metabolic profile of GC with or without 
LNM, which was useful in identifying potential biomark-
ers and understanding the underlying molecular mecha-
nism. A good separation between LNM-negative and 
LNM-positive GC patients was shown in OPLS score plot 
(R2X = 0.121, R2Y = 0.75, Q2 = 0.485) in Fig. 3a, in which 
the two cases were mainly distributed at two sides, with 
only two specimens misclassified. The corresponding per-
mutation analysis (200 times) was displayed in Fig S1d. 
Model parameters (R2 = 0.74, Q2 = 0.47) demonstrated the 
OPLS model was a reliable model with good quality. In 
the S-plot of the OPLS model (Fig. 3b), the variables that 
lied far away from the center of the plot were assumed to 
have a greater contribution to the model classification. To 
test the predictive ability of established OPLS model in 

staging GC patients with or without LNM, 80% samples 
were randomly selected as training set, and the remaining 
20% samples were testing set. As a result, the most test-
ing samples were predicted correctly (Fig. 3d), implying 
LNM was a good indicator for staging GC patients into 
two subgroups.

To further identified the potential biomarkers in the pro-
cess of LNM in GC, 8 tissue metabolites were selected with 
VIP > 1 and p < 0.05, which were listed in Table 3. Com-
pared with that of LNM-negative GC patients, BCAAs, 
Glutathione, Glycine and Tyrosine were increased in LNM-
positive GC patients, on the other hand, Betaine and Hypox-
anthine were significantly decreased. In order to clearly 
show these differences, scatter plots were conducted for 
illustrating the relative concentration (Fig. 4). The identified 
differential metabolites between LNM-negative and LNM-
positive were also displayed in color-coded coefficient plots 
(Fig. 3c). Higher concentration of differential metabolites in 
LNM-positive GC patients compared to the LNM-negative 
ones were located in the positive quadrant, otherwise, lower 
concentrations of metabolites in LNM-positive GC patients 
were shown in negative quadrant.

Fig. 1   Representative tissue 
600 MHz 1H NMR spectra. a 
Normal control specimen, b 
LNM-negative GC specimen, c 
LNM-positive GC specimen
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We totally assigned 33 differential metabolites between 
GC patients and controls in Table 2. After further analyze, 
eight metabolites were chosen as potential biomarkers for 
use in discriminating LNM-positive GC patients from 
LNM-negative ones. To better understand the relation-
ship of the identified metabolites, the related metabolic 
pathways were conducted in Fig. 5. The altered metabolic 
pathways included glycolysis, fatty acids metabolism, cho-
line metabolism, glutaminolysis, purine and pyrimidine 
biosynthesis, urea cycle and TCA. Furthermore, the meta-
bolic pathways including the selected 8 metabolites should 
be played more attention, such as BCAAs metabolism, 
Choline metabolism, which may play more important role 
in the process of LNM in GC.

4 � Discussion

Lymph node metastasis was an important prognostic factor 
for GC patients, especially ones with EGC. The patients 
with LNM-positive had a poorer overall survival compared 
with those with LNM-negative (Cao et al. 2011; Cheong 
et al. 2006). In the present study, we analyzed the meta-
bolic profiling of human GC tissue specimens, and identi-
fied 33 distinguishing metabolites between GC patients 
and controls, 28 of which were reported in our previous 
work (Wang et al. 2016), the other five differently metabo-
lites (Threonine, Alanine, Pyruvate, Taurine and Betaine) 
were new identified in our study. This might be duo to the 

Fig. 2   Metabolic profiling between GC tissues and normal controls. a 
OPLS scores plot between the GC tissues and normal controls. Black 
triangles represent normal controls (n = 40); Green boxes represent 
LNM-negative GC patients (n = 40); Yellow boxes represent LNM-
positive GC patients (n = 40). b S-plot of the OPLS model, the varia-
bles that lie far away from the center of the plot were assumed to have 
a greater contribution to the model classification. c ROC analysis 
was performed using the Y-predicted value determined by the PLS-

DA model between the GC tissues and normal controls. d The color 
map shows the significance of metabolite variations between the two 
classes. Peaks in the positive direction indicate the increased metab-
olites in GC tissues in comparison to normal controls. Decreased 
metabolites in GC tissues are presented as peaks in the negative 
direction. 1 BCAA, 2 Lactate, 3 Methylamine, 4/5 Choline/PC, 6 
Taurine, 7 myo-Inositol, 8 Glucose, 9 Tyrosine, 10 Hypoxanthine
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Table 2   Differential tissue 
metabolites among LNM-
negative GC patients, LNM-
positive GC patients, and 
normal controls

a Multiplicity: s singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet
b Variable importance in the projection was obtained from OPLS model with a threshold of 1.0
c p-value obtained from Student’s t-test
d Fold change (FC) was calculated as a binary logarithm of the average mass response (normalized peak area) ratio 
between LNM-negative versus normal controls or between LNM-positive versus normal controls

Metabolites Chemical shift (ppm, 
multiplicity)a

LNM-negative versus normal 
controls

LNM-positive versus normal 
controls

VIPb Pc FCd VIPb Pc FCd

Isoleucine 0.945(t) 2.050 0.002 1.058 1.666 0.418 1.329
1.015(d) 2.318 2.97E-12 1.710 2.539 1.92E-20 2.144

Leucine 0.965(t) 1.725 0.395 1.127 2.250 0.044 1.290
Valine 0.995(d) 1.814 0.327 1.052 2.238 3.06E-04 1.203

1.045(d) 2.454 0.635 1.025 2.617 0.002 1.167
Lactate 1.33(d) 2.071 4.80E-04 1.193 2.429 2.52E-05 1.219

4.11(q) 1.675 0.005 1.140 1.953 1.99E-04 1.165
Threonine 1.33(d) 2.071 4.80E-04 1.193 2.429 2.52E-05 1.219

4.24(m) 2.221 3.52E-04 1.120 1.803 9.71E-05 1.117
Alanine 1.48(d) 2.563 6.27E-06 1.297 2.521 1.23E-07 1.423
Citrulline 1.57(m) 1.134 0.033 0.626 1.565 0.002 0.479
VLDL: –CH2–CH2–CH2O 1.58(br) 1.681 0.006 0.596 1.786 0.005 0.617
N-acetyl glycoprotein 2.05(s) 1.581 0.011 1.245 1.841 0.063 1.110
O-acetyl glycoprotein 2.065(s) 2.520 2.41E-05 1.211 2.340 0.002 1.136
Acetic acid 2.075(s) 2.409 1.23E-23 2.012 2.441 3.21E-26 1.993
Glutamine 2.14(m) 2.204 1.16E-09 1.318 2.479 4.97E-12 1.356

2.455(m) 2.117 0.057 1.110 2.319 0.031 1.129
3.77(m) 2.228 3.79E-08 1.216 2.457 1.03E-10 1.260

d-ribose 2.235(s) 1.168 0.004 0.673 1.364 4.33E-04 0.611
Acetone 2.235(s) 1.168 0.004 0.673 1.364 4.33E-04 0.611
Lipid, –CH2–C=O 2.26(br) 1.736 0.001 0.814 1.674 2.33E-04 0.809
Pyruvate 2.375(s) 2.537 1.13E-13 1.854 2.399 6.86E-18 2.002
Succinate 2.405(s) 2.334 0.009 1.172 2.305 0.002 1.369
Glutathione 2.555(m) 2.592 1.76E-12 1.537 2.464 1.31E-12 1.618

2.97(m) 2.429 1.28E-07 1.461 2.320 6.74E-11 1.659
Methylamine 2.595(s) 2.329 1.58E-12 3.554 2.315 2.51E-15 4.335
Choline 3.2(s) 1.097 0.003 0.617 0.870 0.002 0.600
PC (phosphochline) 3.21(s) 1.451 2.06E-05 0.646 1.455 9.32E-06 0.647
Trimethylamine-N-oxide 3.27(s) 1.794 9.61E-12 1.899 1.911 5.37E-20 2.150
Taurine 3.27(t) 1.794 2.87E-11 1.628 1.911 1.02E-16 1.755

3.425(t) 1.730 2.31E-11 2.562 1.577 4.20E-22 2.801
myo-Inositol 3.535(dd) 2.228 4.75E-11 0.588 2.223 9.90E-28 0.506

3.63(t) 1.806 7.32E-10 0.716 1.980 7.55E-15 0.667
4.065(m) 2.035 6.46E-07 0.666 2.144 1.23E-09 0.629

Glucose 3.535(dd) 2.228 1.83E-07 0.588 2.223 3.91E-10 0.506
5.235(d) 2.624 7.32E-10 0.379 2.505 7.55E-15 0.274

Glycine 3.565(s) 2.596 8.76E-14 2.986 2.619 1.79E-21 3.644
Lysine 3.77(m) 2.228 1.42E-13 1.216 2.457 9.45E-27 1.260
Betaine 3.89(s) 2.451 3.79E-08 0.651 2.504 1.03E-10 0.560
Serine 3.975(m) 2.519 0.001 1.157 2.283 0.003 1.120
Uracil 7.54(d) 2.090 5.03E-06 2.261 2.114 1.14E-06 2.380

5.8(d) 2.282 2.82E-08 4.657 2.316 3.08E-09 5.179
Fumarate 6.52(s) 1.192 0.007 1.002 1.913 0.004 1.287
Tyrosine 6.9(d) 2.607 0.001 1.324 2.716 1.21E-06 1.492

7.2(d) 2.231 0.002 1.265 2.384 8.06E-06 1.411
Hypoxanthine 8.18(s) 0.539 0.746 0.964 1.040 0.001 0.632

8.215(s) 0.939 0.027 0.776 1.682 0.000 0.543



	 H. Zhang et al.

1 3

47  Page 8 of 13

difference in the source and quantity of the used speci-
mens. Furthermore, to confirm the potential biomarkers in 
the process of LNM, further metabolic profiling of LNM-
positive or negative patients was performed, 8 differential 
metabolites were selected with VIP > 1 and p < 0.05. To 
our knowledge, the study is the first to display the differ-
ences of LNM-positive or negative GC patients based on 
untargeted metabolomics. The identified metabolites may 
be as the potential factors of diagnose and prognosis of 
LNM-positive or negative GC patients. Moreover, they 
also were valuable in understanding the molecular mecha-
nism in the process of LNM.

There were a growing evidences implicating the dys-
regulation of BCAA metabolism in many disorders like 
metabolic syndrome, hepatic disease and cancer (Newgard 
et al. 2009; Kawaguchi et al. 2011; Tonjes et al. 2013). As 
essential amino acids, BCAAs accounted for over 20–40% 

of total dietary protein (Brosnan and Brosnan 2006; Harper 
et al. 1984), which were used to make protein and as nitro-
gen donors for nonessential amino acid and nucleotide 
synthesis in proliferating cells, especially in cancer cells. 
BCAAs were largely transferred into cancer tissues from 
the blood to supply amino groups (Baracos and Macken-
zie 2006), resulting in higher levels of BCAAs in cancer 
contrast to normal controls. In our previous work (Wang 
et al. 2016), the levels of BCAAs were also higher in GC 
tissue specimens. In the present study, BCAAs were not 
only increased in GC tissues compared with normal con-
trols (Table  2), but also up-regulated in LNM-positive 
GC patients compared with LNM-negative ones (Table 3, 
VIP > 1 and p < 0.05). To identify the diagnostic potential 
of BCAAs between LNM-positive and negative GC patients, 
ROC curve was performed (Fig S2). AUC was used to assess 
the potential diagnostic value: AUC (Isoleucine) = 0.745 

Fig. 3   Discriminating plots of LNM-negative and LNM-positive 
GC patients. a Scores plot of OPLS model. Green boxes represent 
LNM-negative GC patients (n = 40); Yellow boxes represent LNM-
positive GC patients (n = 40). b S-plot of the OPLS model, the vari-
ables that lie far away from the center of the plot were assumed to 
have a greater contribution to the model classification. c The color 
map shows the significance of metabolite variations between the two 
classes. Peaks in the positive direction indicate the increased metabo-

lites in LNM-positive GC patients in comparison to LNM-negative 
GC patients. Decreased metabolites in LNM-positive GC patients are 
presented as peaks in the negative direction. 1 Isoleucine, 2 Leucine, 
3 Valine, 4 Glutathione, 5 Glycine, 6 Betaine, 7 Tyrosine, 8 Hypox-
anthine. d Scores plot of OPLS prediction model. Eighty percentage 
of samples were applied to construct the model, and then used it to 
predict the remaining 20% of samples
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(95% CI 0.636–0.854), AUC (Leucine) = 0.725 (95% CI 
0.614–0.835), AUC (Valine) = 0.741 (95% CI 0.632–0.850), 
AUC (Combination) = 0.769 (95% CI 0.666–0.873). These 
results indicated BCAAs may be as predictor in the process 
of LNM in GC.

BCAA metabolism played a central role in diverse 
physiological and pathological process, especially in can-
cer development (Tonjes et al. 2013; Mayers et al. 2014, 
2016). The initial step of BCAA catabolism was transfer-
ring amino groups to α-ketoglutarate by branched-chain ami-
notransferase (cytosolic BCAT1 or mitochondrial BCAT2), 
generating glutamate and the respective α-ketoacids 
(α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid 
(KMV) and α-ketoisovaleric acid (KIV)) (Fig S3a). Through 
further enzymatic reactions, α-ketoacids were converted to 
acetyl-CoA and succinyl-CoA, which entered into TCA 
cycle and were oxidized to supply macromolecule precur-
sors and energy. As an important enzyme, BCAT1 was up-
regulated in gliomas, breast cancer and myeloid leukaemia 
(Tonjes et al. 2013; Zhang and Han 2017; Hattori et al. 
2017). Knockdown of BCAT1 repressed the cell prolif-
eration and invasiveness in vitro and inhibited the tumor 
growth in the xenograft model. In our results, BCAAs were 
increased in LNM-positive GC patients. Moreover, BCAT1 
was also up-regulated in LNM-positive GC tissue speci-
mens compared with controls (Fig S3b). LNM-positive GC 
patients may need more BCAAs from blood to tissue. The 
elevated expression of BCAT1 played an important role in 
initiating the catabolism of BCAAs to serve as macromole-
cule precursors and energy source. Based on previous litera-
tures and our results, BCAAs may be as a useful diagnostic 
biomarker of GC patients and distinguishing LNM-positive 
GC patients from LNM-negative ones. Furthermore, BCAT1 
may be as attractive targets for treating LNM-positive GC 
patients. Certainly, further studies must be performed to 
investigate the function and mechanism of BCAAs and 
BCAT1 underlying in GC occurrence and progression.

Table 3   Differential metabolites between LNM-negative GC patients 
and LNM-positive GC patients

a Multiplicity: s singlet, d doublet, t triplet, m multiplet
b Variable importance in the projection was obtained from OPLS 
model with a threshold of 1.0
c p-value obtained from Student’s t-test
d Fold change (FC) was calculated as a binary logarithm of the aver-
age mass response (normalized peak area) ratio between LNM-posi-
tive versus LNM-negative

Metabolites Chemical shift 
(ppm, multiplicity)a

LNM-positive versus LNM-
negative

VIPb Pc FCd

Isoleucine 0.945(t) 1.059 0.023 1.257
1.015(d) 3.302 1.73E-04 1.254

Leucine 0.965(t) 2.846 0.010 1.145
Valine 0.995(d) 2.544 0.010 1.143

1.045(d) 3.086 0.016 1.138
Glutathione 2.555(m) 1.727 0.322 1.052

2.97(m) 1.524 0.046 1.135
Glycine 3.565(s) 1.622 0.004 1.220
Betaine 3.89(s) 2.081 0.025 0.860
Tyrosine 6.9(d) 3.275 0.045 1.126

7.2(d) 2.023 0.062 1.115
Hypoxanthine 8.18(s) 1.082 0.002 0.656

8.215(s) 1.895 0.005 0.700

Fig. 4   Scatter plots illustrating discrimination among normal controls, LNM-negative and LNM-positive GC patients. The Y axis represents 
relative abundance of NMR signals (normalized to the total peaks). *p < 0.05; **p  < 0.01 from LNM-positive GC versus LNM-negative GC
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Cancer cells reprogram metabolism to fulfill their rapid 
proliferation (Moncada et al. 2012), especially glucose and 
glutamine supply energy, carbon and nitrogen source for 
macromolecule synthesis to support cell growth through 
glycolysis and glutaminolysis (Warburg 1956). In this study, 
the glucose levels significantly decreased and lactate, as the 
end product of glycolysis, apparently increased in the LNM-
negative and LNM-positive GC specimens compared with 
controls, which was not surprised because of the well-known 
Warburg effect (Vander Heiden et al. 2009). While, the War-
burg effect was not significantly disturbed between LNM-
positive GC patients and LNM-negative ones. Therefore, 
glycolysis may play a central role in GC tumorigenesis, not 
in the process of LNM. The similar increased glycolysis was 
also found in our previous work. Beyond the elevated glyco-
lysis, cancer cells depended more on glutamine (Pan et al. 
2015), which can be converted into TCA cycle to generate 
ATP and intermediates for macromolecule synthesis such 
as proteins, lipids and nucleotides (DeBerardinis and Cheng 
2010). Glutamine was up-regulated in GC tissue specimens 
compared with controls in our study, which showed GC 
cells needed more glutamine to support their rapid growth 
as alternative energy, carbon and nitrogen sources. There-
fore, targeting glutamine metabolism for cancer treatment 
had received increasing attention (Cervantes-Madrid et al. 
2017; Dequanter et al. 2017). Although the levels of glu-
tamine didn’t change significantly between LNM-positive 
GC patients and LNM-negative ones, glutathione (GSH), 
as a product of glutamine and glutamate metabolism, was 
increased in LNM-positives ones, which indicated antioxi-
dant capacity was obviously enhanced in LNM-positives GC 
cells compared with LNM-negative ones. Recently, oxida-
tive stress abnormality has been well acknowledged as a 

hallmark of cancer. The level of reactive oxygen (ROS) was 
commonly increased in cancer cells, and some types of can-
cer cells also demonstrated enhanced sensitivity to ROS. 
GSH is a key antioxidant, the level of which was elevated 
in lung, head and neck, ovarian and breast cancer (Gamcsik 
et al. 2012). The increased level of GSH widely enhanced 
the antioxidant capacity and resistance to oxidative stress. 
Therefore, the LNM-positive GC cells with higher level of 
GSH showed elevated antioxidant capacity and more easily 
survived from oxidative stress, they were more malignant 
and metastatic ability. A number of studies have reported 
GSH would be a reliable marker in solid tumors and hema-
tological cancers (Gamcsik et al. 2012; Kearns et al. 2001). 
Base on our results and these previous reports, we thought 
GSH might play an important role in the process of lymph 
node metastasis of GC.

In our study, choline and betaine were both reduced in 
GC tissues compared with controls. Especially the level 
of betaine, as an oxidative metabolite of choline (Ji and 
Kaplowitz 2003), was lower in LNM-positive GC patients 
in contrast with LNM-negative ones and controls. Choline 
and betaine, as major methyl donors in one-carbon metabo-
lism (Zeisel and Blusztajn 1994), may be involved in car-
cinogenesis, such as colorectal, breast, lung and liver cancer 
(Lu et al. 2015; Zhang et al. 2013; Ying et al. 2013; Zhou 
et al. 2017). A recent meta-analysis also demonstrated that 
the food intake with choline plus betaine (100 mg/day) could 
lower the cancer incidence by 11% (Sun et al. 2016). Some 
studies showed one-carbon metabolism was involved in the 
epigenetic modulation of gene expression and biosynthe-
sis of nucleotides, which may be the cause of being impli-
cated in carcinogenesis (Kim 1999; Pandey et al. 2014). 
In addition, betaine was involved in the methionine cycle, 

Fig. 5   Disturbed metabolic 
pathways of the relevant metab-
olites between GC patients and 
normal controls. Green: lower 
concentration in GC patients 
than in normal controls. Red: 
higher concentration in GC 
patients than in normal controls
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supplying homocysteine through the transmethylation path-
way, which was further used for synthesis of glutathione via 
transsulfuration (Craig 2004). As mentioned above, GSH 
could enhance the antioxidant capacity and protect cells 
from ROS. With the lower level in LNM-positive patients, 
betaine may be a potential diagnostic biomarker distinguish-
ing LNM-positive GC patients from LNM-negative ones. 
Our findings together with the previous studies (Sun et al. 
2016; Du et al. 2016) proved that betaine might play a criti-
cal role in the process of LNM of GC. Therefore, dietary 
choline and betaine intake with a fixed dose may alleviate 
GC. While, the actual effect needs to be further investigated.

In addition, we also recognized some limitations in our 
study. Firstly, our study was performed in a relatively small 
size in each group. The indication of the robustness of OPLS 
models was relatively small: R2X = 0.121, the maximum fold 
change is of about 35% (Table 3). Therefore, the interest-
ing potential biomarkers from our study should be verified 
in the other larger patient cohorts. Secondly, the 1H NMR 
metabolomics platform used in our study was less sensitive 
than mass spectrometry and only covered a limited num-
ber of metabolite targets. which may lost some information 
about the process of LNM of GC. In addition, two signals of 
some metabolites were statistically not relevant, such as iso-
leucine and Hypoxanthine (Table 2), glutathione (Table 3), 
which should be verified in better metabolomics platform. 
Lastly, our understanding of these distinguishing metabolites 
remained at rudimentary levels. More future studies should 
be focused on elucidating the mechanisms underlying the 
process of LNM of GC before the clinical application of the 
candidate metabolites.

5 � Conclusion

In summary, utilizing untargeted 1H NMR spectroscopy 
combined with multivariate statistical analysis, we glob-
ally analyzed the tissue metabolic profiling of GC patients 
compared with normal controls, especially between LNM-
positive and negative GC patients. Totally 33 distinguishing 
metabolites were identified between GC patients and con-
trols. More importantly, a panel of 8 differential metabolites 
was selected according to the LNM of GC. According to fur-
ther validation and analysis, especially BCAAs metabolism, 
GSH and betaine might be as potential factors of diagnose 
and prognosis of LNM-positive or negative GC patients. In 
our knowledge, this is the first metabolomics study focusing 
on LNM of GC. On the basis of this research, we believed 
that the identified distinguishing metabolites might show 
a promising application on monitoring the carcinogenesis, 
invasion and metastasis of GC. Certainly, future more func-
tional studies and a larger scale of tissue specimen analysis 

were needed to demonstrate the potential clinical application 
and the underlying mechanism of GC.
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