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Abstract: Marine organisms are a source of active biomolecules with immense therapeutic and
nutraceutical potential. Sulfated fucose-rich polysaccharides are present in large quantities in
these organisms with important pharmacological effects in several biological systems. These
polysaccharides include sulfated fucan (as fucoidan) and fucosylated chondroitin sulfate. The
development of these polysaccharides as new drugs involves several important steps, among
them, demonstration of the effectiveness of these compounds after oral administration. The
oral route is the more practical, comfortable and preferred by patients for long-term treatments.
In the past 20 years, reports of various pharmacological effects of these polysaccharides orally
administered in several animal experimental models and some trials in humans have sparked
the possibility for the development of drugs based on sulfated polysaccharides and/or the use
of these marine organisms as functional food. This review focuses on the main pharmacolog-
ical effects of sulfated fucose-rich polysaccharides, with an emphasis on the antidislipidemic,
immunomodulatory, antitumor, hypoglycemic and hemostatic effects.

Keywords: sulfated fucose-rich polysaccharides; sulfated fucan; fucosylated chondroitin sulfate;
fucoidan; oral administration; anticoagulant activity

1. Introduction

Sulfated fucose-rich polysaccharides have been described in seaweed for approxi-
mately a century and are denominated as fucoidan [1]. The structural complexity of these
polysaccharides resulted in contradictory reports about their molecular structure since
the analytical methods did not allow their detailed characterization. More recently, with
the advance of new analytical methodologies, especially high resolution nuclear magnetic
resonance, the structure of these polysaccharides has been elucidated [2,3]. Although
these studies are restricted to a limited number of species, a high variability is observed
among them [4]. Figure 1 shows examples of fucoidans already characterized. One of
them contains alternating α (1→3)- and α (1→4)-linked fucose units, while the other is
composed exclusively by α (1→3) units (Figure 1a). In both cases, the polysaccharide
possesses a heterogeneous sulfation pattern and branches of sulfated and non-sulfated
fucose. In addition to fucose, many other sugars are present in these fucoidans, such as
galactose, xylose, mannose and uronic acid. It is not possible to clarify whether these
sugars are part of the fucoidan molecule or a result of incomplete purification. In terms
of the chemical structure, fucoidan could be designated as sulfated fucan (SF). However,
“fucoidan” is a traditional denomination and also expresses the heterogeneous composition
of these molecules.
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chemical structure, fucoidan could be designated as sulfated fucan (SF). However, “fu-
coidan” is a traditional denomination and also expresses the heterogeneous composition 
of these molecules. 

 
Figure 1. Structure of the sulfated fucose-rich polysaccharides from brown algae and echinoderms. (a) Fucoidans from 
brown algae are composed of α (1→3)-linked fucose units or alternating α (1→3)- and α (1→4)-linked fucose units. Man-
nose, galactose, xylose, uronic acid and branches of other monosaccharides make this polysaccharide highly variable and 
with complex structures. (b) SFs from echinoderms are made up of a repetitive tetrasaccharide units, formed by α (1→3) 
units and with a regular sulfation pattern at positions 2 and 4. (c) Structure of a fucCS from sea cucumbers. This polysac-
charide has a chondroitin sulfate-like backbone, with branches of α-fucose linked to position 3 of the β-glucuronic acid of 
the central core. These fucose branches varies among species. In the specie L. grisea, for example, three types of branches 
are observed: α-Fuc-2,4diSO4, α-Fuc-3,4diSO4 and disaccharides composed of α-Fuc1→2-α-Fuc-3SO4→. The sulfated fu-
cose-rich polysaccharides from echinoderms have a more regular and repetitive structures compared with brown algae 
polysaccharides. 

In the last 30 years, the study of polysaccharides rich in sulfated fucose was extended 
to echinoderms (sea urchins and cucumbers) [5–7]. In clear contrast with the fucoidans 
from marine algae, SFs from echinoderms have regular and repetitive structures [8]. Ini-
tially, these studies were concentrated on SFs from sea urchins, which are involved in the 
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Figure 1. Structure of the sulfated fucose-rich polysaccharides from brown algae and echinoderms.
(a) Fucoidans from brown algae are composed of α (1→3)-linked fucose units or alternating α

(1→3)- and α (1→4)-linked fucose units. Mannose, galactose, xylose, uronic acid and branches
of other monosaccharides make this polysaccharide highly variable and with complex structures.
(b) SFs from echinoderms are made up of a repetitive tetrasaccharide units, formed by α (1→3)
units and with a regular sulfation pattern at positions 2 and 4. (c) Structure of a fucCS from sea
cucumbers. This polysaccharide has a chondroitin sulfate-like backbone, with branches of α-fucose
linked to position 3 of the β-glucuronic acid of the central core. These fucose branches varies among
species. In the specie L. grisea, for example, three types of branches are observed: α-Fuc-2,4diSO4,
α-Fuc-3,4diSO4 and disaccharides composed of α-Fuc1→2-α-Fuc-3SO4→. The sulfated fucose-rich
polysaccharides from echinoderms have a more regular and repetitive structures compared with
brown algae polysaccharides.

In the last 30 years, the study of polysaccharides rich in sulfated fucose was extended
to echinoderms (sea urchins and cucumbers) [5–7]. In clear contrast with the fucoidans
from marine algae, SFs from echinoderms have regular and repetitive structures [8]. Ini-
tially, these studies were concentrated on SFs from sea urchins, which are involved in the
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fertilization process of the invertebrate [9,10]. These SFs are obtained in very small quanti-
ties and cannot be tested in in vivo experimental models that require high doses. However,
it soon became clear that sea cucumbers also have these SFs, which are present in more
expressive quantities. Sea cucumbers contain SFs made up of repetitive tetrasaccharide
units, formed by α (1→3) units and with a regular sulfation pattern at positions 2 and 4,
which varies among species [11]. Figure 1b shows a representative structure of one of these
SFs. In the case of echinoderms, the term SF is appropriate since it denominates chemically
homogeneous molecules, distinct from fucoidan.

Moreover, sea cucumbers possess another polysaccharide rich in sulfated fucose,
denominated as fucosylated chondroitin sulfate (fucCS) [12]. This compound has a central
chain similar to chondroitin sulfate from vertebrates, but it has branches of fucose linked
to position 3 of glucuronic acid of the central core. The structure of these fucose branches
varies between species. Figure 1c shows the structure of this sulfated polysaccharide.
Tables 1 and 2 show the structural characteristics of fucoidans and fucCS cited in this
manuscript. It is important to emphasize that fucoidans can show structural variation
according to the source, extraction method and time of the year [13].

These sulfated polysaccharides from echinoderms allowed a significant advance in
the attempts to correlate structure and biological activities of these molecules, which is
difficult to establish with fucoidans [14]. Many studies report the biological effects of
the fucose-rich sulfated polysaccharides administered intravascularly, subcutaneously or
intraperitoneally [15–19]. More recently, studies have emerged reporting several pharma-
cological effects of these polysaccharides after oral administration [20,21]. The observation
that these compounds have a therapeutic effect after their oral administration is very
significant since it opens the perspective of the use of these molecules for the development
of new drugs. The oral route is more practical, comfortable and preferred by patients for
long term treatments.

The purpose of this review was to conduct a systematic analysis of the effects observed
after oral administration of the sulfated fucose-rich polysaccharides. We distinguished
the effects observed with the complex fucoidans from algae from those obtained with the
echinoderm polysaccharides. The use of fucCS and SFs is an important pharmacological
tool to define structure versus therapeutic effects of polysaccharides rich in fucose as a
basis for the development of new drugs.

Table 1. Structural characteristics of fucoidans with pharmacological activities after oral administration.

Species Structure Sugar and Sulfate Content Mw (kDa) Ref

A. nodosum 1→3)-α-L-Fucp and a few (1→4)-α-L-Fucp
with→3-α-L-(2 and/or 4 Fucp)

The carbohydrate and sulfate content of the
fraction A3 were 74.7% and 12.0%,

respectively.
97.52 [22]

S. henslowianum →3)-α-L-Fucp(2 SO3
−)-(1→3)-α-L-Fucp (4

SO3
−)-(1→

Fucose and glucose as main sugars. Sulfate
content: 25.20%. ND [23]

F. evanescens →3)-α-L-Fucp(2 SO3
−)-(1→4)-α-L-Fucp(2

SO3
−)-(1→

Fucose, sulfate and acetyl groups at a molar
ratio of 1:1.23:0.36 and trace amounts of

galactose and xylose.
10–100 [24]

F. vesiculosus →3)-α-L-Fucp(2
SO3

−)-(1→4)-α-L-Fucp(2,3-SO3
−)-(1→3)

55.9% of carbohydrates, 27.0% of sulfate
residues and 5.7% of uronic acid.

Carbohydrates were represented mainly by
fucose (38%), galactose (3.5%), xylose (2.7%).

20.7 [25]

C. okamuranus →3)-α-L-Fucp (SO3
−)-(1→3)-α-L-Fucp(4

SO3
−)-(1→

The glucuronic acid residues are linked to the
C-2 positions of the fucose residues, which

are not substituted by a sulfate group. Sulfate
content ~15%.

92.1 [26]

U. pinnatifida →3)-α-L-Fucp(2
SO3

−)-(1→4)-α-L-Fucp(2,3-di SO3
−)-(1→3)

This sulphated galactofucan is composed of:
galactose 44.6% and fucose 50.9%. Xylose

(4.2%), mannose (0.3%). Sulfate content 15%.
A significant number of O-acetyl groups.

378 [27]

S. japonica →3)-α-L-Fucp(2
SO3

−)-(1→4)-α-L-Fucp(2,3-di SO3
−)-(1→3)

79.49% of fucose and 16.76% of galactose.
Sulfate content ~30.72%. 30 [28]
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Table 1. Cont.

Species Structure Sugar and Sulfate Content Mw (kDa) Ref

Mozuku (High molecular
weight fraction) ND Sulfate content: 13%. 240 [29]

L. japonica →3)-α-L-Fucp(4 SO3
−)-(1→

46.5% fucoxanthin, 8.01% lipids and 45.4%
carbohydrates of mostly cellulose. Sulfate

content: 13%.
300 [30]

ND: not determined.

Table 2. Structural characteristics of fucCS with pharmacological activities after oral administration.

Species Proportions of the Branching Sulfated Fucose Units Mw (kDa) Ref

P. graeffei 81.6% α-Fuc-4SO4, 18.4% α-Fuc-2,4diSO4 49 kDa [31]

I. badionotus 4.1% α-Fuc-4SO4, 95.9% α-Fuc-2,4diSO4 70.4 kDa [32]

L. grisea ~27% α-Fuc-2,4diSO4; ~20% α-Fuc3,4diSO4 and ~53% disaccharides composed
of α-Fuc1→2-α-Fuc-3SO4→

40 kDa [20]

C. frondosa The chemical composition contained mainly glucuronic acid, galactosamine and
fucose in the molar ratio of 1:1.50:1.16, with 30.07% sulfate content. 14.76 kDa [33]

2. Antidislipidemic Effect

Dyslipidemia refers to a spectrum of metabolic disorders characterized by either
an excess or a deficiency of lipoprotein particles, resulting in elevated plasma con-
centrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) or
triglyceride (TG) and/or depressed high-density lipoprotein cholesterol (HDL-C). Blood
levels of different lipoproteins are strongly associated with the risk of cardiovascular
diseases [34]. Thus, the management of blood lipid levels has an enormous significance
for the control of these diseases. However, many patients fail to reach target levels of
lipids with currently available drugs and still experience adverse clinical evolution [35].
Thus, additional pharmaceutical strategies are required to fill these gaps in efficacy
and tolerability. There is some research reporting the lipid-lowering effect of sulfated
polysaccharide administered by oral route (Table 3).

Initial studies of the antidislipidemic effect of sulfated fucose-rich polysaccharides
were performed with sulfated polysaccharide from sea cucumber. A hypolipidemic effect
was observed on rats fed with a cholesterol-rich diet and simultaneously received orally SF
and fucCS for 6 weeks [36]. The echinoderm polysaccharides significantly decreased TC,
LDL-C and the atherogenic index. The authors proposed that these effects may be due to
inhibition of Hydroxymethylglutaryl-CoA reductase and/or increased lipoprotein lipase
activity, although they did not provide any data regarding this mechanism.

Oral administration of fucoidan from Ascophyllum nodosum for 4 weeks improves
reverse cholesterol transport in mice [22]. Plasma levels of TC and triglycerides were
reduced, as well as fat pad index. The proposed mechanism is related to improvement of
the hepatic lipids uptake by activating scavenger receptor B1 and LDL Receptor (LDLR),
thus decreasing plasma LDL levels. Another study from the same group showed that oral
administration of fucoidan ameliorated atherosclerotic lesion and lipid profiles in a dose-
dependent manner in the apolipoprotein (apo) E-deficient mice fed with a high-fat diet [37].
Oil red staining revealed a decrease in the lesion/lumen ratio and in the liver lipid deposi-
tion with oral fucoidan-treated apoE−/− mice. Moreover, animals treated with the high
dose of fucoidan showed reduction of the morphological changes of the kidney induced
by high-fat diet. It also reduced triacylglycerol levels and plasma alanine transaminase,
suggesting reduction in the high-fat-induced toxicity. Moreover, oral fucoidan increases
plasma lipoprotein lipase (LPL) activity, apoA1 and peroxisome proliferator-activated re-
ceptor (PPAR) α/β levels. The combination of these effects can improve fatty acid oxidation
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and lower triglycerides. Another study showed that oral administration of fucoidan from
Sargassum henslowianum decreased TC, triglyceride and LDL-C levels on obese mice [23].

Subsequent studies attempted to correlate the effect of sulfated fucose-rich polysaccha-
rides on lipid levels with their molecular dynamics using compounds from echinoderms
with well-defined chemical structure [38]. FucCS from Isostichopus badionotus and SF from
Pearsonothuria graeffei showed potent effects on triglyceride lowering after oral adminis-
tration. In contrast, SF from I. badionotus showed only weak effects. The distinct effects
of these polysaccharides were correlated with their dynamics in solution: fucCS and SF
from P. graeffei and fucCS from I. badionotus form random linear chains in solution with a
few spherical aggregations, while SF from I. badionotus assumes a spherical conformation
in solution and exhibited high viscosity. This study shows a new perspective to explore
the structure versus pharmacological effect of sulfated fucose-rich polysaccharides at a
molecular level.

Table 3. Antidislipidemic effects of sulfated fucose-rich polysaccharides after oral administration.

Polysaccharide Dosage Regimen and Species Major Observations and Mechanism Proposed Ref.

Fucoidan from A. nodosum 100 mg/kg/day, 4 weeks, Mice

Improvement of reverse cholesterol transport and bile acid
synthesis related genes expression.

Reduction of plasma TC (~23.2%) and triglyceride (~48.7%)
levels.

[22]

Fucoidan from A. nodosum
50 and 100 mg/kg/day, 8 weeks,

ApoE−/− mice

Reduction of hepatotoxicity induced by high-fat diet;
increased plasma LPL activity, apoA1 level and protein
expression of PPARα/β (∼2-fold), improved fatty acid

oxidation and TG lowering (∼24.5%).

[37]

Fucoidan from S. henslowianum 100 mg/kg/day, 4 weeks, Obese
mice

Decreased cholesterol and LDL levels by ~23% and 18%,
respectively. [23]

Glycosaminoglycans from
M. scabra

5, 10, 20 and 50 mg/kg, 6 weeks,
Rats

Inhibition of HMG-CoA reductase and/or increased
lipoprotein lipase activity and metabolism of cholesterol. [36]

FucCS and sulfated fucan from
P. graeffei and from I. badionotus

40 mg/kg, 8 days, Rats on
high-fat diet

Hypolipidemic activity of sulfated polysaccharides is
determined by the molecular dynamics of the sulfated

polysaccharide.
[38]

LPL: lipoprotein lipase; PPAR: peroxisome proliferator-activated receptor; TG: triglycerides; HMG-CoA: 3-hidroxi-3-methyl-glutaril-
CoA reductase. Results obtained with fucoidans from marine brown algae are in blue while those with polysaccharides from
echinoderms are in red.

3. Anticancer Effect

Cancer is a leading cause of death, along with cardiovascular diseases. The hallmark
of cancer treatment has been conventional chemotherapy. Chemotherapeutic drugs target
rapidly dividing cells, such as cancer cells; however, these drugs also target normal cells,
such as intestinal epithelium, bone marrow and hair follicles. In an attempt to target
only cancer cells, a new generation of anticancer drugs arises using specific monoclonal
antibodies, small molecule inhibitors and immunotoxins [39]. However, side effects and
emerging resistance are still an issue, which increase the demand for new compounds that
could act as adjuvant therapy and/or increase efficacy [40]. Regarding this issue, some
data in the literature explore the anticancer effect of sulfated polysaccharides after oral
administration. Table 4 summarizes the major observations.

An example of the beneficial effect of these polysaccharides as anticancer drugs is the
observation that oral doses of fucoidan from Fucus vesiculosus delayed tumor growth in a
xenograft model and increased cytolytic activity of natural killer cells [41]. Athymic mice
were pre-treated with fucoidan daily for 2 weeks and then a human acute promyelocytic
leukemia cell line was injected subcutaneously. Significant antitumor activity was observed
without any sign of toxicity. Tumor development was clearly slower in the oral fucoidan-
treated mice than in the control group. An enhancement of the cytotoxic activity of splenic
natural killer cells in mice that were orally treated with fucoidan was also observed, which
could be in part responsible for its pharmacological effect. Interestingly, when fucoidan
from the same specie were orally administered for 21 days, starting on the seventh day
post-tumor implantation, significant reduction in tumor volume and tumor weight was
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observed when compared with the control group [42]. In vitro assays showed that fucoidan
could induce G0/G1 cell cycle arrest and caspase-dependent apoptosis in diffuse large
B-cell lymphoma culture. This indicates that oral fucoidan administration can inhibit tumor
growth and development.

Another observation of the anticancer effect of orally administered fucoidan was
obtained with Lewis lung carcinoma cells (LLC) [43]. These cells were inoculated into
the hypodermic dorsum of mice, and the tumor growth rate was assessed over 21 days.
A marked dose-dependent reduction in tumor volume and weight was observed in the
fucoidan-treated group, with the maximum effect observed with 144 mg/kg daily oral
dose. Expression of growth factors receptors showed a decrease in fucoidan-treated mice
compared with the control group. No signs of liver toxicity due to fucoidan administration
were observed. Continuous oral administration of fucoidan has a greater efficacy in
suppressing tumorigenesis than discontinuous doses, as expected.

In another xenograft model using human prostate carcinoma cells, oral administration
of fucoidan for 28 days significantly hindered the tumor growth and tumor vascular density,
as indicated by hemoglobin quantification assay [44]. The mRNA expression level of CD31
and CD105, biomarkers of endothelium, also declined. Analysis of the protein expression
and gene promoters related to angiogenesis showed that their levels were reduced after
oral fucoidan treatment, suggesting that fucoidan hindered tumor growth by inhibiting the
formation of new blood vessels.

The anticancer effect of fucoidan was also observed using the polysaccharide from
brown alga Fucus evanescens using a xenograft model. Colon cancer cells were inoculated
into athymic nude mice [24]. Oral treatment with fucoidan for 21 days inhibited tumor
growth compared with the vehicle-treated group. The antitumor effect of fucoidan was
associated with its inhibition of lymphokine-activated killer T-cell-originated protein kinase
(TOPK), highly expressed in many cancers. Tissues from each group were analyzed for
phosphorylation of TOPK downstream targets, and the expression of these markers was
decreased after 20 days of oral fucoidan treatment. Additional in vitro assays showed
that this fucoidan modulates EGF-induced neoplastic transformation of mouse epidermal
cells in a concentration-dependent manner. This pathway is related to the machinery
that controls fundamental cellular processes, such as growth, proliferation, differentiation,
migration and apoptosis. The polysaccharide also binds and decreases TOPK kinase activity
in vitro, although a high concentration is required for this effect. The antitumoral activity
of the echinoderm polysaccharides has not been tested so far after oral administration.
These well-defined structures may help to clarify the effect of sulfated polysaccharides on
cancer cells.

Table 4. Anticancer effects of sulfated fucose-rich polysaccharides after oral administration.

Polysaccharide Dosage Regimen and Species Major Observations and Mechanism Proposed Ref.

Fucoidan from F. evanescens 1–50 mg/ kg, 3 times/week/ up
to 21 days, Rats

Inhibition of lymphokine-activated killer T-cell-originated protein
kinase (TOPK) (64% at 400 µg/mL) and EGF-downstream

signaling. ↓Tumor growth 72% at 50 mg/kg.
[24]

Fucoidan from F. vesiculosus 150 mg/kg/body weight,
2 weeks, Athymic mice

Enhancement of the cytotoxic activity of splenic NK cells (~2.3
fold). [41]

Fucoidan from F. vesiculosus
100 mg/kg, 21 days starting on

the seventh day pos tumor
implantation, Mice

Induces G0/G1 cell cycle arrest (2–10%) and caspase-dependent
apoptosis. [42]

Fucoidan from F. vesiculosus 144 mg/kg, 26 days, Mice
Reduction of Transforming Growth Factor Receptor (TGFR)

levels (↓~50%) and its downstream signaling pathways.
Enhancement of TGFR degradation.

[43]

Fucoidan from F. vesiculosus 20 mg/kg, 28 days, Athymic
mice

Inhibition of angiogenesis by decreasing mRNA expression level
of angiogenesis related markers (↓~70%) and gene promoters. [44]

TOPK: Lymphokine-activated killer T-cell-originated protein kinase; EGF: epidermal growth factor; NK: natural killer; TGFR: transforming
growth factor receptor. Results obtained with fucoidans from marine brown algae are in blue.
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4. Immunomodulatory Effect

Immunomodulatory drugs can act at different levels of the immune system. Therefore,
different kinds of drugs have been developed that selectively either inhibit or intensify
the specific populations of immune responsive cells, i.e., lymphocytes, macrophages,
neutrophils, natural killer cells, and cytotoxic T lymphocytes. Immunomodulators affect
the cells systems by producing soluble mediators such as cytokines. Therefore, the rational
use of drugs with anti-inflammatory effects is necessary to avoid excessive inflammation
triggered by external agents or autoimmune diseases and drugs with immunostimulatory
effects to increase the immune response such as the production of specific antibodies. In
this context, oral administration of sulfated fucose-rich polysaccharides has also shown
some interesting effects. A summary of these effects is shown in Table 5.

Oral administration of fucoidan from Cladosiphon okamuranus had an antifibrogenesis
effect in an N-nitrosodiethylamine-induced liver fibrosis model in rats [26]. Two fractions of
fucoidan with distinct molecular weight were tested on this model after oral administration
for 12 weeks. A high-molecular-weight fraction of fucoidan prevents liver fibrosis, as
indicated by histological examination and hydroxyproline measurement. It also prevents
the increase in plasma levels of bilirubin, which occurs as a consequence of liver damage.
A low-molecular-weight fraction of fucoidan had only a modest effect on hydroxyproline
and bilirubin levels. This observation indicates that the biological effects of fucoidan may
differ depending on the molecular weight of the molecule. TGF-β1 appears to play a
major role in liver fibrosis and that the mRNA expression of this cytokine is upregulated
in this experimental model. The expression of this cytokine decreases significantly in oral
fucoidan-treated animals. Furthermore, a chemokine ligand, denominated CXCL12, is
markedly stained in the liver epithelium after the induction of experimental fibrosis. Oral
treatment with fucoidan prevents the increase of this chemokine expression.

Fucoidan from F. vesiculosus was tested on a model of alcohol-induced hepatic dis-
function [45]. Seven days of oral administration of this polysaccharide to mice prevents
the increase of transaminase levels. It also prevents the expression of TGF-β1 and COX-2,
both in the liver from the animal experimental model and in the hepatic cells in cul-
ture. Oral fucoidan also decreases mRNA expressions of hepatic inflammatory matrix
metalloproteinase-2. Histopathological evaluation showed that macrovesicular steatosis
of hepatocytes and focal hepatic necrosis associated with inflammatory cells infiltration
induced by high-fat diet was clearly reduced in rats treated with oral fucoidan.

The therapeutic effect of oral fucoidan on non-alcoholic fatty liver disease was tested
in rats using an experimental model induced by a high-fat diet [46]. Oral administration of
fucoidan for 4 weeks resulted in a decrease of body and liver index and aminotransferase
levels when compared with the non-treated group. Total cholesterol and triglycerides also
decreased in serum and liver, as well as serum fasting glucose, insulin levels and liver
inflammation of the animals fed with fucoidan.

Prevention of arthritis encompasses a variety of the immunomodulatory effects of
sulfated polysaccharides. In this particular event, oral administration of fucoidan from
Undaria pinnatifida for 25 days showed an anti-arthritic effect in a carrageenan-induced paw
edema model in rats [27]. Animals treated with fucoidan exhibited significant reduction
in paw edema, compared with a standard anti-inflammatory drug, although the doses
required to achieve similar protection differ significantly (150 vs 10 mg/kg body weight).
Histological analysis revealed that oral fucoidan and standard drug-treated groups ex-
hibited protective effects on joint architecture, such as less edema, cell infiltrations and
cartilage destruction. Furthermore, the increase in several biochemical parameters were
ameliorated by oral fucoidan administration, and this polysaccharide showed no signs
of toxicity at doses up to 1000 mg/kg. Fucoidan demonstrated concentration-dependent
antioxidant and anti-inflammatory activities in various in vitro assays, suggesting that its
anti-arthritic properties might be related to suppression of prostaglandin production and
other inflammatory mediators.
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Another study showed that oral administration of fucoidan from F. vesiculosus for
13 weeks to Goto-Kakizaki rats, which spontaneously develop mild hyperglycemia and
hyperinsulinemia, protected the animals from diabetes nephropathy [47]. The increased
fasting blood glucose, urea, serum creatinine and urine protein levels observed in positive
control animals were significantly decreased in GK rats that received fucoidan orally at
both doses. Fucoidan diminished levels of collagen IV in the renal cortex and decreased
expression of TGF-β1 and fibronectin in the renal cortex and in the glomerular mesangial
cells. Histopathological analysis revealed vacuolation of renal tubular epithelial cells and
inflammatory cell infiltration in the renal interstitium of the kidneys from the diabetic rats
compared with those from the control and fucoidan-treated rats. The increased expression
of NF-κB in the nuclei of glomerular mesangial cells was also attenuated significantly
by the oral administration of fucoidan, suggesting that this pathway is involved in the
nephropathy and in the anti-inflammatory activity of the polysaccharide.

Suppression of allergic symptoms is another event related to immunomodulatory
activity of fucoidan [28]. The effect of the polysaccharide in this particular event was inves-
tigated using fucoidan from S. japonica orally administered for 4 days to mice submitted to
a passive cutaneous anaphylaxis reaction. The ear edema was evaluated 2 h after antigen
challenge. Fucoidan showed an inhibitory effect only after oral but not intraperitoneal
administration. The mechanism proposed is related to an increase in galectin-9 expression
in intestinal epithelial cells and in the blood of mice fed with fucoidan. In fact, adminis-
tration of anti-galectin 9 antibody suppressed fucoidan effects on ear edema. Moreover,
this polysaccharide prevented the interaction of IgE and mast cells, an important event
that mediates allergic responses. These data suggest that dietary intake of fucoidan from
Saccharina japonica may prevent allergic symptoms.

The impact of the molecular weight on the anti-inflammatory activity of sulfated
fucan from the sea cucumber Acaudina molpadioides with varying degrees of polymerization
was also reported [48]. The SF was tested on an animal model of intestinal mucositis after
oral administration for 26 days. Histological analysis revealed that morphology of the
intestinal mucosa of fucoidan-treated animals was similar to the healthy group and that
this effect was more pronounced with the high-molecular-weight fractions. Interestingly,
these fractions regulated Th1/Th2 immune balance processes by altering IFN-γ/IL-4 ratio,
while the oral administration of intact fucoidan had no effect. Intact SF and the high-
molecular-weight fractions enhanced IgA protein expression levels in intestinal mucosa
and strengthened intestinal adaptive immunity. Another interesting aspect of this work
was the analysis of plasma concentration achieved by the oral administration of the SF.
The low-molecular-weight fractions achieved high plasma levels when compared with
unfractioned polysaccharide; therefore, the absorption and bioavailability of SF are likely
to depend on the molecular size of the polysaccharide.

Another approach investigated the anti-inflammatory effect of oral administration
of fucCS from the sea cucumber I. badionotus for 7 days. In contrast with the highly
heterogeneous fucoidan from brown algae, this polysaccharide has a regular repetitive
structure containing mostly 2,4 disulfated fucose units, as shown in Figure 1c. When tested
on an experimental model of colitis induced by dextran sulfate, oral fucCS attenuated
the body weight loss, expression of colonic TNF-α gene and colon shortening caused by
experimental colitis. The authors proposed that this protective effect might be due to
downregulation of NF-kB and downstream genes such as COX-2 and TNF-α and a benefic
profile on gut microbiota [49].
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Table 5. Immunomodulatory effects of sulfated fucose-rich polysaccharides after oral administration.

Immunomodulatory
Effect Polysaccharide Dosage Regimen and Species Major Observations and Mechanism

Proposed Ref.

Antifibrotic effect Fucoidan from C. okamuranus

Free access to drinking water
containing 2% low (28.8 kDa)

or high (41.4 kDa) MW
fractions, 12 weeks, Rats

↓TGF-β1 mRNA expression and the
levels of chemokine ligand CXCL12 in

the liver (~3 fold).
[26]

Hepatoprotection Fucoidan from F. vesiculosus 30 or 60 mg/kg, 7 days, Mice ↓expression of liver TGF-β1(~40%)
and COX-2, ↑antioxidant pathways. [45]

Hepatoprotection Fucoidan from F. vesiculosus 100 mg/kg, 4 weeks, Rats on
high-fat diet

↓TNF-α, IL-1β and MMP-2 mRNA
expressions (~50–70%). Prevention of

the increase in serum lipids and
glucose levels induced by HFD.

[46]

Nephroprotection Fucoidan from F. vesiculosus 50 and 75 mg/kg, 13 weeks,
Rats

Decreased levels of collagen IV, NF-κB,
TGF-β1 and fibronectin in the renal

cortex and in the glomerular mesangial
cells.

[47]

Anti-arthritic and
antioxidant effects Fucoidan from U. pinnatifida 50 or 150 mg/kg, 25 days, Rats

Downregulation of COX-2 and other
inflammatory mediators (68%

inhibition of in vivo inflammation).
[27]

Immunostimulatory
effects Fucoidan from U. pinnatifida 300 mg daily,20 weeks, Human

Higher immunogenicity of influenza
trivalent vaccine than control group

and increase of natural killer cell
activity.

[50]

Suppression of allergic
symptoms Fucoidan from S. japonica 100–400 µg/day,4 days, Rats

Prevention of the interaction of IgE
and mast cells via an increase in

galectin-9 mRNA expression (↑~50%)
in intestinal epithelial cells.

[28]

Anti-inflammatory effect FucCS from I. badionotus 80 m/kg, 7 days, Rats

Downregulation of NF-kB and
downstream genes such as COX-2 and

TNF-α and a benefic effect on gut
microbiota.

[49]

Anti-inflammatory effect

Sulfated fucan from
A. molpadioides with varying
degrees of polymerization

(10–500 kDa)

50 mg/kg, 26 days, Mice

Regulation of IFN-γ/IL-4 ratio (0.53 to
0.70) and Th1/Th2 response, IL-6 and

IL-10 levels, enhanced IgA protein
expression levels (~35%) in intestinal

mucosa.

[48]

CXCL12: C-X-C motif chemokine ligand 12; TNF-α: tumor necrosis factor; TGF-β: transforming growth factor beta; NF-kB: nuclear factor
kappa B; COX-2: ciclooxigenase 2; IFN-γ: interferon gamma; IgA: immunoglobulin A; HFD: high-fat diet. Results obtained with fucoidans
from marine brown algae are in blue while those with polysaccharides from echinoderms are in red.

5. Effects on Diabetes

Diabetes is a highly prevalent disease characterized by high levels of blood sugar, due
to deficiency of insulin concentration and/or activity. Pharmacological therapy may be
required in order to maintain normal level of blood glucose and to delay or prevent the
development of diabetes-related health problems. The first choice in type 2 diabetes is oral
hypoglycemic drugs, but side effects, toxicity and unwanted drug–drug interactions can
compromise the effectiveness of the treatment [51]. Nevertheless, the idea of a diet rich in
sulfated fucose-rich polysaccharides with hypoglycemic effect as adjuvant therapy may be
an interesting alternative. A summary of these effects is shown in Table 6.

Oral administration of fucoidan from F. vesiculosus for 13 weeks to Goto-Kakizaki rats
reduced high blood glucose and recovers serum insulin levels [52]. Moreover, histopatho-
logical analysis of the pancreas also demonstrated that fucoidan markedly reduced islet
atrophy, fibrosis and inflammation. Additional in vitro assays showed that treatment with
the phosphodiesterase inhibitor significantly increased fucoidan-induced insulin secretion,
whereas treatment with the adenylyl cyclase inhibitor significantly decreased fucoidan-
induced insulin secretion. These results suggested that the cAMP signaling pathway may
be important in the antidiabetic effect of fucoidan. A further study showed that the polysac-
charide inhibits dipeptidyl peptidase-IV, which prolongs the action of incretins, reduces
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glucose and increases insulin production. This is another possible mechanism involved in
the antihyperglycemic effect of fucoidan [25].

A detailed study about the effect of oral sulfated fucose-rich polysaccharides on
diabetes employed an experimental model in mice inducing type 2 diabetes by high
fat/sucrose diet [53]. The authors tested a fucCS from the sea cucumber Cucumaria frondose.
Oral administration for 19 weeks stimulated insulin-dependent glucose uptake in skeletal
muscle cells and improved insulin sensitivity. Oral fucCS treatment promoted insulin-
stimulated phosphorylation of phosphoinositide 3-kinase and protein kinase B, the major
regulators of glucose uptake response to insulin in skeletal muscle and increased GLUT4
translocation. It also increased mRNA expression levels of these regulators in the skeletal
muscle of oral polysaccharide-treated mice. Furthermore, fucCS increased hepatic glycogen
content and restored the activities of key enzymes for glucose metabolism in the liver to
near-control levels [54]. Therefore, oral fucCS can promote hepatic glycogen synthesis by
regulating gene expression.

A further study attempted to investigate the mechanisms involved in the favorable
effect of fucCS on experimental diabetes [33]. Animals were submitted to a high-fat/sucrose
diet, which disrupts insulin signaling and thus results in endoplasmic reticulum stress
and inflammation. After oral administration of oral fucCS for 19 weeks, several cytokines
and inflammatory markers were reduced in the serum and in the liver of treated animals.
Analysis of mRNA expression showed that the polysaccharide attenuates the increase of
several markers of liver endoplasmic reticulum stress, inhibits important inflammatory
signaling pathways and improves insulin sensitivity in the liver.

The antidiabetic effect of sulfated fucose-rich polysaccharides extracted from 10 low-
edible-value sea cucumber species was tested after oral administration for 8 weeks using a
classic experimental model of diabetes induced by streptozotocin in rats [32]. A variety
of effects were observed, such as reduced polyphagia and loss of body weight, decreased
fasting blood glucose level and improved glucose tolerance by increasing insulin secretion
and enhancement of its sensitivity. A significant improvement of antioxidant enzymes
was also observed indicating a decrease in inflammatory status and oxidative stress. The
sulfated polysaccharides decrease the levels of transaminases, suggesting a repair of liver
damage associated with the experimental model. They also restored normal levels of
TNF-α content in the serum and enhanced synthesis of liver glycogen to decrease blood
glucose level. Furthermore, they reduced levels of serum triacylglycerol, TC and LDL-C
and increased HDL-C/LDL-C values, which indicates that oral administration of sulfated
fucose-rich polysaccharides can alleviate dyslipidemia resulting from diabetes. In this study,
the authors did not show a clear correlation between the structure of the polysaccharide
and its biological effect. Nevertheless, the sulfated polysaccharides from C. frondosa and
Thelenota ananás seem to show more potent effects.

Table 6. Hypoglycemic effects of sulfated fucose-rich polysaccharides after oral administration.

Polysaccharide Dosage Regimen and Species Major Observations and Mechanism Proposed Ref.

Fucoidan from F. vesiculosus 75 m/kg, 13 weeks, Rats
Reduced islet atrophy, fibrosis and inflammation

mediated by cAMP signaling pathway.
Inhibition of dipeptidyl peptidase-IV.

[25,52]

High molecular weight fucoidan
from Mozuku (C. okamuranus) 1620 mg, 12 weeks, Human

Alterations in GLP-1 (from 6.42 ± 3.52 to
4.93 ± 1.88 pmol/L) and hemoglobin A1c levels

(from 6.73 ± 1.00 to 6.59 ± 1.00).
[29]

Fucoidan extract from
Laminaria ssp. 500 mg, 3 months, Human

Decrease in diastolic blood pressure and
LDL-C (↓13%) with increase in insulin levels (↑

30%), HOMA β-cell, and HOMA IR.
[29,55]

FucCS from C. frondosa 20 or 80 mg/kg, 19 weeks, Mice

↑insulin-stimulated phosphorylation of PI3K and
PKB;

↑GLUT4 translocation
↑glycogen synthesis-related gene expression;
↓liver ER stress markers, ROS, TNF-α and other
inflammatory markers levels in serum and liver;
↓inflammatory signaling pathways in the liver.

[33,53,54]
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Table 6. Cont.

Polysaccharide Dosage Regimen and Species Major Observations and Mechanism Proposed Ref.

Sulfated polysaccharides from
10 sea cucumber species 200 or 400 mg/kg, 8 weeks, Rats

↓TNF-α, ↑antioxidant enzymes;
↑glucose metabolism related gene signaling

pathway.
[32]

GLP-1: glucagon-like peptide 1; PI3K: phosphatidylinositol 3-kinase; PKB: protein kinase B; GLUT4: glucose transporter 4; ER: endoplasmic
reticulum; ROS: reactive oxygen species. Results obtained with fucoidans from marine brown algae are in blue while those with polysaccharides
from echinoderms are in red.

6. Thrombosis and Hemostasis

Thromboembolic events are expanding due to the aging of the population and a more
precise diagnosis. Heparin is the classic anticoagulant used in the treatment and prevention
of thrombosis, but its use is limited to the intravenous or subcutaneous route, and it has
significant adverse effects [56–58]. New oral anticoagulants are available, but bleeding is
still a concern [59]. Therefore, there is a demand for new antithrombotic drugs.

The antithrombotic effects were the first significant pharmacological effects reported
for the sulfated fucose-rich polysaccharides [60–62]. Several authors addressed the par-
enteral use of fucoidan and echinoderm polysaccharides in experimental models of venous
and arterial thrombosis [63–65]. The initial studies associate the mechanism of action of
these molecules with heparin, the most traditional anticoagulant sulfated polysaccharide.
However, recent studies using sea cucumber fucCS showed that the anticoagulant mecha-
nism of this compound is serpin-independent, inhibiting the assembly of the tenase and
prothrombinase complexes and the generation of thrombin and factor Xa [66]. In addition
to the distinct mechanism of action, the preserved antithrombotic effect after oral adminis-
tration has made this sulfated polysaccharide an interesting candidate for the development
of new drugs [20,67]. Table 7 summarizes the effects of sulfated fucose-rich polysaccharide
in hemostasis.

An initial study about the antithrombotic effect of oral fucoidan employed a low-
molecular-weight fraction obtained by chemical degradation of the native polysaccharide
from L. japonica [68]. After oral administration for 30 days to rats, the polysaccharide
prolonged aPTT and TT values, increased TFPI and suppressed thromboxane levels in rat
plasma. It also inhibited thrombin-induced platelet aggregation and enhanced fibrinolysis.
The antithrombotic effect was tested in an arterial thrombosis model induced by electrical
stimulus. The low-molecular-weight fucoidan prolonged the time for formation of the
thrombus. Unlike aspirin, the low-molecular-weight fucoidan did not decrease platelet
number and fibrinogen level after oral administration for 30 days, which suggest a safe
antithrombotic profile.

The first report of the antithrombotic effect of an echinoderm polysaccharide after oral
administration employed a fucCS from the sea cucumber Ludwigothurea grisea [20]. The
polysaccharide increased aPTT and TT values and decreased thrombin residual activity.
A dose-dependent antithrombotic effect is observed using a vena cava and an arterial
shunt thrombosis models in rats. After removal of the fucose branches, the antithrombotic
activity of the polysaccharide was abolished. The dose necessary to achieve complete
inhibition of the thrombus formation was 50 mg/kg administered in aqueous solution. A
great achievement was the encapsulation of the polysaccharide on gastro-resistant tablets,
which prevents the degradation in the acid juice fluid [67]. This approach allowed the
dose of fucCS to be decreased to 25 mg/kg and to still observe the same anticoagulant and
antithrombotic effects. FucCS does not alter bleeding tendency or arterial pressure after
oral administration, which is the major concern with this polysaccharide due to activation
of the contact system and the release of bradykinin [69].

Recently, oligosaccharides containing 6→18 units were obtained by controlled depoly-
merization of fucCS from the sea cucumber P. graeffei [70]. These oligosaccharides were
the active ingredient of gastro-resistant microcapsules using a chitosan-coated alginate
system and were orally administered to rats in a single dose of 10 or 50 mg/kg. Micro-
capsules containing the oligosaccharides prolonged aPTT values with a stronger intensity
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compared with microcapsules containing native fucCS. In a venous thrombosis model, oral
administration of 50 mg/kg fucCS oligomers delivered by aqueous solution exhibited a
weaker antithrombotic effect than observed with gastro-resistant microcapsules, probably
due to the partial removal of sulfated fucose branches in the acid gastric fluid. No bleeding
tendency was observed for fucCS oligomers tested on gastro-resistant microcapsules. Using
an intestinal Caco-2 cell system, the authors confirmed that fucCS oligomers showed higher
absorption than native polysaccharide.

A very curious observation comes from a study involving fucoidan from F. vesiculosus
and Laminaria japonica orally administered twice daily in a multiweek dose-escalation
study of dogs with hemophilia A [71]. A dose-dependent decrease in bleeding time
score and improved clotting dynamics was observed, indicating a procoagulant effect of
these polysaccharides after oral administration. In vitro assays showed that this fucoidan
inhibited exogenous TFPI activity and accelerated the clotting time of human hemophilia
A and B plasma. Current methods of hemophilia treatment are expensive, challenging and
involve regular administration of clotting factors. While gene therapy is expensive and
still under investigation, additional therapeutic options have already explored heparin-
like sulfated polysaccharides, including pentosan polysulfate and fucoidan, with unique
procoagulant activity for bleeding disorders [72]. These results explore another aspect of
the effects of sulfated polysaccharides on the coagulation system. Interestingly, sulfated
polysaccharides from red algae have already shown a dual effect on coagulation either as a
pro- or anticoagulant drug [73].

Table 7. Effects on hemostasis of sulfated fucose-rich polysaccharides after oral administration.

Polysaccharide Dosage Regimen and Species Major Observations and Mechanism Proposed Ref.

Low molecular weight fucoidan
(Mw7.6 kDa) from L. japonica 400 and 800 mg/kg 30 days, Rats

↑TFPI (4.5 to 110.2 U/mL) and 6-keto-PGF1α
levels (32.8 to 50.4 U/mL).

↑Fibrinolysis (tPA and PAI-1 levels)
↓Thromboxane A2 levels.

[68]

Fucoidan from L. japonica 400 mg for 5 weeks to humans ↑6-keto-PGF1a (44 to 113 ng/L)
↑fibrinolysis. [30]

Fucoidans from F. vesiculosus and
L. japonica

5–20 mg/kg, Twice daily in a
multiweek escalation dose, Dogs Procoagulant effect, Inhibition of TFPI activity. [71]

Native and gastro-resistant tablets of
fucCS from L. grisea

5–50 mg/kg, Single dose or
5 days, Rats

Serpin-independent anticoagulant effect by
inhibiting the formation of factor Xa and/or IIa

through the procoagulants tenase and
prothrombinase complexes.

Antithrombotic effects at 50 mg/kg: ~85% vs. 55%
inhibition of the venous and arterial thrombus

weight, respectively.

[20,66,67]

Gastro-resistant tablets containing
FucCS oligomers (6 to 18 saccharide
units, Mw 3,4 kDa) from P. graeffei

10 or 50 mg/kg
Single dose,

Rats

Anticoagulant and antithrombotic effects (82% of
venous thrombosis inhibition at 50 mg/kg). [70]

TFPI: tissue factor pathway inhibitor; 6-keto PGF1α: 6-keto prostaglandin F1α; tPA: tissue plasminogen activator; PAI-1: plasminogen activator
inhibitor. Results obtained with fucoidans from marine brown algae are in blue while those with polysaccharides from echinoderms are in red.

7. Clinical Trials

Preclinical studies using animal models are important to assess the effectiveness of
fucose-rich polysaccharides in different pathologies and to elucidate the mechanisms in-
volved in their mechanism of action. Clinical trials are the next step for the development
of these polysaccharides as new drugs and/or using marine organisms as a food supple-
ment, and some studies in the literature address this issue. These aspects are also under
investigation, and we describe the major observations in this review.

Very few studies report the anticancer effect of fucoidan in humans. Some clinical trials
report an improvement in the quality of life of patients who have used fucoidan orally as
an adjuvant therapy. Cancer patients receiving oral fucoidan for 4 weeks showed reduced
levels of proinflammatory cytokines, including IL-1β, IL-6 and TNF-α [74]. Interestingly,
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the responsiveness of IL-1β was significantly correlated with overall survival, suggesting
that this might be a useful prognostic biomarker for advanced cancer patients receiving
fucoidan. Another study examined the effects of fucoidan extracted from C. okamuranus
on natural killer cell activity in cancer survivors [75]. Male patients treated with 3 g of
fucoidan for 6 months showed an enhanced activation of natural killer cells. Fucoidan
also has the potential for adjuvant therapy and may also reduce chemotherapy toxicity for
cancer patients [76,77].

Another study in humans involves the immunogenicity response to influenza trivalent
vaccine in the elderly, whose antibody production is generally attenuated [50]. Oral intake
of fucoidan from seaweed U. pinnatifida for 20 weeks (300 mg daily) increased antibody
titers, which is most evident against influenza B strain. This effect may be related to NK
cell activity. This suggest that popular seaweeds containing fucoidan that are eaten daily
in Japan could have immunostimulatory effects in enhancing vaccination efficacy. Another
study showed no decrease of osteoarthritis symptoms after a 300 mg daily oral dose of
F. vesiculosus extract (85% fucoidan) over a 12-week period [78].

Studies of the effect of sulfated polysaccharides on diabetes after oral adminis-
tration were also reported in humans [29]. Thirty patients with type 2 diabetes were
selected for oral intake of a high-molecular-weight fucoidan from Mozuku seaweed
for a 12-week period. Oral fucoidan altered hemoglobin A1c and levels of glucagon-
like peptide-1 and increased the number of bowel movements and stool frequency.
These effects were associated with a beneficial control of diabetes. Another random-
ized, double-blind, placebo-controlled clinical trial was carried out with 25 overweight
volunteers to evaluate the effect of fucoidan administration on insulin secretion and
sensitivity [55]. A total of 13 patients received an oral dose of 500 mg of fucoidan once
daily before breakfast and 12 patients received placebo for 3 months. A significant
decrease in diastolic blood pressure and LDL levels with an increase in insulin levels
were observed after oral fucoidan administration. There were no significant adverse
events associated with the long-term intake of fucoidan in both studies.

Human studies reporting the effect of sulfated polysaccharides on hemostasis are
scarce, as in the case of other biological effect. In one study, oral administration of capsules
containing 400 mg fucoidan from L. japonica to healthy participants for 5 weeks resulted in
increased fibrinolysis and antiplatelet effects [30]. Fucoidan was not detected in the plasma,
probably due to low polysaccharide concentrations and/or the sensitivity of the method
used. This is one of the challenges associated with assessing the pharmacokinetics of orally
administered sulfated polysaccharides.

8. Future Perspectives: Pharmacokinetics Studies and Prebiotic Effects

This review summarizes the therapeutic effects achieved after oral administration of
sulfated polysaccharides in a variety of pathological processes. These observations were
obtained mainly using animal experimental models, although some preliminary data have
already been reported in humans. These results are not limited to the therapeutic effect
but also highlight the proposed molecular mechanisms involved in the pharmacological
action of these polysaccharides. Further studies are necessary to further understand their
pharmacokinetic and the modulating effect on the intestinal microbiota.

In the case of heparin, a paradigm of an anticoagulant drug with carbohydrate
structure, the transition from intravenous to subcutaneous administration was associ-
ated with the development of low-molecular-weight heparin. This led to the develop-
ment of new analytical methods to study its pharmacodynamics, resulting in the now
widespread methods to determine the plasma concentration of heparins based on anti-
FXa and anti-FIIa assays [56]. Likewise, there is a need to develop sensitive methods for
the study of the pharmacokinetics/pharmacodynamics of fucose-rich polysaccharides
after their oral administration.

A similar approach was employed for oral administration of fucCS. The plasma con-
centration of the polysaccharide was determined using ex vivo coagulation assays and
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purified proteases [67]. The results allowed the correlation of the anticoagulant with its
antithrombotic effects. However, it was not possible to evaluate tissue distribution, minor
structural modifications and urinary elimination of the compound. Such analyses are lim-
ited by the very low concentration achieved by the polysaccharide after oral administration.
We need to validate new methods for fucCS labeling and quantification as a critical step for
the pharmacokinetic studies.

A partially depolymerized fucCS, administered as a single oral dose of 50 mg/kg,
was detected in plasma between 0.5 and 7.5 h using a chromatographic method. Only
0.1% of the dose was detected in the urine accumulated during 24 h [79]. It is very
challenging to measure the plasma levels of these polysaccharides analytically because of
the heterogeneous molecular weight, branched structure and similarity in monosaccharide
composition to mammalian polysaccharides.

Some studies report other sensitive methods to assess the pharmacodynamics of
fucose-rich polysaccharides after oral administration. In one study, the authors employed
an antibody against fucoidan extracted from C. okamuranus and developed a sensitive ELISA
method for the measurement of its serum and urinary concentration after a single oral dose
of fucoidan (1 g) in ten healthy volunteers [80]. The anti-fucoidan antibody specifically
recognized fucoidan from C. okamuranus and F. vesiculosus with different specificities, with
low cross-reactivity with heparin and heparin-like substances. Fucoidan concentration in
serum and urine was detectable 3 h and mostly 6 h after its administration. The time and
peak concentrations varied among individuals, suggesting a high variability of fucoidan
absorption in the intestine. The concentration of fucoidan was higher in the urine than
in the serum. The molecular weight of the ingested fucoidan remained unchanged in the
serum, whereas the fucoidan excreted in the urine showed an expressive decrease in size.
Possibly, fucoidan degradation occurs mostly in the excretory system but not during its
absorption through the gastrointestinal tract by local microbiota. Using the same method,
a further study confirmed fucoidan in the urine of Japanese volunteers after 100 g of oral
intake of seaweed C. okamuranus [81].

Another work using fucoidan antibody revealed that the polysaccharide accumulated
in jejunal epithelial cells, mononuclear cells in the jejunal lamina propria and sinusoidal
non-parenchymal cells in the liver of rats fed standard chow containing 2% fucoidan for
one or two weeks [82]. Fucoidan was detected in the sinusoids of hepatic lobules, which
suggested its internalization by macrophages. The intestinal absorption was also observed
using an intestinal Caco-2 cells system in vitro.

One of the major challenges associated with assessing the bioavailability of orally
administered fucoidan has been the lack of a sensitive and accurate analytical method that
can quantify fucoidans in the blood since this polysaccharide exhibits low anti-FXa and
anti-FIIa activities compared with heparin. However, one study evaluated the pharmacoki-
netics and tissue distribution of fucoidan in rats after a single-dose oral administration of
100 mg/kg of fucoidan from F. vesiculosus based on its anti-Xa activity. The Cmax in plasma
was observed at 4 h after oral administration. Fucoidan accumulated mainly in the kidney
and was also present in liver and spleen and showed a relatively long absorption time and
extended circulation in the blood [83]. Different analytical methods are reported for the
evaluation of pharmacokinetic parameters of marine-derived drugs [84].

The classic mechanism of action proposed for the sulfated fucose-rich polysaccharides
after oral administration is summarized in Figure 2A. The polysaccharides are absorbed
through the gastrointestinal tract, probably by endocytosis due to their high molecular
weights [85], reach appropriate plasma concentration and exert their therapeutic action.
Subsequently, the polysaccharides are distributed to different tissues, metabolized and
excreted. Structural modifications might occur during these processes.

Moreover, there is evidence for another mechanism involved in the therapeutic effect
of fucose-rich sulfated polysaccharides administered orally, which involves modification
of the gut microbiota induced by the polysaccharides [86]. Probiotics are important mi-
croorganisms in the intestinal microflora. When colonized in adequate amounts, they
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confer a health benefit to the host by modulating several physiological activities [87]. Gut
microbiota degrade polysaccharides and produce short-chain fatty acids, which might play
an important role in maintaining the epithelial barrier function, regulating the immune
responses and metabolic processes as well as inhibiting tumor development [88–91]. Mod-
els of gut microbe cultivation in vitro provide a convenient way to study the structural
modifications of polysaccharides during digestion and absorption in the gastrointestinal
tract and have already demonstrated a large number of applications in the field of intestinal
fermentation of polysaccharides and oligosaccharides [92,93].
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Figure 2. Pharmacological effects of sulfated polysaccharides after oral administration. (A) As the
polysaccharides pass through the gastrointestinal tract, they are absorbed, probably by endocytosis
due to their high-molecular-weight, and reach the bloodstream. Subsequently, they are distributed
among various tissues and excreted unchanged and/or metabolized, as classically described for
orally active drugs. (B) Alternatively, polysaccharides can exert a prebiotic effect by modulating
the intestinal microbiota, which will produce short-chain fatty acids that can pass the intestinal
mucosa by passive diffusion and reach the bloodstream, inhibiting cholesterol synthesis and reducing
cardiovascular risk.

This particular aspect was investigated using a fucCS from the sea cucumber
P. graefei [31]. The incubation of the polysaccharide with human intestinal flora in a
simulated intestinal digestion model in vitro induced changes of intestinal microflora and
degradation of the polysaccharide. Three samples of these bacteria utilize fucCS as a carbon
source for their growth and produced short-chain fatty acids that decreased the pH of
the media. A high content of acetate, propionate and butyrate was observed, indicating
that they were the major products of microbial metabolism. Propionic acid can inhibit
cholesterol synthesis in the liver, promote redistribution of cholesterol in plasma and liver,
inhibit lipogenesis enzymes and reduce plasma lipid levels [94]. This activity could be
responsible, in part, for the hypolipidemic effect of fucCS after oral administration. Bifi-



Mar. Drugs 2021, 19, 425 16 of 20

dobacterium, Bacteriodes prevotella and three species of Clostridium seemed to be involved in
the metabolism of fucCS. These observations are summarized in Figure 2B.

Another study reported that fucCS from S. japonicas was not broken down under
salivary and gastrointestinal digestion [95]. Due to the inhibition of pancreatic lipase
in vitro by increasing concentrations of fucCS, the authors hypothesized that fucCS may
work at the level of the gastrointestinal tract itself and/or after its absorption for the
hypolipidemic effect.

The intestinal flora of part of the human population can ferment fucoidan to afford
low-molecular-weight oligosaccharides [96], while another research had a different conclu-
sion [97]. This suggests that the consumption of non-sterile marine foods with associated
bacteria may have been the route by which these novel enzymes were acquired in human
gut. Interestingly, the consumption of C. okamuranus algae by Japanese volunteers was
associated with increased oral absorption of fucoidan contained in algae [98,99]; therefore,
these contradictory results may be due to individual differences between species and strain
level, which results in different metabolic capabilities of the microbiota to hydrolyze the
molecules. Obviously, it also may depend on the polysaccharide structure. Further research
is necessary to assess whether these changes in both bacterial composition and sulfated
polysaccharide degradation also occur in vivo, and critically, whether such changes are
responsible for some of the biological effects of these sulfated fucose-rich polysaccharides
after oral administration.

9. Conclusions

Sulfated fucose-rich polysaccharides from marine organisms are unique molecules
with various pharmacological effects. They might have promising therapeutic applications
in different diseases. There has been an increasing interest in the therapeutic use of natural
products for treatment of chronic cardiovascular and/or inflammatory diseases. The
fact that these sulfated polysaccharides preserve their pharmacological effect after oral
administration opens the perspective for the development of new drugs and/or the use of
marine organisms as a source of functional food. High doses of the orally administered
sulfated polysaccharides from marine organisms are employed in most studies. This limits
their therapeutic use. Further larger trials are required to establish the role of fucoidan
in several diseases. More efficient techniques of labeling sulfated polysaccharides will
help to understand the pharmacokinetic parameters of these molecules. In recent years,
much attention has been given to the prebiotic function of bioactive polysaccharides.
Elucidating the linkage between the sulfated polysaccharides and gut microbiota will help
to understand the biological effects of these molecules after oral administration.
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