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Oscillation is one of themost important phenomena in the chemical reaction systems in living cells.The general purpose simulation
algorithms fail to take into account this special character and produce unsatisfying results. In order to enhance the accuracy of the
integrator, the second-order derivative is incorporated in the scheme. The oscillatory feature of the solution is captured by the
integrators with an exponential fitting property. Three practical exponentially fitted TDRK (EFTDRK) methods are derived. To
test the effectiveness of the new EFTDRK methods, the two-gene system with cross-regulation and the circadian oscillation of
the period protein in Drosophila are simulated. Each EFTDRK method has the best fitting frequency which minimizes the global
error.The numerical results show that the new EFTDRKmethods are more accurate andmore efficient than their prototype TDRK
methods or RK methods of the same order and the traditional exponentially fitted RK method in the literature.

1. Introduction

The qualitative analysis and quantitative simulation of gene
expression and regulation play an important role in under-
standing the dynamics of complex processes in cells. Ordi-
nary differential equations (ODEs) have proved to be one of
the powerful tools for modeling the complex dynamics of
genetic regulation in cells, where the cellular concentrations
of mRNAs, proteins, and other molecules are assumed to
vary continuously in time (see, e.g., de Jong [1], Widder et
al. [2], Polynikis et al. [3], Altinok et al. [4], and Gérard and
Goldbeter [5] and the references therein).

Due to the nonlinearity of the ODE models, the closed
form of solution is usually not acquirable.Therefore, in order
to reveal the dynamics of such gene regulatory systems,
one usually resorts to numerical simulation. Up till now,
differential equations of gene regulatory systems are mostly
simulated by Runge-Kutta (RK) methods, especially by the
classical fourth-order Runge-Kutta method, or by the Runge-
Kutta-Fehlberg adaptive method (see Butcher [6, 7] and
Hairer et al. [8]).

As is often observed in experiments, in a variety of
cell processes, genes exhibit an oscillatory behavior. Among
examples are sustained oscillations associated with circadian

clocks, enzyme synthesis, or the cell cycle (see Goldbeter [9]
and Jolley et al. [10]). Unfortunately, when applied to these
oscillatory systems, the general purpose RK method often
fails to produce satisfactorily efficient numerical results since
it did not take into account the special structure of the true
solution. There are mainly two deficiencies of the classical
RK methods: (i) they cannot produce as accurate numerical
results as required even if they have a very high algebraic
order and (ii) the true dynamical behavior of the system
cannot be preserved as expected in long-term integration.

Recently, some authors have proposed to adapt traditional
integrators to problems whose solutions are oscillatory or
periodic (see Bettis [11], Gautschi [12], Mart́ın and Ferándiz
[13], and Raptis and Simos [14]). Bettis [15] constructed a
three-stage method and a four-stage method which can solve
the equation 𝑦 = 𝑖𝜔𝑦 (𝑖2 = −1) exactly. Very recently You
[16] developed a new family of phase-fitted and amplification
fitted methods of RK type which have been proved very
effective for genetic regulatory systems with a limit-cycle
structure. You et al. [17] considered a splitting approach for
the numerical simulation of genetic regulatory networks with
a stable steady state structure. The numerical results of the
simulation of a one-gene network, a two-gene network, and
a p53-mdm2 network showed that the new splitting methods
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constructed in this paper are remarkably more effective and
more suitable for long-term computation with large steps
than the traditional general purpose Runge-Kutta methods.

Motivated by the work of Chan and Tsai [18] and
Fang et al. [19] on the two-derivative Runge-Kutta meth-
ods (TDRK), the objective of this paper is to develop a
novel type of exponentially fitted two-derivative Runge-
Kutta (EFTDRK) methods for simulating genetic regulatory
systems with an oscillatory structure. These new numerical
integrators respect the limit cycle structure of the system
and are expected to be more accurate than the traditional
RK methods in the long-term integration of gene regulatory
systems. In Section 2 we present the main models: one is
for gene systems with cross regulations and the other is for
the circadian oscillation of the period protein in Drosophila.
In Section 3, three EFTDRK methods of algebraic order six
are constructed. In Section 4 the new EFTDRK methods are
applied to the simulation of the two genetic regulatory sys-
tems given in Section 2 and their efficiency is compared with
that of a sixth-order traditional RK and a sixth-order TDRK
method and three exponentially fitted RKmethods. Section 5
is devoted to some conclusive remarks and discussions. The
mathematical theory of order conditions and the evaluation
of best fitting frequencies for EFTDRKmethods are presented
in the Appendix.

2. Models

2.1. Cross-Regulation Systems. An 𝑁-gene regulatory system
can bemodeled by a systemof ordinary differential equations,
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In particular, we will be concerned with the following
two-gene system:
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are the Hill functions for activation and inhibition, respec-
tively, 𝑛

1
and 𝑛
2
are the Hill coefficients, and 𝜃

1
and 𝜃
2
are the

thresholds.

2.2. Circadian Rhythms. Another model we are interested
in is for circadian oscillations in the period protein (PER)
in Drosophila. A crucial mechanism for oscillations in the
model is the negative feedback exerted by nuclear PER on
the production of per mRNA. This negative feedback will be
described by a Hill type equation, where the Hill coefficient 𝑛
represents the degree of cooperativity, and 𝐾

𝐼
represents the

threshold inhibition constant. It is assumed that per mRNA
is synthesized in the nucleus and immediately transfers to
the cytosol, where it accumulates at a maximum rate V

𝑠
;

there it is degraded enzymatically, in a Michaelian manner,
at a maximum rate V

𝑚
. The rate of synthesis of PER is

characterized by an apparent first-order rate constant 𝑘
𝑠
. PER

experiences a series of phosphorylations (Edery et al. [20]).
For simplicity, it is assumed that there are three states of the
protein: unphosphorylated, monophosphorylated, and bis-
phosphorylated. Goldbeter [21] formulated the five-variable
system of equations as follows:
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3. Methods

3.1. Modified Two-Derivative Runge-Kutta Methods. We
begin by considering the general initial value problem (IVP)
of ordinary differential equations
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derivative of 𝑦 with respect to time, and 𝑓 : R𝑑 → R𝑑

is a sufficiently smooth function. Based on experimental
observation of oscillatory behavior in genetic regulatory
systems, it is reasonable to make the following assumptions
on system (6):

(i) System (6) has a steady state 𝑦∗; that is, 𝑓(𝑦∗) = 0.
(ii) System (6) has oscillatory solution near 𝑦∗; that is, the

Jacobian 𝐽 = 𝑓(𝑦∗) has at least a pair of complex
eigenvalues with nonzero imaginary part.

A special form of two-derivative Runge-Kutta (TDRK)
method reads
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In applications, for some choice of the parameter values,

system (2) has oscillatory solutions. This motivates us to
consider the modified two-derivative Runge-Kutta (TDRK)
methods
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The order conditions for modified TDRK methods will
be derivative via the theory of biordered trees in Appendix.
For purpose of construction of practical methods, we list the
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In this subsection, we consider four-stage explicit modi-
fied TDRK methods given by the following tableau:

1 0

1
1

4

1

32

1
2

3
−
2

81

20

81

1 1
5

4
−
6

5

9

20

𝜂 (]) 𝛽 (]) 𝑏
1
(]) 𝑏
2
(]) 𝑏
3
(]) 𝑏
4
(]) .

(18)

The coefficients 𝜂(]), 𝛽(]), 𝑏
𝑖
(]), 𝑖 = 1, 2, 3, 4 will be obtained

by the exponential fitting conditions for some specific refer-
ence sets.

3.2.1. First EFTDRK Method. We take the reference set

F
𝑎
= {exp (±𝑖𝜔𝑡) , 𝑡 exp (±𝑖𝜔𝑡)} (19)

and assume that the linear operatorL in (15) vanishes for all
functions inF

𝑎
.This leads to

𝑏
2
(]) sin (𝑐

2
]) + 𝑏

3
(]) sin (𝑐

3
]) + 𝑏

4
sin (𝑐
4
])

=
(]𝛽 (]) − sin (]))

]2
,

𝑏
1
(]) + 𝑏

2
(]) cos (𝑐

2
]) + 𝑏

3
(]) cos (𝑐

3
]) + 𝑏

4
(])

⋅ cos (𝑐
4
]) =

(𝜂 (]) − cos (]))
]2

,
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]2 (𝑏
2
(]) 𝑐
2
cos (𝑐
2
]) + 𝑏

3
(]) 𝑐
3
cos (𝑐
3
])

+ 𝑏
4
(]) 𝑐
4
cos (𝑐
4
])) + 2] (𝑏

2
(]) sin (𝑐

2
])

+ 𝑏
3
(]) sin (𝑐

3
]) + 𝑏

4
(]) sin (𝑐

4
])) = 𝛽 (])

− cos (]) ,

2] (𝑏
1
(]) + 𝑏

2
(]) cos (𝑐

2
]) + 𝑏

3
(]) cos (𝑐

3
])

+ 𝑏
4
(]) cos (𝑐

4
])) − ]2 (𝑏

2
(]) 𝑐
2
sin (𝑐
2
])

+ 𝑏
3
(]) 𝑐
3
sin (𝑐
3
]) + 𝑏

4
(]) 𝑐
4
sin (𝑐
4
])) = sin (]) .

(20)

The third and fourth conditions in (14) for 𝑠 = 4 with higher
order terms neglected give

𝑏
1
(]) + 𝑏

2
(]) + 𝑏

3
(]) + 𝑏

4
(]) =

1

2
,

𝑏
2
𝑐
2
(]) + 𝑏

3
(]) 𝑐
3
+ 𝑏
4
(]) 𝑐
4
=
1

6
.

(21)

We can solve system (20)-(21) for 𝜂(]), 𝛽(]), and 𝑏
𝑖
(]), 𝑖 =

1, 2, 3, 4, whose expressions are extremely complicated. For
small values of |]|, we have their Taylor series used as follows:

𝜂 (]) = 1 +
23]8

348364800
−

2087]10

222953472000
+ ⋅ ⋅ ⋅ ,

𝛽 (]) = 1 +
]6

1209600
+

1637]8

20901888000

−
3444061]10

3973030871040000
+ ⋅ ⋅ ⋅ ,

𝑏
1
(]) =

3

40
+

]2

11200
−
4601]4

870912000

−
36863647]6

165542952960000

+
248988432157]8

86770994223513600000
+ ⋅ ⋅ ⋅ ,

𝑏
2
(]) =

64

225
−

]2

5250
+
5407]4

816480000

+
52884329]6

155196518400000

−
391939117499]8

81347807084544000000
+ ⋅ ⋅ ⋅ ,

𝑏
3
(]) =

27

200
+
9]2

56000
+

17]4

17920000

−
9073027]6

91968307200000

+
35868256579]8

16068702633984000000
+ ⋅ ⋅ ⋅ ,

𝑏
4
(]) =

1

180
−

]2

16800
−

427]4

186624000

−
4822283]6

248314429440000

−
36912938527]8

130156491335270400000
+ ⋅ ⋅ ⋅ .

(22)

It is easily verified that these coefficients satisfy all conditions
in (14). Therefore the method has algebraic order six and we
denote this method as EFTDRK4s6a.

3.2.2. Second EFTDRK Method. We take the reference set

F
𝑏
= {1, 𝑡, 𝑡

2
, 𝑡
3
, exp (𝑖𝜔𝑡) , exp (2𝑖𝜔𝑡)} (23)

and assume that the linear operator (15) vanishes for all
functions inF

𝑏
. Then we obtain the expression of 𝜂(]), 𝛽(]),

and 𝑏
𝑖
(]), 𝑖 = 1, 2, 3, 4.

For small values of |]|, the following Taylor series should
be used:

𝜂 (]) = 1 +
299]8

136080000
−

16561]10

108864000000
+ ⋅ ⋅ ⋅ ,

𝛽 (]) = 1 +
]6

189000
+
12749]8

8164800000

+
9829099]10

277136640000000
+ ⋅ ⋅ ⋅ ,

𝑏
1
(]) =

3

40
+

]2

4000
−
159449]4

5443200000

−
328547263]6

117573120000000

−
168770118283]8

3386105856000000000
+ ⋅ ⋅ ⋅ ,

𝑏
2
(]) =

64

225
−

]2

1875
+
155713]4

5103000000

+
398361581]6

110224800000000

+
1477535874781]8

34919216640000000000
+ ⋅ ⋅ ⋅ ,

𝑏
3
(]) =

27

200
+
9]2

20000
+
2153]4

112000000

+
16429997]6

65318400000000

+
374690334049]8

6897623040000000000
+ ⋅ ⋅ ⋅ ,
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𝑏
4
(]) =

1

180
−

]2

6000
−
166921]4

8164800000

−
188918627]6

176359680000000

−
2614342153777]8

55870746624000000000
+ ⋅ ⋅ ⋅ .

(24)

It is easily verified that these coefficients satisfy all
conditions in (14). Therefore the method has algebraic order
six and we denote this method as EFTDRK4s6b.

3.2.3. Third EFTDRK Method. We take the reference set

F
𝑐
= {1, 𝑡, 𝑡

2
, 𝑡
3
, 𝑡 exp (2𝑖𝜔𝑡)} , (25)

and we assume that the linear operator (15) vanishes for all
functions in F

𝑐
. Then we obtain the expression of 𝜂(]), 𝛽(]),

and 𝑏
𝑖
(]), 𝑖 = 1, 2, 3, 4. For small values of |]|, the following

Taylor series should be used:

𝜂 (]) = 1 +
23]8

1360800
−
2087]10

217728000
+ ⋅ ⋅ ⋅ ,

𝛽 (]) = 1 +
]6

18900
+
1637]8

81648000
−
3444061]10

3879912960000

+ ⋅ ⋅ ⋅ ,

𝑏
1
(]) =

3

40
+

]2

2800
−
4601]4

54432000
−
36863647]6

2586608640000

+
248988432157]8

338949196185600000
+ ⋅ ⋅ ⋅ ,

𝑏
2
(]) =

64

225
−
2]2

2625
+
5407]4

51030000
+
52884329]6

2424945600000

−
391939117499]8

317764871424000000
+ ⋅ ⋅ ⋅ ,

𝑏
3
(]) =

27

200
+
9]2

14000
+
17]4

1120000
−

9073027]6

1437004800000

+
35868256579]8

62768369664000000
+ ⋅ ⋅ ⋅ ,

𝑏
4
(]) =

1

180
−

]2

4200
−
427]4

11664000
−

4822283]6

3879912960000

−
36912938527]8

508423794278400000
+ ⋅ ⋅ ⋅ .

(26)

We denote this method as EFTDRK4s6c.

It is noted that as ] → 0, the newmethods EFTDRK4s6a,
EFTDRK4s6b, and EFTDRK4s6c reduce to a traditional
TDRK method given by the following tableau:

1 0

1
1

4

1

32

1
2

3
−
2

81

20

81

1 1
5

4
−
6

5

9

20

3

40

64

225

27

200

1

180
.

(27)

4. Results

In order to examine the effectiveness of the EFTDRK meth-
ods proposed in this paper, we apply these methods as well
as a sixth-order RKmethod and a sixth-order TDRKmethod
to the two genetic regulatory systems presented in Section 2.
The numerical methods we will use are listed as follows:

(i) RK6: the classical RK method of order six presented
in [8].

(ii) TDRK4s6: the classical TDRK method of order six
presented in [18].

(iii) EFTDRK4s6a, EFTDRK4s6b, EFTDRK4s6c: the
three four-stage EFTDRK methods of order six
derived in Section 3 of this paper.

(iv) ETFRK4: the fourth-order exponentially and trigono-
metrically fitted RK method constructed by Simos
[22].

(v) EFRK4: the fourth-order exponentially fitted RK
method constructed by Vanden Berghe et al. [23].

(vi) MRK4: the fourth-order modified RK method con-
structed by Van de Vyver [24].

We will compare the efficiency of these methods by plotting
the decimal logarithm of the maximal global error against
the computational effortmeasured by the number of function
evaluations.

4.1.The Two-Gene System. Denote 𝑦 = (𝑚
1
, 𝑚
2
, 𝑝
1
, 𝑝
2
)
𝑇.The

Jacobian of system (3) is given by

𝑓

(𝑦)

=

(
(
(
(

(

−𝛾
1
0 0

𝜆
1
𝑛
2
𝜃
𝑛
2

2
𝑝
𝑛
2
−1

2

(𝜃
𝑛
2

2
+ 𝑝
𝑛
2

2
)
2

0 −𝛾
2
−
𝜆
2
𝑛
1
𝜃
𝑛
1

1
𝑝
𝑛
1
−1

1

(𝜃
𝑛
1

1
+ 𝑝
𝑛
1

1
)
2

0

𝜅
1
0 −𝜇

1
0

0 𝜅
2

0 −𝜇
2

)
)
)
)

)

(28)



Computational and Mathematical Methods in Medicine 7

and the function

𝑔 (𝑦) = 𝑓

(𝑦) 𝑓 (𝑦) =

(
(
(
(
(
(
(
(
(

(

𝛾
1
(𝛾
1
𝑚
1
−
𝜆
1
𝑝
𝑛
2

2

𝜃
𝑛
2

2
+ 𝑝
𝑛
2

2

) +
𝜆
1
𝑛
2
𝜃
𝑛
2

2
𝑝
𝑛
2
−1

2
(𝜅
2
𝑚
2
− 𝜇
2
𝑝
2
)

(𝜃
𝑛
2

2
+ 𝑝
𝑛
2

2
)
2

𝛾
2
(𝛾
2
𝑚
2
−
𝜆
2
𝜃
𝑛
1

1

𝜃
𝑛
1

1
+ 𝑝
𝑛
1

1

) −
𝜆
2
𝑛
1
𝜃
𝑛
1

1
𝑝
𝑛
1
−1

1
(𝜅
1
𝑚
1
− 𝜇
1
𝑝
1
)

(𝜃
𝑛
1

1
+ 𝑝
𝑛
1

1
)
2

−𝜇
1
(𝜅
1
𝑚
1
− 𝜇
1
𝑝
1
) − 𝜅
1
(𝛾
1
𝑚
1
−
𝜆
1
𝑝
𝑛
2

2

𝜃
𝑛
2

2
+ 𝑝
𝑛
2

2

)

−𝜇
2
(𝜅
2
𝑚
2
− 𝜇
2
𝑝
2
) − 𝜅
2
(𝛾
2
𝑚
2
−
𝜆
2
𝜃
𝑛
1

1

𝜃
𝑛
1

1
+ 𝑝
𝑛
1

1

)

)
)
)
)
)
)
)
)
)

)

. (29)

We take the values of parameters as follows (Polynikis et al.
[3]):

𝑛
1
= 𝑛
2
= 3,

𝜆
1
= 1.15,

𝜆
2
= 2.35,

𝛾
1
= 𝛾
2
= 1,

𝜅
1
= 𝜅
2
= 1,

𝜇
1
= 𝜇
2
= 1,

𝜃
1
= 𝜃
2
= 0.21.

(30)

We solve system �̇�
1
= �̇�
2
= �̇�
1
= �̇�
2
= 0 by Newton iteration

for the unique positive steady state of system (3) which is
given by

(𝑚
∗

1
, 𝑚
∗

2
, 𝑝
∗

1
, 𝑝
∗

2
)

= (0.475099, 0.186810, 0.475099, 0.186810) .

(31)

The Jacobian matrix at the steady state has the eigenvalues

𝜉
1,2
= −2.049997 ± 1.049997𝑖,

𝜉
3,4
= 0.049997 ± 1.049997𝑖.

(32)

Since these eigenvalues have nonzero imaginary parts, the
solution near the steady state is oscillatory with frequency
𝜔 = 0.989478. This oscillatory behavior of the two proteins is
shown in Figure 1 which is plotted straightly by the classical
Runge-Kutta method of order four.

For the initial values (𝑚
1
(0), 𝑚

2
(0), 𝑝
1
(0), 𝑝
2
(0)) =

(0.6, 0.8, 0.4, 0.6) near the equilibrium point, we solve system
(3) on the interval [0, 100] by the methods EFTDRK4s6a,
EFTDRK4s6b, and EFTDRK4s6c with step sizes ℎ = 1/2𝑖,
𝑖 = 2, 3, 4, 5, with respect to best fitting frequencies 𝜔. Tables
1–4 display the global error (GE) of Protein 1 for comparison.

In Figure 2 we compare the efficiency of the eight
methods by plotting the global error against the number of
evaluations of nonlinear functions 𝑓 and 𝑔.

4.2. PER Oscillations in Drosophila. Denote 𝑦 = (𝑀, 𝑃
0
,

𝑃
1
, 𝑃
2
, 𝑃
𝑁
)
𝑇. The Jacobian of system (5) is given by

𝑓

(𝑦)

=

(
(
(
(
(
(
(
(
(
(

(

−
𝐾
𝑚1
V
𝑚

(𝐾
𝑚1
+𝑀)
2

0 0 0 −
𝑛V
𝑠
𝐾
𝑛

𝐼
𝑃
𝑛−1

𝑁

(𝐾
𝑛

𝐼
+ 𝑃
𝑛

𝑁
)
2

𝑘s −
𝐾
1
𝑉
1

(𝐾
1
+ 𝑃
0
)
2

𝐾
2
𝑉
2

(𝐾
2
+ 𝑃
1
)
2

0 0

0
𝐾
1
𝑉
1

(𝐾
1
+ 𝑃
0
)
2
−
𝐾
2
𝑉
2

(𝐾
2
+ 𝑃
1
)
2
−

𝐾
3
𝑉
3

(𝐾
3
+ 𝑃
1
)
2

𝐾
4
𝑉
4

(𝐾
4
+ 𝑃
2
)
2

0

0 0
𝐾
3
𝑉
3

(𝐾
3
+ 𝑃
1
)
2

−𝑘
1
−

𝐾
4
𝑉
4

(𝐾
4
+ 𝑃
2
)
2
−

𝐾
𝑑
V
𝑑

(𝐾
𝑑
+ 𝑃
2
)
2

𝑘
2

0 0 0 𝑘
1

−𝑘
2

)
)
)
)
)
)
)
)
)
)

)

(33)
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and the function 𝑓(𝑦)𝑓(𝑦) = 𝑔(𝑦) = (𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
, 𝑔
5
)
𝑇

with

𝑔
1
=
𝑛V
𝑠
𝐾
𝑛

𝐼
𝑃
𝑛−1

𝑁
(−𝑘
1
𝑃
2
+ 𝑘
2
𝑃
𝑁
)

(𝐾
𝑛

𝐼
+ 𝑃
𝑛

𝑁
)
2

+
𝐾
𝑚1
V
𝑚
(𝑀V
𝑚
(𝐾
𝑛

𝐼
+ 𝑃
𝑛

𝑁
) − 𝐾
𝑛

𝐼
V
𝑠
(𝐾
𝑚1
+𝑀))

(𝐾
𝑛

𝐼
+ 𝑃
𝑛

𝑁
) (𝐾
𝑚1
+𝑀)
3

,

𝑔
2
= −
𝐾
1
𝑉
1
(𝑘
𝑠
𝑀−𝑈 + 𝐵)

(𝐾
1
+ 𝑃
0
)
2

+
𝐾
2
𝑉
2
(𝑈 − 𝐵 − 𝐶 + 𝐷)

(𝐾
2
+ 𝑃
1
)
2

+ 𝑘
𝑠
(−

𝑀V
𝑚

𝐾
𝑚1
+𝑀

+
𝐾
𝑛

𝐼
V
𝑠

𝐾
𝑛

𝐼
+ 𝑃
𝑛

𝑁

) ,

𝑔
3
=
𝐾
1
𝑉
1
(𝑘
𝑠
𝑀−𝑈 + 𝐵)

(𝐾
1
+ 𝑃
0
)
2

− (
𝐾
2
𝑉
2

(𝐾
2
+ 𝑃
1
)
2
+

𝐾
3
𝑉
3

(𝐾
3
+ 𝑃
1
)
2
) (𝑈 − 𝐵 − 𝐶 + 𝐷)

+
𝐾
4
𝑉
4
(−𝑘
1
𝑃
2
+ 𝑘
2
𝑃
𝑁
+ 𝐶 − 𝐷 − 𝐸)

(𝐾
4
+ 𝑃
2
)
2

,

𝑔
4
= 𝑘
2
(𝑘
1
𝑃
2
− 𝑘
2
𝑃
𝑁
) +
𝐾
3
𝑉
3
(𝑈 − 𝐵 − 𝐶 + 𝐷)

(𝐾
3
+ 𝑃
1
)
2

− (𝑘
1
+

𝐾
4
𝑉
4

(𝐾
4
+ 𝑃
2
)
2
+

𝐾
𝑑
V
𝑑

(𝐾
𝑑
+ 𝑃
2
)
2
)

⋅ (−𝑘
1
𝑃
2
+ 𝑘
2
𝑃
𝑁
+ 𝐶 − 𝐷 − 𝐸) ,

𝑔
5
= 𝑘
2
(−𝑘
1
𝑃
2
+ 𝑘
2
𝑃
𝑁
)

+ 𝑘
1
(−𝑘
1
𝑃
2
+ 𝑘
2
𝑃
𝑁
+ 𝐶 − 𝐷 − 𝐸) ,

(34)

where

𝑈 =
𝑃
0
𝑉
1

𝐾
1
+ 𝑃
0

,

𝐵 =
𝑃
1
𝑉
2

𝐾
2
+ 𝑃
1

,

𝐶 =
𝑃
1
𝑉
3

𝐾
3
+ 𝑃
1

,

𝐷 =
𝑃
2
𝑉
4

𝐾
4
+ 𝑃
2

,

𝐸 =
𝑃
2
V
𝑑

𝐾
𝑑
+ 𝑃
2

.

(35)
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Figure 1: Time evolution of proteins in the two-gene system.

The parameter values in model (5) are given by (Goldbeter
[21])

V
𝑠
= 0.76 𝜇M/h,

V
𝑚
= 0.65 𝜇M/h,

𝑘
𝑠
= 0.38 h−1,

V
𝑑
= 0.95 𝜇M/h,

𝑘
1
= 1.9 h−1,

𝑘
2
= 1.3 h−1,

𝐾
𝐼
= 1 𝜇M,

𝐾
𝑑
= 0.2 𝜇M,

𝐾
𝑚1
= 0.5 𝜇M,

𝐾
1
= 𝐾
2
= 𝐾
3
= 𝐾
4
= 2 𝜇M,

𝑛 = 4,

𝑉
1
= 3.2 𝜇M/h,

𝑉
2
= 1.58 𝜇M/h,

𝑉
3
= 5 𝜇M/h,

𝑉
4
= 2.5 𝜇M/h.

(36)

System �̇� = �̇�
0
= �̇�
1
= �̇�
2
= �̇�
𝑁
= 0 is solved for the

unique positive steady state

(𝑀
∗
, 𝑃
∗

0
, 𝑃
∗

1
, 𝑃
∗

2
, 𝑃
∗

𝑁
)

= (1.851476, 1.049558, 0.672924, 0.570982, 0.834512) .

(37)
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Figure 2: Two-gene system: global error versus function evalua-
tions.
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Figure 3: Time evolution of nuclear PER in Drosophila.

Thus the five eigenvalues of the Jacobian matrix at the steady
state are

𝜉
1
= −4.266573,

𝜉
2
= −1.834793,

𝜉
3,4
= 0.032824 ± 0.297276𝑖,

𝜉
5
= −0.829294.

(38)

Since 𝜉
3,4

have nonzero imaginary parts, the solution near the
steady state (𝑀∗, 𝑃∗

0
, 𝑃
∗

1
, 𝑃
∗

2
, 𝑃
∗

𝑁
) is oscillatory with frequency

𝜔 = 0.265113. Figure 3 displays time evolution of the
concentration of the nuclear protein 𝑃

𝑁
.

For the initial values (𝑀(0), 𝑃
0
(0), 𝑃
1
(0), 𝑃
2
(0), 𝑃
𝑁
(0)) =

(0.1, 0.25, 0.25, 0.25, 0.25) near the equilibrium point, we

Table 1: Two-gene systems: global error of Protein 1 with step size
ℎ = 1/4.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0.659 0.100 0.412
GE 3.9971𝑒 − 08 2.1795𝑒 − 07 1.3827𝑒 − 04 1.3216𝑒 − 06

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 0 0 0
GE 2.0703𝑒 − 07 2.0703𝑒 − 07 2.0703𝑒 − 07 2.0703𝑒 − 07

Table 2: Two-gene systems: global error of Protein 1 with step size
ℎ = 1/8.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0.653 1.815 0.640
GE 1.0441𝑒 − 09 1.3170𝑒 − 06 6.7673𝑒 − 06 2.9632𝑒 − 08

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 3.145 2.395 1.573
GE 4.0028𝑒 − 09 3.6251𝑒 − 12 3.1940𝑒 − 09 4.4587𝑒 − 12

Table 3: Two-gene systems: global error of Protein 1 with step size
ℎ = 1/16.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0.751 0.022 0.813
GE 1.6283𝑒 − 10 1.6144𝑒 − 08 2.7404𝑒 − 07 5.3117𝑒 − 10

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 2.964 2.292 1.482
GE 6.6183𝑒 − 11 5.6954𝑒 − 14 7.6938𝑒 − 14 5.6954𝑒 − 14

Table 4: Two-gene systems: global error of Protein 1 with step size
ℎ = 1/32.

ETFRK4 EFRK4 MRK4 RK6
𝜔 1.356 0.011 0.931
GE 3.7377𝑒 − 12 2.9958𝑒 − 09 9.2907𝑒 − 09 8.7911𝑒 − 12

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 2.891 2.185 1.445
GE 1.0523𝑒 − 12 1.2212𝑒 − 15 1.6653𝑒 − 15 1.8874𝑒 − 15

Table 5: PER oscillations inDrosophila: global error of 𝑃
𝑁
with step

size ℎ = 1/2.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0.811 1.311 0.290
GE 2.2113𝑒 − 04 0.3821 0.0011 0.0011

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 1.971 1.369 0.991
GE 1.2580𝑒 − 06 8.4100𝑒 − 10 1.1408𝑒 − 09 1.3104𝑒 − 09

integrate system (3) on the interval [0, 100] with step sizes
ℎ = 1/2

𝑖
, 𝑖 = 1, 2, 3, 4, 5.The numerical results are presented

in Tables 5–9.
In Figure 4 we plot the efficiency curves for the eight

methods.
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Table 6: PER oscillations inDrosophila: global error of 𝑃
𝑁
with step

size ℎ = 1/4.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0.010 0.002 0
GE 4.1924𝑒 − 10 2.4214𝑒 − 09 3.0138𝑒 − 08 7.4781𝑒 − 08

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 1.934 1.363 0.968
GE 1.3468𝑒 − 08 1.0491𝑒 − 11 2.7490𝑒 − 11 2.0292𝑒 − 11

Table 7: PER oscillations inDrosophila: global error of 𝑃
𝑁
with step

size ℎ = 1/8.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0 0 0.047
GE 3.7713𝑒 − 09 3.7713𝑒 − 09 5.5061𝑒 − 11 3.5174𝑒 − 10

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 1.895 1.356 0.947
GE 1.5941𝑒 − 10 1.5565𝑒 − 13 1.9101𝑒 − 13 4.9882𝑒 − 13

Table 8: PER oscillations inDrosophila: global error of 𝑃
𝑁
with step

size ℎ = 1/16.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0 0 0.057
GE 3.0163𝑒 − 10 3.0163𝑒 − 10 4.2553𝑒 − 12 2.8773𝑒 − 12

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 1.871 1.354 0.935
GE 2.1183𝑒 − 12 3.8858𝑒 − 16 3.1641𝑒 − 15 6.3283𝑒 − 15

Table 9: PER oscillations inDrosophila: global error of 𝑃
𝑁
with step

size ℎ = 1/32.

ETFRK4 EFRK4 MRK4 RK6
𝜔 0 0 0.061
GE 2.0380𝑒 − 11 2.0380𝑒 − 11 2.3392𝑒 − 13 3.1641𝑒 − 14

TDRK4s6 EFTDRK4s6a EFTDRK4s6b EFTDRK4s6c
𝜔 1.880 1.370 0.931
GE 3.1086𝑒 − 14 3.3307𝑒 − 16 0 1.1102𝑒 − 16

It can be seen fromTables 1–9 and Figures 2 and 4 that the
EFTDRKmethods are more efficient than the other methods
used for comparison.

5. Conclusions and Discussions

Oscillation is frequently observed in all living cells. Whether
or not this feature is accurately preserved in simulation has
a critical effect on the comprehension of genetic regulation
systems. Now that the traditional simulation algorithms per-
form poorly in simulating the oscillatory genetic regulatory
networks, new and more effective simulation technology is
called for. In this paper, classical two-derivative Runge-Kutta
methods are adapted to the oscillatory character of genetic

Number of function evaluations
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Efficiency comparison
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Figure 4: Two-gene system: global error versus function evalua-
tions.

regulatory systems.The newly developed exponentially fitted
two-derivative Runge-Kuttamethods (EFTDRK) adopt func-
tions of ] = 𝜔ℎ, the product of the fitting frequency𝜔 and the
step size ℎ, as weight coefficients in the update. As the fitting
frequency tends to zero, EFTDRK methods reduce to their
prototype TDRK methods of the same algebraic order.

It should be noted that, in applying an exponen-
tially/trigonometrically fitted method to oscillatory prob-
lems, a fitting frequency 𝜔, an accurate estimate of the
principal frequency, must be obtained in advance. However,
for a given oscillatory system, the true frequency is in general
not available. In the existing literature, all the methods of
fitted type share a common value of the fitting frequency
𝜔 once it is well estimated. According to the argument
in Appendix A.3, for a given differential equation (given
function 𝑓), the global error (GE) of an EFTDRK method
(e.g., EFTDRK4s6a) depends on the coefficients (and thus
] = 𝜔ℎ). If we consider GE as a function 𝜔, GE(𝜔) then we
take the fitting frequency as the value of 𝜔 that minimizes the
global error. We call it the “best fitting frequency.” It is also
noted that it may happen that GE(𝜔) is (much) larger than
GE(0). That is, EFTDRK4s6a may be less effective than its
prototype TDRK method (TDRK4s6, the case 𝜔 = 0) if an
inappropriate value of the fitting frequency 𝜔 is employed.

EFTDRK methods have two advantages: they respect the
second-order structure of the true solution and they can
simulate exactly some standard oscillatory functions such
as exp(𝑖𝜔𝑡) and exp(2𝑖𝜔𝑡). These characteristic properties
contribute to their high accuracy and high efficiency. The
EFTDRK methods developed in this paper, a category of
structure-preserving algorithms, open a new approach to
simulating genetic regulatory systems with an oscillation
structure.
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Appendix

A. Bicolored Trees and Order Conditions for
Modified TDRK Methods

A.1. Bicolored Trees. In this appendixwe present the theory of
bicolored rooted trees which forms the basis of the derivation
of order conditions for modified TDRK methods.

Definition A.1. The set BT of bicolored rooted trees is defined
recursively as follows:

(i) The graph ∙ and belong to BT; they are denoted by
𝜏 and 𝜏

2
, respectively. The black vertex in each of the

two trees is called the root.
(ii) If 𝑢

1
, . . . , 𝑢

𝑚
∈ BT, then the tree [𝑢

1
, . . . , 𝑢

𝑚
]
2

obtained by grafting the roots of 𝑢
1
, . . . , 𝑢

𝑚
onto the

white vertex of 𝜏
2
.

Definition A.2. For each tree 𝑡 ∈ BT, the elementary
differential F(𝜏)(𝑦) is a function R𝑑 → R𝑑 defined
recursively as follows:

(i) F(∙)(𝑦) = 𝑓(𝑦) andF( )(𝑦) = 𝑔(𝑦).
(ii) For 𝑢 = [𝑢

1
, . . . , 𝑢

𝑚
]
2
∈ BT,

F (𝑢) (𝑦) = 𝑔
(𝑚)
(F (𝑢

1
) (𝑦) , . . . ,F (𝑢

𝑚
) (𝑦)) . (A.1)

Definition A.3. The function 𝜌 : BT → N is defined
recursively as follows:

(i) 𝜌(∙) = 1 and 𝜌( ) = 2.
(ii) For 𝑢 = [𝑢

1
, . . . , 𝑢

𝑚
]
2
∈ BT,

𝜌 (𝑢) = 2 +

𝑚

∑

𝑖=1

𝜌 (𝑢
𝑖
) . (A.2)

For each 𝑢 ∈ BT, 𝜌(𝑢) is called the order of the tree 𝑡. Actually,
𝜌(𝑢) is the number of vertices of the tree 𝑢. The set of trees of
order 𝑞 is denoted by BT

𝑞
.

Definition A.4. The function 𝛼 : BT → N is defined
recursively as follows:

(i) 𝛼(∙) = 1 and 𝛼( ) = 1.
(ii) For 𝑢 = [𝑢𝑟1

1
, . . . , 𝑢

𝑟
𝑚

𝑚
]
2
∈ BT,

𝛼 (𝑢) = (𝜌 (𝑢) − 2)!

𝑚

∏

𝑖=1

1

𝑟
𝑖
!
(
𝛼 (𝑢
𝑖
)

𝜌 (𝑢
𝑖
)!
)

𝑟
𝑖

, (A.3)

where 𝑟
𝑖
is the multiplicity of 𝑢

𝑖
, 𝑖 = 1, . . . , 𝑚.

Definition A.5. The function 𝛾 : BT → N is defined
recursively as follows:

(i) 𝛾(∙) = 1 and 𝛾( ) = 2.
(ii) For 𝑢 = [𝑢

1
, . . . , 𝑢

𝑚
]
2
∈ BT,

𝛾 (𝑢) = 𝜌 (𝑢) (𝜌 (𝑢) − 1)

𝑚

∏

𝑖=1

𝛾 (𝑢
𝑖
) . (A.4)

For each 𝑢 ∈ BT, 𝛾(𝑢) is called the density of the tree 𝑡.

Definition A.6. For the modified TDRK method (8), the
elementary weight vector Φ(𝑡) = (Φ

𝑖
(𝑡))
𝑠

𝑖=1
(𝑡 ∈ BT \ {𝜏})

is defined as follows:

(i) Φ
𝑖
( ) = 1.

(ii) For 𝑢 = [𝜏𝑟1 , 𝑢
2
, . . . , 𝑢

𝑚
]
2
∈ BT, 𝜌(𝑢

𝑖
) ≥ 2, 𝑖 =

2, . . . , 𝑚,

Φ
𝑖
(𝑢) = 𝑐

𝑟
1

𝑖

𝑚

∑

𝑖=1

𝑎
𝑖𝑗
Φ
𝑗
(𝑢
2
) ⋅ ⋅ ⋅

𝑚

∑

𝑖=1

𝑎
𝑖𝑙
Φ
𝑙
(𝑢
𝑚
) . (A.5)

TheoremA.7. The exact solution 𝑦(𝑡
𝑛
+ ℎ) and the numerical

solution 𝑦
𝑛+1

produced by the modified TDRKmethod (8) have
the following expansions:

𝑦 (𝑡
𝑛
+ ℎ)

= 𝑦
𝑛
+ ℎ𝑓 (𝑦

𝑛
) + ∑

𝑢∈BT\{𝜏}

ℎ
𝜌(𝑢)

𝜌 (𝑢)!
𝛼 (𝑢)F (𝑢) (𝑦

𝑛
) ,

𝑦
𝑛+1

= 𝜂 (]) 𝑦
𝑛
+ ℎ𝛽 (]) 𝑓 (𝑦

𝑛
)

+ ∑

𝑢∈BT\{𝜏}

ℎ
𝜌(𝑢)

𝜌 (𝑢)!
𝛼 (𝑢) 𝛾 (𝑢)Φ (])F (𝑢) (𝑦

𝑛
) .

(A.6)

A.2. Order Conditions. The algebraic order conditions for the
TDRK method with constant coefficients presented in [18]
are not applicable for the modified TDRK method (8) whose
coefficients depend on ] = 𝜔ℎ. We expand the exact solution
𝑦(𝑡
𝑛
+ℎ) and the numerical solution𝑦

𝑛+1
in powers of ℎ under

the local assumption 𝑦
𝑛
= 𝑦(𝑡
𝑛
):

𝑦 (𝑡
𝑛
+ ℎ) = 𝑦

𝑛
+ ℎ𝑓 +

ℎ
2

2!
𝑓

𝑓 +
ℎ
3

3!
(𝑓

(𝑓, 𝑓)

+ 𝑓

𝑓

𝑓) + ⋅ ⋅ ⋅ ,

= 𝑦
𝑛
+ ℎ𝑓 +

ℎ
2

2!
𝑔 +
ℎ
3

3!
𝑔

𝑓 +
ℎ
4

4!
(𝑔

(𝑓, 𝑓) + 𝑔


𝑔)

+
ℎ
5

5!
(𝑔
(3)
(𝑓, 𝑓, 𝑓) + 3𝑔


(𝑓, 𝑔) + 𝑔


𝑔

𝑓)

+
ℎ
6

6!
(𝑔
(4)
(𝑓, 𝑓, 𝑓, 𝑓) + 6𝑔

(3)
(𝑓, 𝑓, 𝑔)

+ 3𝑔

(𝑔, 𝑔) + 4𝑔


(𝑓, 𝑔

𝑓) + 𝑔


𝑔

(𝑓, 𝑓)

+ 𝑔

𝑔

𝑔) + ⋅ ⋅ ⋅ ,
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𝑦
𝑛+1
= 𝜂 (]) 𝑦

𝑛
+ ℎ𝛽 (]) 𝑓 + ℎ2

𝑠

∑

𝑖=1

𝑏
𝑖
(]) (𝑔

+ 𝑔

(𝑌
𝑖
− 𝑦
𝑛
) +
1

2!
𝑔

(𝑌
𝑖
− 𝑦
𝑛
, 𝑌
𝑖
− 𝑦
𝑛
) + ⋅ ⋅ ⋅)

= 𝜂 (]) 𝑦
𝑛
+ ℎ𝛽 (]) 𝑓 + ℎ2 (𝑏 (])𝑇 𝑒) 𝑔

+ ℎ
3
(𝑏 (])𝑇 𝑐) 𝑔𝑓 + ℎ4 ((𝑏 (])𝑇𝐴𝑒) 𝑔𝑔

+
1

2!
(𝑏 (])𝑇 𝑐2) 𝑔 (𝑓, 𝑓)) + ℎ5 ((𝑏 (])𝑇𝐴𝑐)

⋅ 𝑔

𝑔

𝑔 +
1

2!
(𝑏 (])𝑇 (𝑐 ⋅ 𝐴𝑒)) (2𝑔 (𝑓, 𝑔))

+
1

3!
(𝑏 (])𝑇 (𝑐3)) (𝑔(3) (𝑓, 𝑓, 𝑓)))

+ ℎ
6
((𝑏 (])𝑇𝐴2𝑒) 𝑔𝑔𝑔 +

1

2!
(𝑏 (])𝑇𝐴𝑐2)

⋅ (𝑔

𝑔

(𝑓, 𝑓)) +

1

3!
(𝑏 (])𝑇 (𝑐2 ⋅ 𝐴𝑒))

⋅ (3𝑔
(3)
(𝑓, 𝑓, 𝑔)) +

1

4!
(𝑏 (])𝑇 (𝑐4))

⋅ 𝑔
(4)
(𝑓, 𝑓, 𝑓, 𝑓)) + ⋅ ⋅ ⋅ ,

(A.7)

where 𝑓 and 𝑔 and their partial derivatives are evaluated at
𝑦
𝑛
.
The elementary differentials in the above expressions will

be represented geometrically by a set of bicolored (rooted)
trees, which are a variation of the rooted trees presented
in Butcher [6] and Hairer et al. [8]. For the autonomous
system (6), the bicolored trees are made up of two types
of vertices: black and white. The first and the simplest tree,
which represents𝑓, consists of a single black vertex.The time
derivative 𝑔 of 𝑓 is expressed by a black vertex connecting

upward by a branch to a white vertex . A partial derivative of
𝑔 with respect to 𝑦 is expressed by a white vertex connecting
by a branch to a black vertex. Tables 10 and 11 give all the trees
of order up to five with the values of the related functions
defined on them.

The local truncation error of themodified TDRKmethod
(8) can be expressed in terms of rooted trees which are similar
to those defined in Hairer et al. [8]:

LE
𝑛
= 𝑦
𝑛+1
− 𝑦 (𝑡

𝑛
+ ℎ)

= (𝜂 (]) − 1) 𝑦
𝑛
+ ℎ (𝛽 (]) − 1) 𝑓

+

𝑝+1

∑

𝑗=2

ℎ
𝑗
∑

𝜌(𝑢)=𝑗

𝑑 (𝑢)F (𝑢) (𝑦
𝑛
) + O (ℎ

𝑝+2
) ,

(A.8)

where

𝑑 (𝑢) =
1

𝑗!
𝛼 (𝑢) (𝛾 (𝑢) 𝑏 (])𝑇Φ (𝑢) − 1) , (A.9)

Table 10: Trees of order up to order five and the values of
corresponding functions.

Tree 𝜌 𝛼 𝛾 Φ
𝑖

F

1 1 1 𝑓

2 1 2 1 𝑔

3 1 6 𝑐
𝑖

𝑔

𝑓

4 1 12 𝑐
2

𝑖
𝑔

(𝑓, 𝑓)

4 1 24 ∑

𝑗

𝑎
𝑖𝑗

𝑔
𝑦
𝑔

5 1 20 𝑐
3

𝑖
𝑔
(3)
(𝑓, 𝑓, 𝑓)

5 3 40 𝑐
𝑖
∑

𝑗

𝑎
𝑖𝑗

𝑔

(𝑓, 𝑔)

5 1 120 ∑

𝑗

𝑎
𝑖𝑗
𝑐
𝑗

𝑔

𝑔

Table 11: Trees of order six and the values of corresponding
functions.

Tree 𝜌 𝛼 𝛾 Φ
𝑖

F

6 1 30 𝑐
4

𝑖
𝑔
(4)
(𝑓, 𝑓, 𝑓, 𝑓)

6 6 60 𝑐
2

𝑖
∑

𝑗

𝑎
𝑖𝑗

𝑔
(3)
(𝑓, 𝑓, 𝑔)

6 3 120 (∑

𝑗

𝑎
𝑖𝑗
)

2

𝑔

(𝑔, 𝑔)

6 4 180 𝑐
𝑖
∑

𝑗

𝑎
𝑖𝑗
𝑐
𝑗

𝑔

(𝑓, 𝑔

𝑓)

6 1 360 ∑

𝑗

𝑎
𝑖𝑗
𝑐
2

𝑗
𝑔

𝑔

(𝑓, 𝑓)

6 1 720 ∑

𝑗,𝑘

𝑎
𝑖𝑗
𝑎
𝑗𝑘

𝑔

𝑔

𝑔

and the order 𝜌(𝑢), the density 𝛾(𝑢), the vector of elementary
weights Φ(𝑢) = (Φ

1
(𝑢), . . . , Φ

𝑠
(𝑢))
𝑇, the elementary differ-

ential F(𝑢)(𝑦
𝑛
) at 𝑦

𝑛
, and the function 𝛼(𝑢) are defined in

Appendix A.1. The modified TDRK method (8) has (alge-
braic) order 𝑝 if its local error satisfies LE

𝑛
= O(ℎ𝑝+1).

The above analysis leads to the order conditions as stated
in the following theorem.
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TheoremA.8. Themodified TDRKmethod (8) has (algebraic)
order𝑝 (𝑝 ≥ 2) if and only if its coefficients satisfy the following
conditions:

𝜂 (]) = 1 + O (]𝑝+1) ,

𝛽 (]) = 1 + O (]𝑝) ,

𝑏 (])𝑇Φ (𝑢) =
1

𝛾 (𝑢)
+ O (]𝑝−𝜌(𝑢)+1) ,

for all trees with 2 ≤ 𝜌 (𝑢) ≤ 𝑝.

(A.10)

Proof. The result follows from comparing the expansions of
(A.7) and independence of elementary differentials.

A.3. The Choice of the Fitting Frequency. It has been known
that the choice of the fitting frequency 𝜔 is crucial to
the effectiveness of exponentially or trigonometrically fitted
Runge-Kutta methods when applied to initial value problems
with oscillatory solutions. In the existing literature, there have
been several approaches for estimating the frequency. See, for
example, Ixaru andVanden Berghe [25], Vanden Berghe et al.
[26], Ixaru et al. [27], Van de Vyver [28], and Ramos and
Vigo-Aguiar [29].

In this paper, we evaluate the “best fitting frequency”
𝜔 for an EFTDRK method by minimizing the global error.
According to (A.8) in Appendix A.2, we can write the local
truncation error of 𝑝th order modified TDRK method (8) as
follows:

LE
𝑛
= ℎ
𝑝+1
∑

𝑢∈𝑇
𝑝+1

𝑑 (𝑢)F (𝑢) (𝑦
𝑛
) + O (ℎ

𝑝+2
) , (A.11)

where𝑇
𝑝+1

is the set of trees of order𝑝+1.Therefore for small
values of step size ℎ the global error over the grids 𝑡

𝑛
, 𝑛 =

0, 1, . . . , 𝑁 can be approximated as

GE ≈ ℎ𝑝+1 ∑
𝑢∈𝑇
𝑝+1

𝑑 (𝑢)

𝑁

∑

𝑛=1

F (𝑢) (𝑦
𝑛
) . (A.12)

This shows that the global error depends on ] = ℎ𝜔 and the
values of 𝑑(𝑢) and the elementary differentials F(𝑢) at each
𝑦
𝑛
and thus depends on the step size ℎ, the fitting frequency𝜔

of the method, the length of the integration interval, and the
function 𝑓 (i.e., the problem to be solved). The “best fitting
frequency” can be taken as the minimizer 𝜔 of the previous
approximation of GE.
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