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Abstract: Real-time detection of gait events can be applied as a reliable input to control drop foot
correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals
associated with walking for gait event detection, the accelerometer is considered as a preferable
sensor due to its convenience of use, small size, low cost, reliability, and low power consumption.
Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and
heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively
reasonable performance in gait event detection, they suffer from limitations such as poor real-time
performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new
algorithm is proposed to detect the gait events on three walking terrains in real-time based on the
analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and
then the determination of the peaks of jerk signals using peak heuristics. The performance of the
newly proposed algorithm was evaluated with eight healthy subjects when they were walking on
level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores
of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection
on the three terrains. This indicates that the current algorithm would be robust and accurate for
gait event detection on different terrains. Findings from the current study suggest that the proposed
method may be a preferable option in some applications such as drop foot correction devices and
leg prostheses.

Keywords: gait event detection; accelerometer; continuous wavelet transform; heuristics;
stairs walking

1. Introduction

In recent years, the demand for efficient gait event detection has been steadily increasing.
Gait event identification can be used to control the on/off time of functional electrical stimulation
devices for drop foot correction in stroke patients [1–4], operate an active orthotic device for ankle
foot pathologies [5], assess rehabilitation effects in post-stroke patients with gait abnormality [6],
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and classify daily activity to aid exercise for health care in the elderly [7]. Toe off (TO) and heel
strike (HS) are two key gait events commonly used to distinguish a gait cycle into either swing
phase or stance phase. Signals acquired from ground reaction force (GRF) and optoelectronic motion
capture have been widely used for the detection of TO and HS events in previous studies [8,9].
A major limitation of these systems is that they are expensive and restricted to a controlled laboratory
environment [10]. To overcome these drawbacks, various wearable sensors have been developed for
gait event detection [11].

Although force sensitive resistor (FSR) sensors based on foot switches have been used to detect
gait events and as well control the on/off time of functional electrical stimulation systems [12,13],
such FSR sensors have certain problems in real-time applications. The sensors’ don and doff procedure
are usually complex, which often introduce some level of inconvenience and discomfort to the wearers.
In addition, the sensors are sometimes unreliable and can only be used in limited cycles [14]. Beside
the FSR sensors, wearable inertial sensors such as accelerometers and gyroscopes have also been used
extensively for gait event detections in recent years [15–17]. Gyroscopes are usually attached to human
feet or legs to measure the angular velocity from which gait events are detected. Previous studies have
shown that gyroscopes are not affected by gravitational force and are also less sensitive to the sensor
positions [18,19]. However, the power consumption rate of a typical gyroscope sensor is relatively
large (usually several mA), which limits its long-term use in everyday life. Accelerometers are another
type of widely used wearable inertial sensors with relatively low power consumption (usually a few
µA), and have been shown to provide reliable measures of gait parameters [20]. Several algorithms
have been proposed to detect TO and HS events from accelerometer signals in previous studies, among
which the threshold-based algorithms have been proven to be reliable for gait event detection and can
be used to trigger functional electrical stimulation during level ground walking [1,2]. The inflection
and extreme points-based algorithm based on differential acceleration signal has shown gait event
detection results with potential use in drop foot correction during level ground walking [3].

Furthermore, physical activities during stair walking have attracted more attention in recent
years because stair walking is considered as a challenging locomotion activity where most fall-related
accidents occur [21]. Some work has been done to improve the performance of leg prostheses during
different gait phases on stairs [22,23]. Gait characteristics on stair terrains have been widely used
for the assessment and diagnosis of motor function disorder as well as for the prediction of fall risks
in the elderly [24,25]. Reliable detection of gait events during stair walking would aid proper gait
analysis and the development of efficient assistive devices for patients with drop foot. Some recent
progress made on gait even detection on stair terrains are reported as follows. Kotiadis et al. indicated
that poor detection rates were often achieved with existing methods in the terrains of upstairs and
downstairs compared to level ground walking [2]. Recently, Khandelwal et al. proposed a wavelet
based time-frequency analysis method to detect gait events with acceleration signals recorded from
real world walking environments [20]. Although their algorithm could achieve gait event detection
with relatively good accuracy and robustness, it is an offline-based method that may be inapplicable in
a number of real-time applications, such as the triggering of functional electrical stimulation based
devices and active prostheses. It is important to note that the reliable and accurate detection of toe off
and heal strike gait events from acceleration signals while walking on different terrains (level ground,
up stairs, down stairs) during daily activities still remains a major challenge for real-time applications.

In this study, in an attempt to improve the performance of gait-event detection based on
acceleration signals, a new algorithm that combines time-frequency analysis and a heuristic approach
is proposed for the real-time detection of gait events on three walking terrains. The performance of
the newly proposed method in detecting gait events was investigated with data collected from eight
healthy subjects during walking on stairs (up and down) and level ground. In addition, the proposed
method was compared with the commonly used FSR based method. To evaluate the performance of
gait-event detection, precision, recall, F1-score, and time agreement, metrics were adopted in the study.
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2. Materials and Methods

2.1. Subjects

Eight healthy subjects (five males and three females aged 20–30 years, with 1.55–1.78 m height
and 47–78 kg weight) were recruited. The recruitment of subjects and the experimental protocols were
approved by the Ethics Committee for Human Research, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. All subjects were informed about the purpose and experimental
procedure of the study.

2.2. Protocol

In the experiments, all subjects were asked to walk for about ten seconds on each of the three
different terrains with a normal comfortable speed. For level ground walking, the subjects were
instructed to walk along a 10 m long path in 10 s and an average walking speed of 1.5 m/s was
considered in the study. The three common terrains were level ground, down stairs, and up stairs
(see Figure 1). Level ground walking was tested along a long path in a straight flat corridor. The stairs
consisted of 12 steps and each step was 0.15 m high and 0.25 m wide (see Figure 1). For stair walking,
subjects were instructed to walk step over step and the first step was taken by the right foot. The
walking experiment on each terrain was repeated 15 times (trials) per subject.
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Figure 1. The experiment was conducted on three terrains (level ground, up stairs, and down stairs).

2.3. Instrumentation and Data Acquisition

A wireless tri-axial accelerometer sensor (Delsys Inc., Natick, MA, USA) was used to record the
acceleration of the right leg during walking. In the study, the tibialis anterior (TA) muscle of the lower
leg was chosen as the site for acceleration signal recording, with a consideration of possible applications
of the proposed method in drop foot correction. For each subject, the skin of their TA muscle was
cleaned with 75% isopropyl alcohol prior to the start of the experiment, and then the accelerometer was
attached to the TA muscle with medical grade double sided adhesive tape. Additionally, a bandage
(Kindmax Inc., Irvine, CA, USA) was used to fix the accelerometer to the lower limb, to minimize sensor
movement and vibration during the gait (see Figure 2). For comparison purposes, the foot-switch
signals were simultaneously recorded by FSR sensors (Delsys Inc., Natick, MA, USA) on the right
foot. In the experiment, two FSR sensors mounted on the insole were placed under the toe and heel of
each subject, as shown in Figure 2. Both the FSR and acceleration signals were wirelessly sent to the
computer by a transmitter immediately after they were recorded. The sampling rate of both signals
was 148.15 Hz. The 3-axis acceleration recordings were then filtered by a digital high-pass filter with a
cutoff frequency of 0.5 Hz (second order Butterworth filter applied forward and backward) to reduce
low frequency noises. The filtered acceleration signals were used to validate the proposed algorithm.
All data were processed and analyzed in Matab R2012b (The Mathworks, Inc., Natick, MA, USA).
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Figure 2. Experimental setup of force sensitive resistor (FSR) and accelerometer sensors. (a) The FSR
sensors were mounted under the big toe and heel of the insole; (b) The placement of the insole into the
shoe; (c) The placement of the accelerometer and FSR transmitter on the right leg; (d) A bandage was
used to fix the accelerometer and FSR transmitter position.

2.4. Proposed Real-Time Detection Algorithm of Gait Events

The proposed algorithm consists of three main steps: (1) identification of the transition from rest
state to walking; (2) determination of the thresholds for the real-time heuristic algorithm based on the
time-frequency analysis; and (3) detection of gait events in real-time, as shown in Figure 3. Each step
of the algorithm is detailed in the following sections.
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Figure 3. Flowchart of the proposed algorithm of gait event detection which consists of three main
steps: (I) identification of the transition from rest to walking; (II) determination of the thresholds
for real-time heuristic algorithm based on time-frequency analysis; and (III) detection of gait events
in real-time.
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2.4.1. Identification of the Transition from Rest to Walking

In this stage, the composite acceleration signal was computed from the 3-axis acceleration
recordings of each subject in each experimental trial and was then used as criteria to identify the
transition procedure from rest to walking. The time of the identified transition onset serves as an input
(starting point of the observation window) in the next step. The composite acceleration was computed
by using the following equation.

cAcc =
√

ax2 + ay2 + az2 (1)

where ax, ay, and az represent the acceleration signals recorded along the x, y, and z axes, respectively.
When the value of cAcc is above a certain threshold denoted as TH1, the time index of the current point
is referred to as the starting point (n_start). The threshold TH1 was set to a sufficiently large value
(1*g N/m, where g denotes the acceleration due to gravity) to ensure accurate identification of the
walking state. The differential acceleration (Jerk) was computed using Equation (2).

Jerk =

√
(

dax

dt
)

2
+ (

day

dt
)

2

+ (
daz

dt
)

2
(2)

Furthermore, to remove some small peaks of the Jerk signals for easy detection of the gait events,
the moving average value of the Jerk was calculated to obtain the smoothed data J(n), as described in
the following equation:

J(n) =
∑n

n−m−1 Jerk(n)
m

(3)

where m and n denote the size of the sliding window and the sample number, respectively. In selecting a
value for m, a trade-off between time latency and smoothing effects should be considered. In this study
the value of m was set to 30 data samples. The smoothed data J(n) was used for the time-frequency
analysis in the observation window and for the gait event identification.

2.4.2. Determination of the Thresholds for the Real-Time Heuristic Algorithm Based on the
Time-Frequency Analysis

For each subject, the determination of the thresholds for the real-time heuristic based algorithm
was performed on an observation window that provided an efficient means to analyze data samples
with a predefined length. It also served as a window to explore the inherent gait characteristics such
as swing time, stance time, and peak amplitude of gait events. Then, these gait characteristics could
be used as domain knowledge to specify reliable threshold values for heuristic based real-time gait
event detection.

Time-frequency analysis approaches offer an interpretation of a signal in both the time and
frequency domains simultaneously, from which local, transient, and intermittent components
of the signal can be elucidated [26]. Continuous wavelet transform (CWT) is a widely used
time-frequency analysis tool that effectively captures the general characteristics of the signal under
observation [27]. Furthermore, CWT with a proper mother wavelet has shown robustness in detecting
gait events [20,27–29]. The Morlet mother wavelet was adopted in this study to investigate the
time-frequency relationship between the gait event and gait cycle [20]. The fundamental knowledge of
the Morlet wavelet function and CWT are described as follows:

ψ0(η) =
1

4
√
π

eiw0ηe−
η2
2 (4)



Sensors 2016, 16, 1634 6 of 17

The CWT of a discrete time signal (xn), with equal time spacing (δt), is defined as the inner product
of xn with a scaled and translated Morlet mother wavelet ψ0(η).

Wn(s) =
N−1

∑
n′=0

xn′ψ ∗ [
(n′ − n)δt

s
] (5)

where Wn(s) denotes the wavelet transform, s is the wavelet scaling factor, n is the localized time index,
and the (*) indicates the complex conjugate. The frequency scale relationship of the wavelet can be
represented as shown in Equation (6).

f =
fc × Fs

s
(6)

where fc is the central frequency of the wavelet and Fs is the data sampling frequency. The central
frequency of the Morlet wavelet was chosen to be 0.8125 Hz and the Fs was 148.15 Hz. The minimum
gait frequency was assumed to be 0.5 Hz and the corresponding maximum scale denoted as smax for
the analysis was set to 241.

The typical smoothed Jerk signals J(n) and their corresponding CWT time-frequency signals are
represented in Figure 3, for when a subject was walking on the three terrains. It can be observed
from Figure 3 that the amplitudes of smoothed Jerk signals are significantly different across the three
terrains. Thus it would be very difficult to use a given threshold on the amplitudes of the J(n) signals
for the real-time detection of gait events when walking on different terrains. From Figure 4, we can
also see that the time-frequency relationship between the individual gait events (HS and TO) and
their corresponding gait cycleTable is represented clearly. Therefore, it would be possible to use the
time-frequency characteristics of acceleration signals to capture gait events during walking as reported
in a previous study [20]. Hence, we applied the time-frequency analysis technique to the data in the
observation window to detect gait events and also obtained the desired threshold parameters for the
real-time heuristic based algorithm.
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Figure 4. Illustration of the smoothed acceleration Jerk signals on the three terrains for a subject (left
panel) and their corresponding time-frequency representation based on the Morlet wavelet (right
panel). The individual gait events of heel strike (HS) and toe off (TO) can be observed in the continuous
wavelet transform (CWT) coefficients. The results from the top row to the bottom row are from the
terrains of level ground (a,b), up stairs (c,d), and down stairs (e,f), respectively.
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The flowchart of the time-frequency analysis, gait event detection, and threshold parameter setting
as applied in this study is represented in Figure 5. Each step in the figure is described as follows:
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Figure 5. Flowchart of the time-frequency analysis of data in the observation window. Gait parameters
can be obtained from the observation window to develop heuristics for real-time gait event detection.
E−s is the prior energy density spectrum estimate and the scale dependent energy density spectrum
of the observation window. µ̂e and µ̂c denote the obtained scales of the gait event and the gait cycle.
The corresponding CWT coefficients of these scales are denoted by xe and xc.

Step 1: The Morlet wavelet was chosen as the mother wavelet function, and the maximum scale
of this function was set to 241 as previously described.

Step 2: Initially, the frequencies of the gait events and cycle events were assumed to be 1.6 Hz and
0.8 Hz, respectively. Thus, the corresponding scales of the gait events and gait cycles were 75 and 150,
respectively. For simplicity, the prior energy density spectrum estimate E−s was approximated as a
mixture of two one-dimension (1-D) Gaussian distributions based on Equation (7).

E−s = e
−( s−µ−e

σ−1
)

2

+ e
−( s−µ−c

σ−2
)

2

(7)

where E−s is the prior energy spectrum density estimate, µ−e is the prior scale of the gait event, µ−c is
the prior scale of the gait cycle, and σ−1 and σ−2 denote the standard deviations. The values of µ−e , µ−c ,
σ−1 , and σ−2 were 75, 150, 15, and 25, respectively. The detailed illustration of E−s is graphically shown
in Figure 6a.
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Figure 6. Graphical illustration of the gait event detection procedure in one observation window.
(a) Initially estimated scale dependent energy spectrum E−s ; (b) The cross correlation of the prior
estimate E−s with the current scale dependent energy spectrum Es to measure the scale delay τ between
them; (c) The current scale dependent energy spectrum Es was used to find the scales of the gait event
and the gait cycle; (d) The obtained CWT coefficients of xe and xc were used to determine the peaks in
the smoothed Jerk signal J(n) for gait event detection.

Step 3: In each observation window, the CWT coefficients were computed from the input
smoothed Jerk data using the pre-defined Morlet wavelet and scales. The size of the observation
window was set to be longer than the longest duration of one gait cycle. In the study, the observation
window was made to contain 300 sample points which were approximately two seconds in duration.
Then, the scale dependent energy density spectrum Es was computed using Equation 8.

Es =
N−1

∑
n=0
|Wn(s)|2, s ∈ [1, smax] (8)

where |Wn(s)|2 is the 2-D wavelet energy density function that measures the scale dependent total
energy distribution of a signal, ES is described in Figure 6c, and smax represents the maximum scale.

Step 4: The cross correlation between the prior estimate E−s and Es was calculated to measure the
scale delay τ (see Figure 6b) which was obtained using Equation (9).

τ = argmaxs∈[1,smax](E−s ∗ Es) (9)

Step 5: After the scale delay τ was determined, the scale sλ could be computed based on the
mathematical expression in Equation (10).

sλ = argminEs (10)

where s ∈ [µ−e + τ,µ−c + τ] and sλ was the scale where Es had a minimum value (See Figure 6c). The sλ
was used to distinguish the scale range of the gait event and the gait cycle. Thus, the posterior gait
event scale µ̂e and the gait cycle scale µ̂c were later obtained using Equations (11) and (12), respectively.
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µ̂e = argmaxs∈[1,sλ]Es (11)

µ̂c = argmaxs∈[sλ,smax]Es (12)

Step 6: With the event scale µ̂e and the cycle scale µ̂c, the CWT coefficients of these scales were
determined and labeled as xe and xc, respectively. Furthermore, xe and xc were filtered using a
second-order Butterworth high-pass filter (forward and backward) with a cutoff frequency of 10 Hz to
remove high frequency noises.

Step 7: With these signals of xe, xc, and J(n), the gait events could be identified, as shown in
Figure 6d. The negative peaks of xe were recognized and their indices were used to divide the
observation window into different event regions. Gait events were identified as the maximum value of
J(n) in the region of the two neighboring negative peaks of xe. Also, the first event region was marked
with the index range of [1, n_1stNP], where n_1stNP denotes the index of the first negative peak of xe.
Similarly, the final gait event was identified within the index range of [n_lastNP, 300], where n_lastNP
denotes the index of the last negative peak of xe. Meanwhile, the gait event (HS or TO) time was
identified as the peak index of J(n) in the region under consideration. Subsequently, the gait event
corresponding to an event region would be classified as HS when a positive peak of xc is observed,
or TO when a negative peak of xc is observed.

Step 8: The gait event (HS and TO) times and the corresponding amplitudes of J(n) within the
observation window were stored and used to compute the threshold parameters. A baseline threshold
(designated as TH2) was firstly defined as the median value of J(n) in the observation window for
improving the reliability of gait event detections. Then, for the HS events within the observation
window, their threshold value (designated as TH3) was defined as the average amplitude of the peaks
of J(n) corresponding to HS events, and for the TO events, their threshold value (designated as TH4)
was defined as that corresponding to TO events. The average swing phase time (Tswin) and the average
stance phase time (Tstd) were also defined.

2.4.3. Detection of Gait Events in Real-Time

The procedure of gait event detection during walking is described as follows:
Step 1: With the threshold values obtained above, the next task was to detect the peak of the

current gait event from the signal J(n). When a peak was firstly detected from J(n) and its amplitude
was greater than a given value that was set as rb × TH2 (rb = baseline membership), the peak was
designated as J(np) and was used as a starting point to search the potential peaks in Step 2.

Step 2: Wait a certain time with an attempt to check if the detected peak J(np) is the real peak
corresponding to a gait event. In the study, a 15 sample point waiting duration (about 100 ms) was
chosen after the experimental investigations, which would efficiently avoid the false peaks and have a
reasonable time latency. Note that a longer waiting duration should be desired for reliably obtaining
the real peak, but would also increase the time latency of gait event detections. Then, check if there
were peaks in the subsequent 15 samples of the signal J(n) that had an amplitude greater than J(np).
If there were, the peak with a maximum amplitude was used as the new starting point (J(np)) and then
this step was repeated. Otherwise, move to Step 3.

Step 3: Further check that the amplitude of the current peak J(np) was greater than the amplitude
of all the subsequent 15 samples. If it was, the peak was considered as the candidate peak (designated
as J(nc)) and then proceed to next step. Otherwise, search for the subsequent peak that served as a new
starting point (J(np)) and repeat Step 2.

Step 4: If the previous gait event was TO, the candidate peak J(nc) was identified as an HS
event when the amplitude of the candidate peak was greater than r1 × TH3 (r1 = stride amplitude
membership) and the time interval between the last gait event (TO) and the candidate peak was greater
than r2 × Tswin (r2 = stride duration membership). If the previous gait event was HS, the candidate
peak J(nc) was identified as a TO event when the amplitude of the candidate peak was greater than
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r1 × TH4 and the time interval between the last gait event (HS) and the candidate peak was greater
than r2 × Tstd. Otherwise, the candidate peak would be discarded and Step 1 was repeated.

2.5. Performance Evaluation of the Proposed Algorithm

The performance of the proposed algorithms in identifying TO and HS gait events was evaluated
in terms of the accuracy and timing agreement with respect to the FSR method. Walking data of
the first 300 sample points (first few cycles) that served as an observation window were used for
the time-frequency analysis and the data corresponding to the last gait cycle was excluded in the
computation. The accuracy was assessed using Precision (P), Recall (R), and F1 score measures,
which are defined in Equation (13), where TP denotes true positives, FN represents false negatives,
and FP denotes false positives. In addition, TP represents the number of correctly detected gait events,
FN denotes the number of missed gait events, and FP symbolizes the number of wrongly detected
gait events.

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2PR

P + R
(13)

In the study, a metric, the timing agreement between the proposed method and the FSR method,
was adopted to measure the time difference for successfully detecting a walking event. A Bland-Altman
plot was used to represent the timing agreement between the proposed method and the FSR method.
In the FSR method, the HS and TO gait events were identified at 5% increase in the maximum heel FSR
amplitude and 5% decrease in the maximum toe FSR amplitude, respectively. The maximum heel and
toe FSR amplitudes were defined with respect to the FSR signal segments in the observation window
and then the time instance of the correctly detected gait events of the proposed and FSR methods
were compared. Additionally, the time of gait event detection was assessed for the proposed and
FSR method using the absolute mean difference (AMD), mean difference (MD), and 95% confidence
interval (CI) [30].

2.6. Parameter Selection

The value of the membership r1 and r2 described above were selected according to the accuracy
of the obtained F1 scores using one trial representative gait data on each terrain per subject. To obtain
the values for the r1 and r2 parameters, we iteratively examined a set of values in the range of 0.1 to 0.9
(0.1, 0.3, 0.5, 0.7, and 0.9) and eventually realized that when r1 and r2 were both 0.5, the performance
of the algorithm was relatively good and stable, as shown in Figure 7. Meanwhile, after inspecting
the data across all the recruited subjects, it was observed that a baseline membership (rb) of 0.8
would have an insignificant effect on the performance of the proposed algorithm with respect to gait
event detection.
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Figure 7. A plot of the F1 scores for gait event detection versus the membership of r1 and r2 on different
terrains. r1 denotes the stride amplitude membership and r2 represents the stride duration membership.
F1 scores were computed from a representative trial on each terrain from a subject.

3. Results

3.1. Gait Event Detection

The typical results of the gait event detection based on the proposed algorithm and the FSR
reference method are illustrated in Figure 8. It can be seen from Figure 8a–c that the smoothed
acceleration Jerk signals were similar in shape when walking on the three terrains, which would make
the detection of gait events easy and convenient. Compared to the proposed method, the FSR signals
of both the HS and TO events changed considerably among the three terrains, as shown in Figure 8d–i.
The instability of the FSR signals on different terrains would sometimes affect the accuracy in detecting
a gait event.
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Figure 8. Typical results of the gait event detections on different terrains from one subject by using
both the proposed and FSR based method. The heel strike (HS) and the toe off (TO) are marked by
a pink triangle and a red star, respectively. The HS and TO events from the proposed algorithm are
represented in (a–c) for the three terrains, respectively. The HS and TO events obtained by FSR method
are illustrated in (d–i), respectively.

3.2. Accuracy of Gait Event Detection

The average accuracies (precision, recall, and F1 score) of both HS and TO event detection on
different terrains over all eight subjects are summarized in Tables 1 and 2, respectively. From Table 1
(HS event detection), we can see that the proposed algorithm achieved similar F1 scores as the
conventional FSR method on the three terrains. Only for the down stairs terrain, the F1 score of
the proposed algorithm was 0.98, which was slightly larger than that of the FSR method (0.97).
From Table 2 (TO event detection), for level ground walking, the F1 score of the proposed algorithm
was similar to that of the FSR method. It is important to note that for the walking on up and down
stairs terrains, the F1 scores of the proposed algorithm were obviously higher than those of the FSR
method. The proposed algorithm could achieve a F1 score of 0.99 and 0.98 for up stairs and down
stairs, respectively, while the F1 scores of the FSR method were 0.92 and 0.94, respectively.

3.3. Timing Agreement between the Proposed Algorithm and FSR Method

The Bland-Altman plot of the timing agreement between the proposed algorithm and the FSR
method with respect to the detection of HS and TO gait events for the three terrains is shown in
Figures 9 and 10, respectively. Note that the positive values in the plot represent the delay in the
proposed algorithm in comparison with the FSR method. From Figures 9 and 10, it can be observed that
the proposed algorithm attained an average timing delay of about 146.6 ms and 70.4 ms for HS and TO
gait events, respectively. For HS event detection, the upper and lower limits of the timing agreement
were 59.9 ms and 233.3 ms (Mean + 1.96 SD), and for TO event detection, the timing agreement limits
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were −173.1 ms and 313.8 ms (Mean + 1.96 SD). Note that the larger timing agreement limits observed
for TO event detection were caused by the large time delays in detecting some gait events during stair
walking (Figure 10). In addition, AMD, MD, and 95% CI of the gait event detection time on the three
terrains between the proposed and FSR method are shown in Table 3. Again, a larger time delay could
be observed for the HS events compared to that of the TO events. For HS gait events, AMD values were
found to increase in the following order: down stairs (119.6 + 36.2 ms), level ground (137.4 + 41.2 ms),
and up stairs (173.9 + 35.6 ms). For TO gait events, AMD values were observed to increase as follows:
down stairs (72.2 + 57.1 ms), up stairs (116.2 + 80.6 ms), and level ground (124.4 + 132 ms).

Table 1. Performance of the proposed algorithm and FSR based method for HS gait event detection on
the three terrains in terms of precision, recall, and F1 score (Mean ± SD) across all eight subjects.

Accuracy
Level Ground Upstairs Downstairs

ACC FSR ACC FSR ACC FSR

P 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.04 0.99 ± 0.08 0.98 ± 0.02 0.97 ± 0.03
R 0.99 ± 0.02 1.00 ± 0.00 0.99 ± 0.04 0.99 ± 0.02 0.98 ± 0.02 0.97 ± 0.11
F1 1.00 ± 0.01 1.00 ± 0.00 0.99 ± 0.04 0.99 ± 0.02 0.98 ± 0.02 0.97 ± 0.07

Note: And ACC denotes accelerometer.

Table 2. Performance of the proposed algorithm and FSR based method for TO gait event detection on
the three terrains in terms of precision, recall, and F1 score (Mean ± SD) across all eight subjects.

Accuracy
Level Ground Upstairs Downstairs

ACC FSR ACC FSR ACC FSR

P 0.99 ± 0.02 1.00 ± 0.01 0.95 ± 0.09 0.93 ± 0.08 0.99 ± 0.02 0.98 ± 0.03
R 0.98 ± 0.03 1.00 ± 0.01 0.95 ± 0.09 0.92 ± 0.08 0.99 ± 0.02 0.92 ± 0.03
F1 0.99 ± 0.02 1.00 ± 0.01 0.95 ± 0.09 0.92 ± 0.08 0.99 ± 0.02 0.94 ± 0.03

Sensors 2016, 16, 1634  13 of 18 

Sensors 2016, 16, 1634; doi:10.3390/s16101634 www.mdpi.com/journal/sensors 

Table 2. Performance of the proposed algorithm and FSR based method for TO gait event detection 

on the three terrains in terms of precision, recall, and F1 score (Mean ± SD) across all eight subjects. 

Accuracy 
Level Ground Upstairs Downstairs 

ACC FSR ACC FSR ACC FSR 

P 0.99 ± 0.02 1.00 ± 0.01 0.95 ± 0.09 0.93 ± 0.08 0.99 ± 0.02 0.98 ± 0.03 

R 0.98 ± 0.03 1.00 ± 0.01 0.95 ± 0.09 0.92 ± 0.08 0.99 ± 0.02 0.92 ± 0.03 

F1 0.99 ± 0.02 1.00 ± 0.01 0.95 ± 0.09 0.92 ± 0.08 0.99 ± 0.02 0.94 ± 0.03 

3.3. Timing Agreement between the Proposed Algorithm and FSR Method 

The Bland-Altman plot of the timing agreement between the proposed algorithm and the FSR 

method with respect to the detection of HS and TO gait events for the three terrains is shown in 

Figures 9 and 10, respectively. Note that the positive values in the plot represent the delay in the 

proposed algorithm in comparison with the FSR method. From Figures 9 and 10, it can be observed 

that the proposed algorithm attained an average timing delay of about 146.6 ms and 70.4 ms for HS and 

TO gait events, respectively. For HS event detection, the upper and lower limits of the timing 

agreement were 59.9 ms and 233.3 ms (Mean + 1.96 SD), and for TO event detection, the timing 

agreement limits were −173.1 ms and 313.8 ms (Mean + 1.96 SD). Note that the larger timing agreement 

limits observed for TO event detection were caused by the large time delays in detecting some gait 

events during stair walking (Figure 10). In addition, AMD, MD, and 95% CI of the gait event detection 

time on the three terrains between the proposed and FSR method are shown in Table 3. Again, a 

larger time delay could be observed for the HS events compared to that of the TO events. For HS gait 

events, AMD values were found to increase in the following order: down stairs (119.6 + 36.2 ms), level 

ground (137.4 + 41.2 ms), and up stairs (173.9 + 35.6 ms). For TO gait events, AMD values were 

observed to increase as follows: down stairs (72.2 + 57.1 ms), up stairs (116.2 + 80.6 ms), and level 

ground (124.4 + 132 ms).  

 

Figure 9. Bland-Altman plot of time agreement between the proposed algorithm and the FSR method 

for HS gait event detection on the three terrains. The horizontal axis is the average of the time 

measures of detecting gait events by both methods, and the vertical axis is the difference between the 

two time measures. Positive time differences represent a delay in the proposed algorithm with respect 

to the FSR method. The solid horizontal line denotes the mean error while the dashed horizontal line 

is the limits of time agreement (Mean + 1.96 SD). 

Figure 9. Bland-Altman plot of time agreement between the proposed algorithm and the FSR method
for HS gait event detection on the three terrains. The horizontal axis is the average of the time measures
of detecting gait events by both methods, and the vertical axis is the difference between the two time
measures. Positive time differences represent a delay in the proposed algorithm with respect to the
FSR method. The solid horizontal line denotes the mean error while the dashed horizontal line is the
limits of time agreement (Mean + 1.96 SD).
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Figure 10. Bland-Altman plot of time agreement between the proposed algorithm and the FSR method
for TO gait event detection on different terrains. Positive time differences correspond to a delay in the
proposed algorithm with respect to the FSR method. The solid horizontal line denotes the mean error
while the dashed horizontal lines represent the limits of timing agreement (Mean + 1.96 SD).

Table 3. Absolute mean difference (AMD), Mean Difference (MD), and 95% Confidence Interval (CI)
in the timing of detected gait events on different terrains between the proposed algorithm and the
FSR method.

Gait Event Level Ground Upstairs Downstairs

AMD MD CI AMD MD CI AMD MD CI
HS 137.4 ± 41.2 137.4 ± 41.2 [133.6, 141.2] 173.9 ± 35.6 173.9 ± 35.6 [171, 176.8] 119.6 ± 36.2 119.5 ± 36.6 [116.1, 123.0]
TO 124.4 ± 132.0 115.8 ± 139.7 [102.8, 128.8] 116.2 ± 80.6 69.7 ± 123.1 [58, 81.4] 72.2 ± 57.1 26.4 ± 88.2 [18.3, 34.6]

Note: All results are expressed in milliseconds, while the average and standard deviation are reported for AMD
and MD across all subjects.

3.4. The Comparison of F1 Score with Previous Studies for Stair Terrain

In the study conducted by Kotiadis et al., an accelerometer based method was used for gait event
detection on stair terrain, with one missed gait event and three wrongly detected gait events in a total
of eleven gait events [2]. Based on these values, the F1 scores for the gait events of HS and TO were
computed as reported in Table 4. Additionally, Formento et al. adopted a gyroscope based heuristic
algorithm for gait event detection and reported that two TO gait events were missed in 20 TO events
on up stairs terrain. Furthermore, three TO events were missed while one was wrongly detected in a
total of 27 TO events on down stairs terrain [30]. With this data, the F1 score for their method was also
computed and reported in Table 4. Subsequently, the F1 score obtained from our proposed algorithm
was compared with those of Kotiadis et al. and Formento et al.

Table 4. Comparison of the proposed algorithm and previously published results on stair walking
based on F1 score.

Sensor Type Gait Events F1 Score (Up Stairs) F1 Score (Down Stairs)

This work Acc HS 0.99 0.98
This work Acc TO 0.95 0.99

[2] Acc HS 0.96 0.76
[2] Gyro HS 1 0.78

[30] Gyro TO 0.95 0.93

Note: Acc denotes accelerometer and Gyro denotes gyroscope.
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4. Discussion

The aim of this study was to develop and assess an accelerometer based algorithm for real-time
gait event detection on different terrains. To assess the performance of the newly proposed algorithm
in detecting gait events during walking, the conventional FSR based foot switches were used as a
reference method. It was observed that the average F1 score for the FSR method across all recruited
subjects were found to be 1.00 for both HS and TO gait event detection on level ground terrain.
However, there was a decrease in the average F1 score obtained during gait event detection while
walking on stair terrain in comparison to level ground walking. The difference in the F1 scores might
be attributed to the instability noticed in the FSR signal recordings while walking up and down the
stairs. Additionally, the procedure of putting on and taking off FSR sensors are usually complex
and often introduce some level of discomfort and inconvenience to the wearers. These factors will
eventually limit their applications in real life [14].

As an alternative to the FSR sensor for gait event detection, an accelerometer could provide
reliable gait event signals, and it requires relatively low power consumption, is low cost, and is more
convenient to wear [20]. The proposed acceleration based algorithm could detect gait events with
robustness and accuracy in real-time applications. Our results showed that average F1 scores of 0.99
(up stairs) and 0.98 (down stairs) for HS gait event detection were recorded, while the average F1
scores of 0.95 (up stairs) and 0.99 (down stairs) for TO gait event detection were obtained. To the best of
our knowledge, the gait event detection on stair terrains (ascending and descending stairs) has rarely
been investigated. Kotiadis et al. proposed an acceleration based algorithm for gait event detection
on different terrains. In their study, F1 scores of 0.96 and 0.76 for HS on up stairs and down stairs
terrains were respectively obtained [2]. Formento et al. proposed a rate gyroscope based heuristic
algorithm for gait event detection, and recorded F1 scores of 0.95 and 0.93 for HS on up stairs and down
stairs terrains respectively [30]. A major limitation of their study was that very few gait cycles were
considered. It is important to note that the F1 scores attained by the proposed algorithm is relatively
higher than that of the previously proposed methods. Hence, our proposed algorithm may have the
potential for accurate gait event detection on stair terrains in real-time applications in comparison to
the previous methods.

The mean time delay of the proposed method in comparison to the FSR method was about
146.6 ms for HS and 70.4 ms for TO. Compared to the delays reported in some previous studies [14,31],
the increase in time delay especially for HS in our study may be attributed to the 30 point sliding
window which was used to smoothen the acceleration Jerk.

In the proposed algorithm, the size of the observation window was fixed and set to about two
seconds. It should be noted that the correct detection of gait events relies on the gait events identified
in the observation window using time-frequency analysis and the heuristics developed based on
parameters obtained in the observation window. Thus the errors in detecting gait events may be due
to the wrongly identified gait events in the observation window and/or the developed heuristics.
Continuous wavelet transform could effectively capture gait events and cycles from the acceleration
signal [20,32]. However, if there are sudden changes in gait speed, the time-frequency analysis
method may not correctly capture all the gait events in the observation window, leading to incorrect
threshold parameter estimation for the heuristic approach. Thus, the subjects were asked to walk in a
comfortable way without sudden speed changes during the experiments. In the developed heuristics,
gait amplitude parameters (0.5 × TH3, and 0.5 × TH4) and gait duration parameters (0.5 × Tswin and
0.5 × Tstd) were computed to identify each type of gait event. These parameters yielded results that are
relatively good and comparable to those reported in previous studies. However, the parameters could
be further optimized especially when considering a tradeoff between gait event detection accuracy
and robustness in real life applications. In addition, the proposed algorithm’s performance was
only tested with data acquired from eight healthy subjects. Future work will include testing the
proposed algorithm using datasets acquired from a number of pathological gait patients and making
the necessary adaptations to the algorithm.
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5. Conclusions

This paper proposed a new algorithm to detect gait events on three walking terrains in real-time
based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait
parameters, and to then determine the peaks of the jerk signals using peak heuristics. The accuracy
and robustness of the algorithm were validated by using leg-acceleration signals from eight healthy
subjects while walking on level ground, up stairs, and downs stairs terrain. The experimental results
showed that the proposed algorithm can accurately detect toe off and heel strike gait events with
comparable accuracy and time delays across different terrains. Testing and adapting the algorithm
with varying speeds and pathological gait patients will be conducted in the future work.
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