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A B S T R A C T   

Background: RNA-binding proteins (RBPs) are closely related to tumors, but little is known about 
the mechanism of RBPs in tumorigenesis and progression of gastric cancer (GC). As genes do not 
usually act alone in the pathway deregulation, gene pair combinations are more likely to become 
stable and accurate biomarkers. The purpose of our research is to establish a novel signature 
based on RBP gene pairs to predict the prognosis of gastric cancer patients. 
Methods: We downloaded genetic and clinical information from the TCGA and GEO database. 
TCGA and GSE13911 were used for screening differentially expressed genes (DEGs). The RBP 
genes were gathered from previous studies and employed to screen out DE-RBP genes after 
intersecting with DEGs. Samples were classified according to the relative expression of each pair 
of DE-RBP genes. The univariate Cox regression analysis and random forest were used to identify 
hub gene pairs to construct signature for predicting the prognosis of gastric cancer. Time- 
dependent ROC curves and KM survival curves were performed to evaluate the signature. 
GSEA was performed in TCGA training cohort and GSE62254 testing cohort to analyze enrich-
ment pathways. Finally, the influence of these gene pairs on the prognosis of GC patients was 
further elucidated respectively through the combination of high and low expression of the two 
genes in each hub gene pair. 
Results: We screened out 6 hub RBP gene pairs (COL5A2/FEN1, POP1/GFRA1, EXO1/PLEKHS1, 
SLC39A10/CHI3L1, MMP7/PPP1R1 B and SLC5A6/BYSL) to predict the prognosis of patients 
with gastric cancer. Using the optimal cut-off value to divide patients into high-risk and low-risk 
groups in the training and testing cohort, we found that the overall survival (OS) of the low-risk 
group was higher than that of the high-risk group (P < 0.05). The area under the ROC curves for 
1, 3, and 5 years were (0.659, 0.744, 0.758) and (0.624, 0.650, 0.653) in two cohorts. Univariate 
and multivariate Cox regression analysis showed that 6 RBP gene pairs signature were inde-
pendent prognostic factors for gastric cancer (P < 0.05). In addition, the prognostic survival 
analysis showed that COL5A2-high/FEN1-low, POP1-low/GFRA1-high, EXO1-low/PLEKHS1-low, 
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SLC39A10-high/CHI3L1-low, MMP7-high/PPP1R1 B-low, SLC5A6-low/BYSL-low had worse OS 
(P < 0.05). And the gene correlation analysis showed that there was no obvious correlation be-
tween the genes in each gene pairs except SLC5A6/BYSL and POP1/GFRA1. Finally, GSEA 
analysis showed that the high-risk group was enriched in tumor migration, invasion and growth- 
related pathways. 
Conclusion: Our study identified a novel 6 RBP gene pairs signature to predict the prognosis of 
gastric cancer patients and provide potential targets for clinical gene therapy.   

1. Introduction 

Gastric cancer (GC) is the third cancer-related cause of death in the world and one of the most common malignant tumors [1]. In 
recent years, despite the continuous improvement and optimization of GC treatment methods and related technologies, the 5-year 
survival rate of GC patients still does not exceed 30% [2–4]. On the one hand, most of the patients were found to be advanced or 
metastasized due to the anatomical position of the stomach and the atypical clinical manifestations of GC; On the other hand, patients 
sometimes have different prognosis at the same stage. It is inevitable that accurately predicting the patient’s prognosis can benefit 
patients in subsequent treatment [5,6]. At present, it has been reported that many clinicopathological factors, genes, etc. Can be used 
as prognostic factors, but most of them lack clinical practicality or other limitations [7]. Therefore, there is a clinical need for a marker 
predictor that more accurately predicts the prognosis of GC patients. 

RNA binding protein (RBP) is a group of proteins that regulate gene transcription and mainly act on RNA processing, such as mRNA 
splicing, localization, polyadenylation, translocation, stability, translation, etc [8]. Recent studies have shown that RBP plays a vital 
role in the occurrence and development of tumors and is used to construct tumor prognostic models [9–11]. The occurrence and 
development of tumors may be under the joint action of multiple genes [12]. In recent years, people have proposed a gene expression 
data processing method based on the relative expression level of gene expression, which overcomes the shortcomings of standardi-
zation and large-scale in different data processing, and has achieved reliable results in a variety of studies [13,14]. The gene pairs 
obtained by CytoPred in view of top scoring pair (TSP)-based decision tree could well predict the survival and prognosis of acute 
myeloid leukemia (AML) patients [15]. However, there are few researches on RBP gene pairs, especially the impact on the prognosis of 
gastric cancer has not been reported. 

Therefore, in this study, the expression levels of all RBP genes in each tumor sample were compared in pairs, and samples were 
classified with the relative expression of each gene pairs. We confirmed the role of the RBP gene pairs in predicting the prognosis of 
gastric cancer. At the same time, we further carried out correlation analysis and pathway enrichment analysis on the genes of each hub 
gene pair. And according to the high and low expression of the two genes in each gene pair, it is divided into different combinations of 
gene pairs to further verify its role in tumor progression. 

2. Methods and materials 

2.1. Data collection and pre-processing 

Our study data were based on The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) database. RNA- 
sequencing dataset of GC patients was downloaded in TCGA (https://portal.gdc.cancer.gov/projects) and transformed into tran-
scripts per kilobase million (TPM) value. Clinical information of these patients was also obtained together, of course, only with patient 
samples of complete follow-up information would be included in subsequent analysis. Next, GSE13911 and GSE62254 were acquired 
in GEO (https://www.ncbi.nlm.nih.gov/geo/). We removed some samples whose principal component analysis results were incon-
sistent with the grouping, including a tumor sample “GSM350469″ and 5 normal samples “GSM350415″, “GSM350423″, 
“GSM350427″, “GSM350431″ and “GSM350438”. Finally, a total of 37 tumor samples and 26 normal samples were acquired in 
GSE13911. GSE62254 was considered as testing cohort for the later operation. 

2.2. Screening of DEGs in TCGA and GSE13911, selection and bioinformatic analysis of DE-RBP genes 

Differentially expressed genes (DEGs)were obtained using the “DESeq2” package in TCGA and the “limma” package in GSE13911. 
The screening criteria between tumor and normal samples were |log2 fold change (FC)| > 1 and adjusted p-value <0.05. We made an 
upset plot to show a list of the human RBPs from previous studies [16–20] (https://www.xrnax.com/) (http://geneontology.org/), 
(http://www.rbptd.com) (https://www.genscript.com/). The more detailed genetic information could be referred to in the Supple-
ment Table 1. Next, we took the intersection of DEGs with RBP genes and then confirmed differentially expressed RBP genes (DE-RBP). 

To further explore the function of DE-RBP genes, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomics (KEGG) pathway enrichment analysis using the “clusterProfiler” R package. GO analysis included biological processes, cell 
components and molecular functions, and the generated diagram showed the top 10 items of each part. KEGG analysis displayed the 20 
most enriched pathways. 
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Fig. 1. Selection and functional enrichment analysis of differentially expressed RBP genes (DE-RBP genes). (A) Volcano plot of DEGs in TCGA. (B) 
Volcano plot of DEGs in GSE13911. (C) Upset diagram of integration from 7 sources. (D) Venn diagram: making intersection of 3 cohorts to screen 
DE-RBP genes. (E) Bubble plots of GO and KEGG enrichment analysis for DE-RBP genes. 
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2.3. Screening of gene pairs and construction of signature 

After the above collection, aggregation and processing, we obtained a total of 156 DE-RBP genes. Each DE-RBP gene was paired 
with others separately to form a series of DE-RBP gene pairs (DRGPs), and the value of each gene pair was determined by the relative 
ranking of the expression levels of the two genes. If the expression value of the first gene was lower than that of the second gene, the 
value of this DRGP was output 1; otherwise, it was 0. Subsequently, we deleted some DRGPs that expressed a unique value with 0 or 1 
in more than 80% samples, and the remaining DRGPs were as candidate for the following signature. Through calculation, 988 gene 
pairs were identified with common differences. 

With a univariate Cox regression analysis performed in TCGA training cohort, 102 DRGPs with survival differences were finally 
determined through the limitation of p-value <0.05. Then, the “randomForestSRC” R package was applied to pick out the most 
important DRGPs which were subsequently brought into multivariate Cox analysis. Finally, 6 hub gene pairs were identified and used 
to build the prognostic signature which was performed by risk score = Σ expression value of DRGPi × Cox coefficient of DRGPi. 

2.4. Validation of signature 

The optimal cut-off value was determined using the “survminer” R package in TCGA training cohort. Time-dependent ROC of TCGA 
and GSE62254 were respectively applied to evaluate the signature using the “survivalROC” R package. Based on the optimal cut-off 
value, we respectively divided the TCGA and GSE62254 samples into high- and low-risk groups. Heat maps were employed to display 
the expression tendency of the 6 gene pairs in different risk groups using the “pheatmap” R package. The Kaplan-Meier survival curves 
were plotted to reveal differences in overall survival of patients in high- and low-risk groups using the “survival” R package. 

2.5. Analysis of the impact of high and low expression combinations of two genes in each hub gene pair on survival 

We observed the expression differences of the 12 genes from the 6 hub gene pairs between high- and low-risk groups in the TCGA 
dataset. For further research, the expression of each gene was divided into high and low level according the optimal cut off. Subse-
quently, we combined the high and low expression of the two genes in each hub gene pair, so a cohort were sorted into 4 groups to 
show the effect of this gene pair on survival by comparison between groups. Meanwhile, the same operation was conducted in 
GSE62254 testing cohort. 

In addition, we did a Pearson correlation analysis (Pearson’ r) on the two genes in each hub gene pair to explore whether there was 
a linear relationship between them. 

2.6. Independent prognostic factors 

We performed univariate and multivariate Cox proportional-hazards analysis to identify independent prognostic factors using the 
“rms” R package in TCGA and GSE62254. Here, clinical information was brought into analysis including gender, age, stage, TNM stage, 
grade, tumor location and Lauren classification. And a value with p < 0.05 was considered significant. 

2.7. GSEA 

To observe the difference of pathway between high- and low-risk groups, we carried out gene set enrichment analysis (GSEA) using 
the “clusterProfiler” R package. The enrichment analysis of KEGG and HALLMARK was done on TCGA and GSE62254 cohort, 
respectively, and the enriched pathways were displayed in two directions of activation and suppression. 

2.8. Statistical analysis 

All the statistical analysis was performed on R (version 4.0.2) and each package we used had been explained in the above. Only p <
0.05 in all testes was considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001). 

3. Result 

3.1. Selection and functional enrichment analysis of DE-RBP genes 

In this study, we performed a difference analysis on the TCGA and the GSE13911 to screen DEGs. After removing some samples 
whose principal component analysis results were disagree with the grouping results, we got 37 tumor samples and 26 normal samples 
in GSE13911 dataset. According to the threshold of |log2 fold change (FC)| > 1 and adjusted p-value <0.05, we totally identified 4751 
DEGs in TCGA and 1984 DEGs in GSE13911, and severally depicted volcano maps to distinguish up-regulated and down-regulated 
genes (Fig. 1A and B). Moreover, we integrated a list of human RBP genes from previous studies (Gerstberger, SONAR, CARIC, 
Gene Ontology project, Poly(A) binding protein, XRNAX, RBPTD) and a total of 4396 RBP genes were found and aggregated (Sup-
plementary Table 1 and Fig. 1C). Venn diagram was drawn to show the total 156 DE-RBP genes of 3 cohorts (Fig. 1D). 

To obtain a comprehensive function understanding of these DE-RBP genes, GO and KEGG were performed and visualized using 
bubble plots (Fig. 1E). GO analysis showed that primary enrichment pathways were chromosome segregation, nuclear division and 
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organelle fission in BP, spindle, chromosomal region and condensed chromosome in CC, tubulin binding, microtubule binding and 
single-stranded DNA binding in MF. The result of KEGG analysis showed that major enrichment pathways of IGs were cell cycle, oocyte 
meiosis and progesterone-mediated oocyte maturation. 

Fig. 2. Construction and validation of prognostic signature. (A) Visualization of Random Forest to screen hub gene pairs. (B) Selection of the 
optimal cut off value. (C) Time-dependent ROC curve of TCGA. (D) Time-dependent ROC curve of GSE62254. 
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3.2. Screening of RBP gene pairs, construction and validation of prognostic signature 

After the process of pairing, calculation and screening of the above 156 DE-RBP genes, we obtained a total of 988 DRGPs with 
common differences. The gene pairs were calculated as follows. 

1: DRGPi < DRGPj; 0: DRGPi ≥ DRGPj. 

Fig. 3. Validation of prognostic signature and analysis of genes in hub gene pairs. (A) Heatmap of gene pairs in TCGA. (B) Heatmap of gene pairs in 
GSE62254. (C) Kaplan-Meier survival curve of overall survival (OS) between high- and low-risk groups in TCGA. (D) Kaplan-Meier survival curve of 
overall survival (OS) between high- and low-risk groups in GSE62254. (E) Differential expression analysis of each gene from 6 hub gene pairs 
between high- and low-risk groups in TCGA. 
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With a univariate Cox analysis in TCGA training cohort, 102 gene pairs were identified with survival differences according to p- 
value <0.05 (Supplementary Table 2). Random Forest algorithm was used to further select the most important DRGPs which were 
defined as hub gene pairs and put into multivariate Cox analysis to struct the prognostic signature (Fig. 2A and Supplementary 
Table 3). The final 6 hub gene pairs were COL5A2/FEN1, POP1/GFRA1, EXO1/PLEKHS1, SLC39A10/CHI3L1, MMP7/PPP1R1 B and 
SLC5A6/BYSL. The model was showed as risk score that was calculated by the gene pair expression value multiplied by the coefficient 
of multivariate Cox analysis, and the risk score of each patient was obtained. We regarded TCGA dataset as training cohort and 
GSE62254 as testing cohort, and divided each cohort into high- and low-risk groups according the optimal cut-off value calculated 
from the “survminer” R package (Fig. 2B). It was obvious that, compared with the low-risk group classification, the high-risk group in 
two cohorts both showed worse OS in KM curves (Fig. 3C–D). The areas under ROC curve for the risk score predicting OS at 1, 3 and 5 
years were respectively 0.659, 0.744 and 0.758 in training cohort, and 0.624, 0.650 and 0.653 in testing cohort (Fig. 2C–D). The heat 
maps of the two cohorts both showed that POP1/GFRA1 and SLC5A6/BYSL were highly expressed in the low-risk group, while 
COL5A2/FEN1, EXO1/PLEKHS1, SLC39A10/CHI3L1 and MMP7/PPP1R1 B were highly expressed in the high-risk group (Fig. 3A–B). 
The risk score along with complete clinical information including gender, age, stage, TNM stage, grade, tumor location and Lauren 
classification were brought into univariate and multivariate Cox regression analysis to identify independent prognostic factors. The 
univariate Cox regression analysis in TCGA indicated that age (P = 0.038), stage (P < 0.001), T (P = 0.013) N (P < 0.001) M (P =
0.005) staging, risk score (P < 0.001) were prognostic factors for gastric cancer (Fig. 4A); the multivariate analysis showed that risk 
score (P < 0.001) was an independent risk factor for overall survival (Fig. 4B). The same operation was performed in the GSE62254 
data set, and the results manifested Lauren (P < 0.001), Stage (P < 0.001), T (P < 0.001), N (P < 0.001), M (P < 0.001) staging, risk 
score (P < 0.001) in univariate analysis and Lauren (P = 0.036), M (P = 0.022), Stage (P = 0.035), risk score (P = 0.001) in multi-
variate analysis (Fig. 4C–D). In general, the analysis of the two datasets showed that risk score was an independent prognostic factor for 
gastric cancer, indicating that the established signature was reliable. 

3.3. Analysis of the impact of high and low expression combinations of two genes in each hub gene pair on survival 

Each gene from 6 hub gene pairs was performed differential expression analysis and found significant difference in the high- and 

Fig. 4. The forest plots of univariate and multivariate Cox regression analysis to identify prognostic factors of gastric cancer. (A) Univariate Cox 
analysis in TCGA. (B) Multivariate Cox analysis in TCGA. (C) Univariate Cox analysis in GSE62254. (D) Multivariate Cox analysis in GSE62254. 
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Fig. 5. Survival curves in TCGA cohort: the relationship between OS with the different combinations of high and low expression of the two genes in 
each hub gene pair. (A) COL5A2/FEN1. (B) POP1/GFRA1. (C) EXO1/PLEKHS1. (D) SLC39A10/CHI3L1. (E) MMP7/PPP1R1 B. (F) SLC5A6/BYSL. 
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Fig. 6. Survival curves in GSE62254 cohort, the relationship between OS with the different combinations of high and low expression of the two 
genes in each hub gene pair. (A) COL5A2/FEN1. (B) POP1/GFRA1. (C) EXO1/PLEKHS1. (D) SLC39A10/CHI3L1. (E) MMP7/PPP1R1 B. (F) 
SLC5A6/BYSL. 
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Fig. 7. Gene set enrichment analysis (GSEA) between high- and low-risk groups. (A) Visualization of HALLMARK pathway enrichment in TCGA. (B) 
Visualization of KEGG pathway enrichment in TCGA. (C) Visualization of HALLMARK pathway enrichment in GSE62254. (D) Visualization of KEGG 
pathway enrichment in GSE62254. 
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low-risk groups (P < 0.05). Meanwhile, the expression of each gene in high- and low-risk groups was analyzed comprehensively and 
visualized in the box plot (Fig. 3E). The COL5A2 gene in COL5A2/FEN1 gene pair had higher expression than FEN1 in the high-risk 
group that illustrated COL5A2 was an up-regulated gene and FEN1 was a down-regulated gene. Two genes in EXO1/PLEKHS1 were 
together highly expressed in the low-risk group, indicating that both genes were down-regulated. Similarly, we could understand that 
POP1 was a down-regulated gene and GFRA1 was an up-regulated gene in POP1/GFRA1, MMP7 was an up-regulated gene and 
PPP1R1 B was a down-regulated gene in MMP7/PPP1R1 B, SLC39A10 was an up-regulated gene and CHI3L1 was a down-regulated 
gene in SLC39A10/CHI3L1, SLC5A6 and BYSL were both down-regulated genes in SLC5A6/BYSL. Subsequently, we showed the effect 
of gene pairs on overall survival by combining the high and low expression levels of the two genes in a particular hub gene pair, which 
divided a cohort into 4 groups according to that gene pair. The analysis in TCGA indicated that COL5A2-high/FEN1-low resulted a 
worse OS (Fig. 5A); the similar consequence appeared while POP1-low/GFRA1-high (Fig. 5B), EXO1-low/PLEKHS1-low (Fig. 5C), 
SLC39A10-high/CHI3L1-low (Fig. 5D), MMP7-high/PPP1R1 B-low (Fig. 5E), SLC5A6-low/BYSL-low (Fig. 5F). And the same results 
occurred in GSE62254 (Fig. 6). This result further illustrated the role and relationship of the two genes in each gene pair in tumor 
progression. Interestingly, the gene correlation analysis in each gene pair showed that, except for SLC5A6/BYSL, POP1/GFRA1, there 
was no obvious correlation between the two genes of the other gene pairs. Even for the two gene pairs, the Pearson’ r were only 0.61 
and − 0.32. 

3.4. GSEA between high- and low-risk groups 

In order to analyze enrichment pathways of gene pairs between high and low groups, we performed GSEA on the TCGA training 
cohort and GSE62254 testing cohort. From HALLMAKER in TCGA, we found that EPITHELIAL MESENCHYMAL TRANSITION, 
MYOGENESIS were enriched in the high-risk group, and DNA REPAIR, MTORC1 SIGNALING, MYC TARGETS V1, MYC TARGETS V2 
and OXIDATIVE PHOSPHORYLATION were enriched in the low-risk group (Fig. 7A). While KEGG analysis in TCGA indicated that ECM 
RECEPTOR INTERACTION, NEUROACTTIVE LIGAND RECEPTOR INTERACTION, FOCAL ADHESION and DILATED CARDIOMYOP-
ATHY were enriched in the high-risk group, and DNA REPLICATION, PROTEASOME, RIBOSOME were enriched in the low-risk group 
(Fig. 7B). In GSE62254 cohort, the enriched result of HALLMAKER was same as that in TCGA, while major pathways were enriched in 
the low-risk group, like ANTIGEN PROCESSING AND PRESENTATION, CELL CYCLE, CYTOKINE RECEPTOR INTERACTION, DNA 
REPLICATION, GRAFT VERSUS HOST DISEASE, NATURAL KILLER CELL MEDIATED CYTOTOXICITY, PRIMARY IMMUNODEFI-
CIENCY. The results revealed that the selected gene pairs might affect the occurrence and development of gastric cancer through these 
pathways, such as epithelial-mesenchymal transition, myogenesis, and ECM receptor interaction in enriched activation pathways. 

4. Discussion 

As a highly malignant tumor, aggressiveness and high recurrence rate of GC make the prognosis of patients challenging [21]. A 
good prognosis cannot be guaranteed under a simple radical surgical excision, so comprehensive treatment is needed to improve the 
prognosis of patients [22]. However, this requires sensitive and reliable prognostic biomarkers to identify the prognosis of patients and 
determine which patients can significantly benefit from comprehensive treatment [23]. Although many gene-based prognostic 
markers have been found to predict the prognosis of GC patients [24–26], most of them lack clinical utility or other limitations. 
Therefore, there is an urgent need for highly relevant predictive markers that can be used to accurately predict and improve the 
prognosis of GC patients. Recent studies have shown that RBP appear to be closely related to the occurrence and development of 
tumors [9,27]. Some RBP genes participate in the progression of tumors through certain pathways, and effective predictive models 
have been established to predict the prognosis [28,29]. With the update of gene sequencing methods and data, however, it would be a 
challenge in clinical application when standardizing data from different sequencing platforms. Therefore, we introduce the concept of 
gene pairs to eliminate the influence of different data platforms and inter-individual standardization on the results. By forming a pair of 
specific RBP gene expression values through the specific expression relationship between each gene, we have obtained a new pre-
diction signature, which is more suitable for individual research and clinical application. Moreover, we further explored the related 
pathways of RBP gene pairs and the correlation analysis between genes comprised gene pairs. 

Our results suggested that the risk score composed by 6 RBP gene pairs could be used as a predictor of the prognosis of GC. Through 
univariate and multivariate Cox regression analysis of risk score with the clinicopathological parameters, it was proved that risk scores 
could be used as independent risk factors for the prognosis of GC, and we also verified this conclusion through testing dataset. Recent 
studies have shown that it is the pathway deregulation rather than that of a single gene, which may play a crucial role in triggering 
cancer, and inactivation of a pathway is usually caused by multiple genes [30,31]. At the same time, pairing of genes avoids false 
positives caused by fluctuations in the expression of a single gene and improves the stability and accuracy of the results [32]. 

It is worth noting that each gene in the 6 RBP gene pairs has different expressions in high and low groups, and shows different 
functions. Therefore, two genes in each hub gene pair were grouped by combining with different high and low expression levels. 
Finally, we saw interesting results that some gene pairs showed the same expression trend for the two genes, while others showed 
opposite. For example, the heat map manifested the gene pair COL5A2/FEN1 expressed highly in the high-risk group, but individual 
gene expression analysis showed that COL5A2 was a tumor-promoting gene and FEN1 was a tumor suppressor gene, and the COL5A2- 
high/FEN1-low combination had the worst prognosis. As far as we know, COL5A2 is involved in the occurrence of tumors and is related 
to the poor clinical prognosis and survival rate of tumor patients [33,34]. And FEN1 plays a role in tumor DNA replication and repair. 
FEN1 inhibitors have the potential to treat homologous recombination-deficient cancers [35,36]. This just proves that our conclusion is 
reasonable. Similarly, the remaining three gene pairs (POP1/GFRA1, SLC39A10/CHI3L1, MMP7/PPP1R1 B) showed the same trend. 
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SLC39A10/CHI3L1 and MMP7/PPP1R1 B were highly expressed in the high-risk group and POP1/GFRA1 in the low-risk group, while 
the two genes showed opposite expression trends in the single gene expression analysis. POP1, CHI3L1 and PPP1R1 B are tumor 
suppressor genes, GFRA1, SLC39A10 and MMP7 are tumor promoter genes, and POP1-low/GFRA1-high, SLC39A10-high/CHI3L1-low 
and MMP7-high/PPP1R1 B-low have the worst prognosis. Previous studies have shown that breast cancer patients with high POP1 
expression benefit from immunotherapy and that patients are more likely to respond to immunotherapy [37]. CHI3L1 can promote 
tumor metastasis in patients with gastric cancer. Serum levels of CHI3L1 are significantly elevated in patients with gastric or breast 
cancer and can be used as a marker for patients with metastatic gastric cancer [38]. Overexpression of PPP1R1 B in pancreatic cancer 
significantly enhanced the invasive ability and metastatic activity of tumor cells [39]. These studies appear to have some discrepancies 
with our findings. It has been shown that GFRA1 is reactivated by DNA demethylation in patients with colorectal cancer and is 
associated with poor patient prognosis [40]. Increased expression of the SLC39A10 gene may be a detrimental treatment for survival in 
patients with hepatocellular carcinoma, with its ability to promote tumor aggressiveness [41]. MMP7 was elevated in patients with 
gastric cancer and the number of MMP7 positive cells was significantly lower in patients who showed significant improvement after 
treatment [42]. EXO1/PLEKHS1 gene pair had a high expression in the high-risk group according the heat map, while EXO1 and 
PLEKHS1 were both tumor suppressor genes in individual gene expression analysis and the combination of EXO1-low/PLEKHS1-low 
had the worse prognosis. Exonuclease-1 (Exo-1) is an important nuclease involved in the mismatch repair system, helping to maintain 
genome stability, regulate DNA recombination and mediate cell cycle arrest. Errors in DNA repair and replication can lead to the 
accumulation of mutations, which result in the development of cancer. EXO-1 mutation causes the premature termination of amino 
acid synthesis in EXO1 protein, so similar to a typical mutation of function loss, this mutation may inactivate DNA damage repair and 
apoptosis in affected cancer cells [43]. There is a lack of relevant research on PLEKHS1. Although it is highly expressed in gastric 
cancer, our results are similar to previous studies: PLEKHS1 is a protective factor for GC patients, and its expression is higher in 
low-risk groups [44,45]. Maybe the EXO1/PLEKHS1 gene pair triggers an unknown pathway which leads to different results. 
SLC5A6/BYSL was highly expressed in the low risk group and both SLC5A6 and BYSL were tumor suppressor genes in the individual 
gene expression analysis. SLC5A6-low/BYSL-low has the worst prognosis. The SLC5A6 gene functions in the body to maintain the 
body’s uptake of biotin and ubiquitin. SLC5A6 promotes intestinal uptake of biotin through encoding Smvt, maintains intestinal flora 
balance and controls intestinal tumourigenesis [46]. BYSL is a key factor in embryo implantation and development and plays a role in a 
variety of cancers, and mutations in the BYSL gene will significantly increase tumourigenesis and progression [47,48]. These findings 
suggest that the pairing of two genes with the same or opposite effect can predict tumor prognosis, and that there may be an unknown 
pathway between the two genes that act together to predict the course of the tumor. Correlation analysis also confirmed this possi-
bility, due to most gene pairs have no obvious correlation between the two composed genes but they could predict the prognosis of GC 
after pairing. The discovery of this result provided evidence for previous studies that the occurrence and development of tumors were 
determined by multiple genes, and two or more genes with no obvious correlation affected a certain pathway and led to tumor 
progression. 

In order to study the pathways that RBP pairs may affect, we performed GSEA analysis on the high-risk and low-risk groups. The 
result of HALLMARK revealed that EPITHELIAL MESENCHYMAL TRANSITION and MYOGENESIS pathways were enriched in high- 
risk group. Studies have shown that EPITHELIAL MESENCHYMAL TRANSITION plays an important role in migration and invasion 
of tumor cell [49,50]. And MYOGENESIS plays an important part in tumor growth, indicating a poor prognosis [51,52]. In the results of 
KEGG enrichment, we have reached a similar conclusion. The enriched pathways in the high-risk group were ECM RECEPTOR 
INTERACTION, NEUROACTTIVE LIGAND RECEPTOR INTERACTION, FOCAL ADHESION, DILATED CARDIOMYOPATHY. The ECM 
RECEPTOR INTERACTION pathway is related to tumor metastasis and is an accomplice of the occurrence, development and poor 
survival of GC [53,54]. The FOCAL ADHESION pathway is also associated with tumor migration and invasion [55]. It is not difficult to 
find from our results that the RBP gene pair seems to be involved in tumor growth, invasion, metastasis and prognosis. Previous 
research mostly only focused on a single gene and the pathway it affects, but pathway disorders are mostly caused by multiple genes. 
Only for tumor-related single gene therapy, there may be little effect. The study of gene pairs can greatly compensate for this defect. 
The joint action of multiple genes may affect a certain process or multiple processes of the tumor, and effective targeted treatment will 
help improve the accuracy and effectiveness of the treatment. 

Although the exact mechanism is still unclear, more and more studies point that RBPs have a vital role in the occurrence and 
development of tumors. Our research also proves this view that the risk score of RBP gene pairs can predict the prognosis of GC and is 
an independent risk factor for prognosis. Compared with other studies on individual genes, this study matched RBP genes to form gene 
pairs with specific expression value, which removed the limitations of different data processing and more accurately predicted the 
prognosis of GC. Meanwhile, the paired genes reflecting no obvious correlation between the two genes did influence the progression of 
some pathways, further suggesting that the pathway deregulation was caused by multiple genes. The combination of gene pairs can use 
these potential biological responses to provide tumors with better biomarkers and curative effects than a single gene. 

Finally, several limitations of our study are worth noticing. The prognostic signature is mainly based on the TCGA database that 
means it is a retrospective study. Although verified by the GEO database, the model is necessary to use prospective data with complete 
clinical information and gene expression information to verify its clinical practicality. Additionally, our study only indicates that RBP 
gene pairs affect correlated pathways, so functional analysis of related genes from multiple angles are indispensable to explore the 
possible internal connections and common mechanisms between genes that may provide more accurate guidance for clinical treatment 
in the future. 
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5. Conclusion 

Our study identified 6 RBP gene pairs to predict the prognosis of gastric cancer patients and provide potential targets for clinical 
gene therapy. At the same time, it was confirmed that tumor progression was caused by the out-of-control of multiple genes, providing 
a theoretical basis for future research on specific mechanisms. 
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