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Sound source localization by
Ormia ochracea inspired low-noise
piezoelectric MEMS directional
microphone

Ashiqur Rahaman & Byungki Kim® >

The single-tone sound source localization (SSL) by majority of fly Ormia ochracea’s ears—inspired
directional microphones leaves a limited choice when an application like hearing aid (HA) demands
broadband SSL. Here, a piezoelectric MEMS directional microphone using a modified mechanical
model of fly’s ear has been presented with primary focus to achieve SSL in most sensitive audio bands
to mitigate the constraints of traditional SSL works. In the modified model, two optimized rectangular
diaphragms have been pivoted by four optimized torsional beams; while the backside of the whole
structure has been etched. As a result, the SSL relative to angular rotation of the incoming sound
depicts the cosine dependency as an ideal pressure—-gradient sensor. At the same time, the mechanical
coupling leads the magnitude difference between two diaphragms which has been accounted as

SSL in frequency domain. The idea behind this work has been analytical simulated first, and with the
convincing mechanical results, the designed bio-inspired directional microphone (BDM) has been
fabricated using commercially available MEMSCAP based on PiezoMUMPS processes. In an anechoic
chamber, the fabricated device has been excited in free-field sound, and the SSL at 1 kHz frequency,
rocking frequency, bending frequency, and in-between rocking and bending frequencies has been found
in full compliance with the given angle of incidence of sound. With the measured inter-aural sensitivity
difference (mISD) and directionality, the developed BDM has been demonstrated as a practical SSL
device, and the results have been found in a perfect match with the given angle of incidence of sound.
Furthermore, to facilitate the SSL in noisy environment, the noise has been optimized in all scopes, like
the geometry of the diaphragm, supportive torsional beam, and sensing. As a result, the A-weighted
noise of this work has been found less than 23 dBA across the audio bands, and the equivalent-input
noise (EIN) has been found to be 25.52 dB SPL at 1 kHz frequency which are the lowest ever reported by
a similar device. With the developed SSL in broadband-in addition to the lowest noise-the developed
device can be extended in some audio applications like an HA device.

The SSL is one of the fundamental requirements of some free-field and far-field acoustic applications, such as
mobile robot, noise activated cameras in surveillance system, and HA!. The conventional approaches of SSL are
reported using time difference of arrival (TDOA)'2. Under this approach, the SSL can be modeled on two or more
omnidirectional microphones by imitating wavelength of interest as the pre-defined inter-distance?; as a result,
the whole sensory system becomes bulky in size, and most importantly, such devices suffer from high computa-
tion time, high noise, low signal-to-noise ratio (SNR)'=>.

In contrast, the fly Ormia ochraced’s ears—inspired directional microphone is relatively better for SSL regarding
its outperforming directionality, and low-internal noise at reduced size>**. Figure 1(a) shows a sketched view of
the fly’s hearing organ. The understanding of the ears of fly Ormia ochracea implies that: this parasitic fly has two
tympana (TP) which are pivoted at the inter-tympanal bridge (ITB) with an inter-distance of 520 um*-6. Miles
et al.* reported the basis of mimicking the ears of fly Ormia ochracea using a spring-mass-damper system (see
Fig. 1(b)). Figure 1(b) can be described as: when a sound pressure incidence on a tympanum, then both tympana
show a phase difference relative to normal axis of the farthest tympanum?®. As a result, they show a amplitude
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Figure 1. Modelling of bio-inspired MEMS directional microphone. (a) sketched of the ears of fly Ormia
ochracea; where, « is the angle of incidence of sound, (b) mechanical model which was re-drawn from Miles

et al.*; where, 6}, 0,, K,, C,, K, C,, K,, C,, and L are the angle of rotation of tympanum (TP-1), angle of rotation
of tympanum (TP-2), coupling’s spring, coupling’s damper, spring of TP-1, damper of TP-1, spring of TP-2,
damper of TP-2, and identical length of both diaphragms, respectively, (c) modified mechanical model of this
work; where, m, =m,, k,, and k; are the identical mass of both diaphragms, torsional stiffness, and bending
stiffness, respectively, (d) analytical simulation in frequency domain, (e) sketched setup to model the directional
response, and (f) analytical directivity response with varying angle of incidence from 0° to 360° at 7.3kHz and
1Pa sound pressure.

difference in form of directional cues, such as inter-aural time difference (ITD) & inter-aural intensity difference
(IID)*5-8. The cues are amplified from 1.5 s to 50 s and 1dB to 12 dB, respectively for ITD, and IID near at the
rocking mode which leads a SSL in range of +30° with +2° accuracy®3-1°. By inspiring these astonishing abilities
of the fly Ormia ochracea, a number of SSL works have been reported, such as SSL at bending mode (1.69kHz)°,
rocking mode®®1%-12, at 2kHz", low-frequency (below 3 kHz)'*. Moreover, the majority of aforementioned works
are fully replicated the ears of fly Ormia ochracea; as a result, they showed best performance at a single frequency
like-wise the fly Ormia ochracea-best performance is at 5 kHz*>1>16, Therefore, the literature of the SSL using fly
Ormia ochracea-inspired MEMS directional microphone leaves a lack of attaining SSL in broadband, or simulta-
neously at rocking and bending modes either.

In this paper, we report on a novel idea to achieve the SSL in broadband where the knowledge of sound
pressure level (SPL) and distance of sound source with respect to the directional microphone are not required.
Because the cosine dependency works for the SSL relative to the angular rotation of incoming sound; whereas,
the magnitude difference followed by the phase difference between two pivoted diaphragms leads the SSL in fre-
quency domain. Based on this understanding, we presented the SSL with varying azimuth angles from 0°-360°
and frequency domain SSL in audio bands. To validate the credibility of this work, the SSL has been practically
demonstrated both in frequency domain and relative to the angular rotation of the incoming sound. The work
presented in this article is novel because it takes the advantages of mechanical coupling and cosine dependency
to give wide-band SSL which is new and not complex as compared to the traditional fly Ormia ochracea-inspired
SSL works. The outstanding contributions of this work as compared to the similar devices are as follows: (1) the
SSL, in fact for the first time, in wide-band was modeled and experimentally presented by an Aluminum Nitride
(AIN) & D33 mode based bio-inspired piezoelectric MEMS directional microphone, (2) unlike Kuntzman et al.,
a modified cosine dependency algorithm was adopted; which in turn, the issue of localizing the “off-axis” was
solved in this work, and (3) for the first time, a MEMS directional microphone with less than 23 dBA broadband
noise was developed and experimentally presented.

Results

Mathematical model. Figure 1(c) shows the modified mechanical model as compared to the basis model
reported by Miles et al.* where it can be noticed that two optimized identical diaphragms (right side and left side)
were pivoted followed by the coupling mechanism of fly Ormia ochracea’s ear. The optimization was accepted in
terms of model frequency within the audio band and low-noise across the audio bands from the prior work'” so
that the developed device can mitigate the constraints of traditional works. The mass (m), length (L), acting force

SCIENTIFIC REPORTS |

(2020) 10:9545 | https://doi.org/10.1038/s41598-020-66489-6


https://doi.org/10.1038/s41598-020-66489-6

www.nature.com/scientificreports/

(F) and displacement (X) having subscript 1 are representing right side; whereas, the subscript 2 describes the
left side. In addition, c,, ¢;, k,, ky, d, and 6 are the damping coefficient at rocking mode, damping coeflicient at
bending mode, torsional stiffness, bending stiffness, distance between two force points, and angular rotation of
the diaphragm, respectively. To give an insight of the coupling, the equations of motion of the mechanical model

by assuming small angular bending can be given as*!*!8,
10(t) + ¢,0(t) + k,0(t) = d/2 x f,(t) — d/2 x f,(t) 1)
lml 0 ]|#,(t) ¢, 01]x%,(0) ky ky|[x(0)] | £©
0 my|50] |0 of|%0] |k k||x0] T | £O @)

where, I is the mass moment of inertia of whole diaphragm. Also, f,(), and f,(f) are the acting forces in form
of the product of acting pressure (P) and area of the each diaphragm (4,) as, s=P x A,. The transfer functions
of forces are F,(jw) = se™? and F,(jw) = se 7*"'%; where, T is the time delay followed by phase difference (¢) as,
T=d/c x cos(¢); where, ¢ = (w X d)/c x cos(c) and « is the angle of incidence of incoming sound*!. After apply-
ing Laplace transformation, Egs. (1) and (2) are found to be'?,

d/2 x F(jw) — d/2 x E(jw) I Fo)jw) + {(Fz(l)(jw) - Fl(z)/(W/Wh)z}

0( 'w) = =
v I(u),2 — W+ 2jww,§r) 1@

Zm(wb2 — W+ 2jwwb(b) (3)

where, m; =m,=m, w, = \[k,/I, w, = [k,/m, ¢,=2w,I(, and ¢, = 2w,I(, are the identical mass of both dia-
phragms, angular frequency of rocking mode, angular frequency of bending mode, damping coefficient at rock-
ing mode, and damping coeflicient at bending mode, respectively. Also, (,, and (, are the damping ratios at
rocking mode and bending mode, respectively which were calculated using measured quality factor followed by
the foundry work on piezoelectric BDM! (see “Supplementary Table S1”). Then, the total displacement by each
diaphragm can be given as,

X, =x,+d/2 x O(jw); X, =x, — dI2 x §(jw) (4)

The analytical simulated result is shown in Fig. 1(d). The analytical simulation was performed on Eq. (4) by
assuming sound is coming from 0° of incidence (right side) and using parameters listed in “Supplementary
Table S1”. It can be noticed that the magnitude of right side is constantly higher than the left side due to the phase
difference followed by mechanical coupling?. With this magnitude difference, the location of sound source can be
easily detected. The inset of Fig. 1(d) shows the rocking mode, and bending mode, respectively due to the out-of
phase, and in-phase positions of both diaphragms®. In the analytical model, the rocking mode frequency (f,) was
found at 7.3 kHz governed by the torsional stiffness (k,) and mass-moment of initial of whole diaphragm (I) as,
f. = 127 x [k, /1"°. Whereas, the bending mode frequency (f,) was appeared at 12.8 kHz followed by the bend-
ing stiffness (k,) and mass (m) as, f, = 1/27 x A/ k,/m". The parameters value behind the calculation of modal
frequencies can be found in “Supplementary Table S1”.

One step further, the directional response relative to the angular rotation of incoming sound was modeled on
Fig. 1(e). The arrow in Fig. 1(e) shows the rotation of the developed BDM while the sound source is fixed at 0.4 m
apart from the BDM. At 0°-360° rotation the directional response of the coupled diaphragm can be given as®,

V.= %P(a, w)|cos(ar)| + %P(a, w) B (w, @)|cos(ar)|

Higher at 90°<a>270° Lower at 90°>a<270° (5)

where, V,, 1/2, P(a, w), and B(w;, ¢) are the right side’s directional response, half area, applied sound as a function
of angle of incidence () and angular frequency in radian/s, and delay of right side due to phase difference (¢)
for the farthest diaphragm position at 90° > a: < 270°, respectively. In the case of V,, the first part of Eq. (5) is for
the rotation within 90° < a: > 70°; where, the right side is the closest diaphragm relative to the sound source; as
a result, it gives higher response. Also, the second part of Eq. (5) is lagging by delay factor (3,) at 90° >« < 270°
due to farthest position relative to the sound source. On the other hand, when the right side goes at the farthest
position, then the left side becomes closest relative to the sound source. The directional response of left side (V)
can be given as®,

V= %P(a, w)Bi(w, @)|cos(a)] + %P(a, w)|cos(ar)]

Lower at 90°<a>270° Higer at 90°>a<270° (6)

where, V), and (i(a, ¢) are the left side’s directional response, and delay of left side due to phase difference (¢) for
the farthest diaphragm position at 90° < ac >270°, respectively. Figure 1(f) shows the directional response of right
and left diaphragms at a randomly chosen frequency (7.3kHz). It can be noticed in Fig. 1(f) that the right side
gives higher response at 90° < a >270° as we expected by Eq. (5). On the other hand, when the left side becomes
prominent at 90° > o < 270° the left side gives higher directional response than the right side expected by Eq. (6).

Furthermore, to present the SSL experimentally, the designed device was fabricated by a commercially avail-
able Multi-users MEMS processes (MUMPs), i.e., PiezoMUMPs through MEMSCAP Inc.?!. “Supplementary
information section 2” gives an insight of the fabrication along with the formation of the D33 mode and
“Supplementary Table S1” shows the device parameters. In short, to convert the mechanical vibration into
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Figure 2. Frequency response of both diaphragms of the developed piezoelectric BDM. (a) SEM of the
fabricated device, (b) schematic of the experimental setup; where, P(«, w) is the sound wave incidences on the
right side (x-z plane) from 0° of incidence, (c) frequency response of both diaphragms at 1 Pa/94 dB SPL sound
pressure and 0° of incidence of sound with varying audio frequencies from 20 Hz to 20 kHz, and (d) zoomed
view of the frequency response of both diaphragms at 0° of incidence of sound having 1Pa/94 dB SPL pressure
with varying frequencies from 6 kHz to 13 kHz.

electrical signal, a piezoelectric sensing was chosen due to its flexibility, i.e., no bias-voltage needed, easy to
handle and most importantly low-noise as compared to the capacitive sensing'’. Moreover, among the available
piezoelectric materials, the Aluminum Nitride (AIN) gives low acoustic loss, dielectric loss tangent and com-
patibility with CMOS circuits which makes it better candidate to control the electronic noise'. Finally, the AIN
has been operated in 3-3 stress—strain directions to enhance the sensing signal®’. The combination of AIN and
D33 mode is less explored and has two fundamental merits, such as low dielectric loss (0.002)?* which minimizes
the thermal-electrical noise?*, and higher electrode spacing (user-defined) as compared to D31 mode which
enhances sensitivity'®*%. As a result, this combination can give higher SNR which minimizes the equivalent-input
noise which will be discussed further in “Noise optimization”.

Experimental measurement of SSL.  Figure 2(a) shows the scanning electrode micrograph (SEM) of the
fabricated device; where, the external electrodes belong to right side are denoted as “Point 17; whereas, left side is
denoted as “Point 2”. In an anechoic chamber, the fabricated device was excited in free-field space at 94 dB sound
pressure level with varying audio frequencies and azimuth angles depending on the experiments. The details on
the experimental setup will be discussed in the “Experimental measurement” section. A schematic of the setup
is shown in Fig. 2(b) where it can be noticed that the sound incidences in the x-z plane from the right side of the
BDM.

Figure 2(c) shows the frequency response of the developed BDM at 94 dB SPL sound pressure with varying
audio frequencies. To carry out the measurement, the sound was applied from the 0° of incidence as shown in
Fig. 2(b). The measured rocking frequency was found at 6.9 kHz which is 5.5% deviated from the analytically
simulated rocking frequency, and bending frequency was appeared at 12.4 kHz which is 3.4% deviated from the
analytically simulated bending frequency (see Fig. 1(d)). Moreover, the purpose of the frequency response is to
detect the sound source in frequency domain which largely depends on the measured inter-aural sensitivity dif-
ference (mISD). Therefore, the basic characteristics of the frequency response were not discussed in the main text,
however, they can be found in our prior work!”" and also in “Supplementary Table S2”. To present the mISD,
Fig. 2(c) was zoomed and re-plotted from 6 kHz to 13 kHz frequency which shown in Fig. 2(d). It can be noticed
that the right side is constantly giving higher response than the left side as we mechanically demonstrated by Eq.
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Figure 3. Pressure sensing and directionality measurements. (a) sensing response with varying sound
pressures from 50 dB SPL to 90 dB SPL at 1 kHz frequency, (b) directional response of both diaphragms at
1kHz frequency and 1 Pa sound pressure with varying azimuth angles from 0° to 360°, (c) summed directional
response of both diaphragms at 1 kHz and 1 Pa sound pressure along with the directional response of an ideal
pressure-gradient sensor, (d) summed directional response of both diaphragms at rocking mode (6.9 kHz) and
1 Pa sound pressure with a comparison to an ideal pressure-gradient sensor, (e) summed directional response
of both diaphragms at 10kHz and 1 Pa sound pressure with a comparison to an ideal pressure-gradient sensor,
and (f) summed directional response of both diaphragms at bending mode (12.4kHz) and 1 Pa sound pressure
with a comparison to an ideal pressure-gradient sensor.

(4). It should be noted that the Fig. 1(d) deals only with the mechanical vibrations of the coupled diaphragms;
whereas, Fig. 2(c,d) show the electrical signal, thus, the signal levels are not comparable to each other. With this
sufficient sensitivity difference, the location of the sound source can be easily estimated using a simple subtraction
logic as'®, mISD =V, — V;; where, V, is the right side’s response and V; is the left side’s response. The positive polar-
ity of mISD identifies that the right side response is higher due to nearest position to the sound source. On the
other hand, the negative polarity identifies that the sound is coming from left side. In “Practical demonstration
of SSL” section, an algorithm based on the mISD will be adopted to display the SSL in frequency domain.

Figure 3(a) shows the sensing response of the developed BDM at 1 kHz frequency with varying sound pres-
sures from 50 dB SPL to 90 dB SPL. To do the measurement, at first, the sound pressure of the anechoic chamber
was measured using a digital sound level meter (GM1351, Digital sound level meter), and it was found to be
~37-43 dB SPL depending on the inherent sound of the measuring devices. Therefore, the applied sound pressure
was varied from 50-90 dB SPL in a sense to avoid the inherent sound of the measuring devices. Under 50 dB
SPL to 90 dB SPL variations which are equivalent to 6.32 mPa to 632.46 mPa [pressure ref. 20 i Pa]?, the output
voltages were found from 0.0018 mV to 1.9 mV, which implies a linear dependency on the given sound pressure.
With this variations of the sound pressure, the measured sensitivity was found to be 3.45 mV/Pa at 94dB SPL
sound pressure.

Figure 3(b) shows the measured directional response of the developed BDM at 1 kHz frequency and 94 dB SPL
sound pressure with varying azimuth angles from 0°-360° with an interval of 10°. It can be noticed that the right
side’s response (black solid line) is constantly higher at 90° > a > 270°; whereas, the same side’s response is lag-
ging by delay factor (3,) at 90° < v < 270° as we mechanically demonstrated by Eq. (5). On the other hand, when
the BDM is further rotating and left side becomes prominent; as a result, the left side gives higher response (red
dashed line) at 90° < o < 270° as we mechanically demonstrated by Eq. (6). To understand how these responses
play the role for SSL in azimuth angles, both response were summed and compared with an ideal pressure gra-
dient microphone. It is noted that the linear summation was used followed by the foundry work on piezoelectric
BDM!8. The summation of right and left side’s response can be found by using Egs. (5) and (6) as'é,

V = P(a, w)| cos(a)||1 + %{ﬂr(m ¢) + Biw, 9)} = P(a, w)p| cos(a) @

where, 3 =1 + %{@(a, @) + Bi(w, @)} is the total delay factor for right and left sides of the developed BDM
depending on their farthest position relative to the sound source. Also, V is the summed response of the right
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Right Summed
Given angle | diaphragmV, | Left diaphragm | response Measured Differences
a® (mV) V,(mV) V=V,+V;(mV) | angle o,,° le®— |
0 3.45 3.33 6.78 0 0
30 3.33 3.22 6.55 339 39
60 3.06 2.90 5.96 67.05 7.05
90 (Vuﬁ) 2.72 2.72 5.44 90 0
120 2.99 3.03 6.02 115.46 4.54
150 3.18 3.36 6.54 146.09 391
180 3.33 3.45 6.78 180 0
210 3.24 3.33 6.57 211.79 1.79
240 2.96 3.06 6.02 2439 39
270 (V,p) 2.72 2.72 544 270 0
300 3.02 2.96 5.98 293.58 6.42
330 3.34 3.24 6.58 328.21 1.79
360 3.45 3.33 6.78 360 0

Table 1. Sound source localization at 1 kHz and 94 dB SPL using developed bio-inspired piezoelectric
directional microphone.

side’s response (V,) and left side’s response (V)). Analytically, Eq. (7) is the general expression of an ideal pressure-
gradient sensor as we expected by keeping the directional microphone’s backside open. Figure 3(c) shows the
normalized summed response of 1kHz frequency and 1Pa sound pressure (taken from Fig. 3(b)) along with the
the simulation of an ideal pressure-gradient sensor. The simulation parameters can be found in “Supplementary
Table S1”. Furthermore, the directivity response was extended towards rocking mode, bending mode, and
in-between rocking and bending modes. Figure 3(d-f) show the directivity responses at rocking mode frequency
(6.9kHz), in-between rocking and bending modes (10 kHz), and bending mode frequency (12.4kHz), respec-
tively. It can be noticed in Fig. 3(c-f) that all directivity measurements are in a good match with the simulated
response of an ideal pressure-gradient sensor.

Formation of SSL. Equation (7) can be treated with maximum sensing signal at 0°/180° (see Fig. 3(b)) and
minimum value at 90°/270° (see Fig. 3(b)) to detect each incidence angle of incoming sound. By assuming, the
signal at 90°/270° as V4 the expression for the detection of angle of incidence of incoming sound can be found
to be®1?,

v —V
a,, = c0571 m—ojf
V= Vo (8)

where, o, and V,, are the measured angle and measured sensing response at a given angle of incidence, respec-
tively. A new form of directionality measurement was taken into account where the angular rotation was per-
formed in 30° of interval and the measured response was treated using Eq. (8). Table 1 shows the results at 1 kHz
frequency and 94 dB SPL. To do that, at first, the directional response of right side was measured which are
shown in second column of Table 1. Then, the left side’s response was measured which are listed in third column
of Table 1. After having two sides responses, both responses were summed followed by Eq. (7) and then treated
with Eq. (8). It can be noticed that all the measured angles were found in a good match with the given angle of
incidences.

One step further, Fig. 4(a) shows an extension of SSL in azimuth angles at rocking frequency (6.9 kHz), bend-
ing frequency (12.4kHz), and an extension to understand the effect of rocking frequency & bending frequency
(10kHz). All measured angles are in a good match with the given angle of incidence which verifies the cosine
dependency of the developed bio-inspired directional microphone.

Practical demonstration of SSL.  For the proof-of-concept, the SSL in frequency domain and SSL in angu-
lar rotation of sound were merged together in Fig. 4(b) to perform the practical demonstration. The Fig. 4(b)
itself has three sections, such as directional microphone, processing electronic circuitry, and logic interface with
the personal computer. The extended view of Fig. 4(b) can be found in “Fig. S2 in supplementary information
section 3” where it shows how we installed the setup in anechoic chamber to perform the demonstration. Under
a given sound, the each diaphragm of the directional microphone generates electrical signal (voltage) by piezoe-
lectricity effect, namely V, from the right side, and V; from the left side. In next phase, the output response of each
diaphragm was processed through a lock-in amplifier (SR830, Stanford Research Systems), and then the signal
was interfaced to LabVIEW 2015 version software using a data acquisition device (USB-DAQ 6009, National
Instruments). In LabVIEW, the signal from each diaphragm was handled by two logic, such as detection of the
source using the mISD, and localization of incoming sound using cosine dependency. To detect sound, three
conditions were made in LabVIEW which are: (1) V,-V;> 0: when the response of the right side is higher due to
the closest position with respect to the sound source, i.e., the 0° incidence of sound (see Fig. 2(b)), (2) V,-V,=0:
when sound arrives at the coupling area (i.e., from 90°/270° of incidence), and (3) V, -V, < 0: the response of the
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Figure 4. Formation and display of SSL. (a) SSL in azimuth angles varying from 0°-360° at 6.9 kHz, 10kHz, and
12.4kHz frequencies and 1 Pa sound pressure, and (b) a complete setup in anechoic chamber to display the SSL
in both frequency domain and azimuth angle.

left side is higher due to the closest position with respect to the sound source, i.e., the 180° incidence of sound. A
demonstration was performed until this point, and associate video can be found in the “SV_2.mp4” in supple-
mentary files. In the movie file, it can be noticed that each condition to detect the sound source was successfully
performed. Then, after detecting the closest diaphragm with respect to the sound source, the signal of closest
diaphragm was passed through the second logic to localize the incidence angle of the sound. The logic was made
using the cosine factors for each given angle. A demonstration was performed, and “SV_3.mp4” in supplemen-
tary files shows the associate results. In the video file, it can be noticed that we successfully localized the incidence
angle of the given sound.

Noise optimization. To employ the developed SSL in noisy environment, we take a look at the noise optimi-
zation so that the noise can be controlled as much as possible. It is a well-known fact that the main noise contrib-
utors of MEMS microphones are the sensor itself?#?*?7, and the processing circuitry?>?. The sensor noise largely
depends on the geometry of the sensor!”?® and sensing system!”~%; whereas, the noise due to the processing cir-
cuitry can be about 3 dB? using a fine tuning measuring devices. In our previous work!’, we reported the effect of
the device dimensions including diaphragm and supportive torsional beam on signal degradation, and then, the
optimized torsional beam as well as dimensions of the diaphragm was proposed to attain low-noise'”. It was
found from the previous study'” that a 225 yum torsional beam with 1770 gzm x 1100 um (total length (L, + L,),
width) diaphragm can provide 25.67 dB SPL equivalent-input noise at 1 kHz frequency only when the sensing is
designed with AIN and D33 mode. Because, this noise depends on the SNR of the device and the SNR is the out-
come of the voltage noise and sensitivity. The use of AIN minimizes the main noise contributor, i.e.,
thermal-electrical noise (voltage noise). From “Fig. §3 in the supplementary information section 4.1”, the
voltage noise can be derived as*, . ’4KbTRm; where, k;, T, and R, are the Boltzmann constant, room temperature,

and resistance respectively. Meanwhile, the resistance (R,,) can be defined as?, R, = ﬂ; where, w, tand, and

w X

C,, are the frequency in radian/s, dielectric loss tangent of the piezoelectric material, and glocking capacitance,
respectively. The formation of (R,,) implies that the dielectric loss tangent can catalyze the voltage noise.
Figure 5(a) shows the voltage noise of the AIN, lead zirconate titanate (PZT), zinc oxide (ZnO), respectively for
0.002%, 0.03%, 0.01% dielectric loss tangent. It can be noticed in Fig. 5(a) the AIN is better piezoelectric material
to minimize noise. On the other hand, the piezoelectric coupling of D33 mode is higher than D31 mode?, and it
is a well-known fact. With the higher piezoelectric coupling-in addition to the higher electrode spacing-the D33
mode enhances the sensing signal. As a result, the SNR improves, and the improved SNR minimizes the equiva-
lent-input noise (EIN) by EIN =94-SNR (dB SPL). In this work, the measured EIN was found to be 25.52dB SPL
made of 68.47 SNR, which is 0.62% deviated from the analytical prediction, i.e., 25.68 dB SPL (see
“Supplementary Table S2”).

Figure 5(b) shows the A-weighted noise spectrum of this work under full audio frequency at 0°, 45°, and 90° of
incidences of sound with respect to the right diaphragm. “Equations (52)-(S3) in the supplementary informa-
tion section 4.2” were used to derive the A-weighted noise. The derived noises were found to be 19.9 dBA, 21.61
dBA, and 22.27 dBA respectively for 0°, 45°, and 90° angle of incidence of sound.

Discussion

Hearing Aids (HA) is the largest application area of the directional microphone. However, the works intended to
be using in HA were limited to single frequency of operation/narrow-band which leave a limited choice at the
user’s end. As a result, despite of having better directionality and noise performance, the bio-inspired directional
microphones are not getting that much attention to be implemented. Moreover, some of them were not even fit
to localize certain angle of incidences. For instance, Kuntzman et al.!® reported the basis of the SSL using the
fly Ormia ochracea’s ears-inspired piezoelectric MEMS directional microphone. However, the work reported by
Kuntzman et al."® was limited to 2 kHz frequency, and most importantly, the “off-axis” response was not included
in the SSL model, which in turn, showed a lack to localize 90° of incidence of sound.

SCIENTIFIC REPORTS |

(2020) 10:9545 | https://doi.org/10.1038/s41598-020-66489-6


https://doi.org/10.1038/s41598-020-66489-6

www.nature.com/scientificreports/

1E-4 grry — e —— . :. T T — T T T

1E-5 10 |

1E-6

= AIN (tan5 = 0.002) = At 0° of incidence (19.9 dBA)

T T T
PERTTTT EPIERTTTT EEPIERTIT EETETRTTT

Voltage noise (V/rt(Hz))

Noise spectrum (dBA)

1E-7 — PZT (tan5 = 0.03) 1 E__ = At 45° of incidence (21.61 dBA) _5
° = ZnO (tand = 0.01) F = = = At 90° of incidence (22.27 dBA) ]
1E-g Ll T | sl . g Ly ]
0.1 1 10 1 10
Frequency (kHz) Frequency (kHz)

(a) (b)

Figure 5. Broadband noise analyses of the developed bio-inspired piezoelectric MEMS directional
microphone. (a) Voltage noise varying with dielectric loss (tan ) of several piezoelectric materials, and (b) A-
weighted noise under full audio frequency.

‘Working Noise floor
Works Sensing SSL formation frequency (kHz) | (dBA)
Miles et al.? Optical Cosine 0.8 35.6
Mechanical
Liu et al.® Optical phase & time 8 —
differences
Miles et al.” Capacitive (Comb finger) Cosine <3 43.1
Kuntzman et al.’ Piezoelectric (PZT&D31 Cosine 2 42
mode)
Wilmott et al.'$ Capacitive (Comb finger) Cosine 1.69 —
Zhang et al.™* Piezoelectric & Capacitive | Cosine <3 —
This work E‘:(e)s(;;lectnc (AIN&D33 Modified cosine | 1-13 <23

Table 2. Comparison of findings between this work and some notable works inspired by the ears of fly Ormia
ochracea with similar applications.

To this particular purpose, we present a novel idea where, the developed BDM takes advantages of coupling
and gives a magnitude difference to identify the sound source. In the follow through, the developed device was
analytically simulated to see the mechanical behaviour under sound. Moreover, in the experimental measure-
ments, the developed device showed a similar behaviour as compared to an ideal pressure-gradient sensor. It
should be noted that a modified cosine algorithm was adopted to localize all the angle of incidence of incoming
sound; as a result, the developed device showed outperforming characteristics as compared to the foundry work
on SSL using similar device by Kuntzman et al.'>. Moreover, “supplementary Table $3” shows a point-to-point
comparison between this work and the foundry work by Kuntzman et al.'®. Besides the SSL, the optimization of
the device leaded a tremendous noise control as compared to the state-of-the-art of similar device. Table 2 shows
a comparison between this work and some notable works inspired by the ears of fly Ormia ochracea; where, it can
be clearly seen that the developed device not only satisfies the wide-band SSL, but also gives lowest noise ever
reported by the similar device.

Besides the A-weighted noise, the equivalent-input noise (EIN) was found to be 25.52dB SPL at 1 kHz fre-
quency which is same as the human hearing threshold'®. According to the foundry work on fly Ormia ochracea’s
ears-inspired microphone?, the noises, such as EIN and A-weighted largely depends on the coupling and dia-
phragm dimensions. With this hint, in our previous work'’, we looked at the optimizations, and the best dimen-
sions were adopted for this work. “Supplementary Table S2” shows the comparison between the measured and
predicted values of some basic acoustic functionalities like sensitivity, and noise. Moreover, to set the working fre-
quency, we demonstrate the SSL in four different bands upto 13 kHz, and the results were found in a good match
with the given angle of incidence of sound. However, the maximum difference was found to be 7.05° (see Table 1)
at 1kHz frequency. Whereas, the differences become lower with increasing frequency due to higher mISD, i.e.,
6.42° at rocking mode, 6.42° in-between rocking and bending modes, and 5.8° at bending mode. However, all
these differences were found at 60°, 120° and 240° of incidences. Thus, the reasons of the resolution change could
be due to the low mISD at mismatch in rotation with respect to the sound, and fabrication tolerance. Combining
all the outlines of this work, the developed work can be extended as a sound source localization device or HA.
Therefore, the future work encloses with the packaging and clinical trial to be extended as a practical applications
like HA.
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Figure 6. Experimental setup in an anechoic chamber to carry out all the experimental measurements of this
work.

Methods

Experimental measurement. In this work, all the experimental measurements were carried out in an ane-
choic chamber using the experimental setup shown in Fig. 6. To make the setup, at first, the external electrodes
of the directional microphone (see Fig. 2(a)) was connected to a custom printed circuit board (PCB) using a
micro-wire bonder (4522, Kulicke & Soffa). The custom PCB along with the fabricated directional microphone
was mounted on rotation state (Thorlabs Inc.) which has enough height to avoid the reflection from the surface
(see “Supplementary Fig. S2(a)”). On the other hand, the developed directional microphone was mounted hori-
zontally on a rotational stage in a sense to avoid the back reflection of the custom PCB. The horizontal placement
ensured the rotation of the directional microphone in normal axis with respect to the sound source. Then, the
output terminal of the custom PCB were connected to a charge amplifier (SR570, Stanford Research Systems)
using co-axial cable to avoid the cross-talk?2. The sensitivity gain setting of the charge amplifier was 1 x 10 uA/V
with a 6 dB slope low-pass filter. Then, the output of the charge amplifier was connected to a lock-in amplifier
(SR830, Stanford Research Systems) which was tuned to a 5 x 100 mV nA gain and a 3 x 100 ms time constant. On
the other hand, the sound was generated using a function generator (SR345, Stanford Research Systems), and the
sound pressure was calibrated using a reference microphone-B&K 4138-a pressure field microphone which was
placed vertically near the developed directional microphone. The further calibration during the measurement of
Fig. 3(a) was adopted using a digital sound level meter (GM1351, Digital sound level meter) to be sure with the
sound pressure level (SPL). Notably, in all the measurements, a 1 Pa/94 dB SPL sound pressure was used.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to
confidential purpose but are available from the corresponding author on reasonable request.
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