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Gastrointestinal nematodes are a global cause of disease and death in humans,

wildlife and livestock. Livestock infection has historically been controlled with

anthelmintic drugs, but the development of resistance means that alternative

controls are needed. The most promising alternatives are vaccination, nutri-

tional supplementation and selective breeding, all of which act by enhancing

the immune response. Currently, control planning is hampered by reliance

on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear

and indirect relationship with infection intensity and host immune responses.

We address this gap by using extensive parasitological, immunological and

genetic data on the sheep–Teladorsagia circumcincta interaction to create an

immunologically explicit model of infection dynamics in a sheep flock that

links host genetic variation with variation in the two key immune responses

to predict the observed parasitological measures. Using our model, we show

that the immune responses are highly heritable and by comparing selective

breeding based on low FECs versus high plasma IgA responses, we show

that the immune markers are a much improved measure of host resistance.

In summary, we have created a model of host–parasite infections that expli-

citly captures the development of the adaptive immune response and show

that by integrating genetic, immunological and parasitological understanding

we can identify new immune-based markers for diagnosis and control.

1. Introduction
Gastrointestinal nematode infection is arguably the major disease affecting small

ruminants [1,2]. Different nematodes cause different pathologies. In cool temper-

ate climates such as the UK, the predominant nematode in sheep is Teladorsagia
circumcincta and this causes a relative protein deficiency [3] which affects

growth and production and in extreme cases can kill the host. Economically effi-

cient and welfare friendly sheep husbandry therefore requires the control of these

parasites. Historically, nematode infections have been controlled at least partly by

anthelmintic treatment, but the evolution of resistance to drug treatment [4,5]

means that alternative methods of parasite control are urgently needed.

Mathematical models have been extensively used to gain insights into the

dynamics of host–parasite interactions in humans, wildlife and livestock, and to

help identify effective control measures [6–9]. Since the review by Smith & Grenfell

[10], the dynamics of gastrointestinal parasites of ruminants have received consider-

able modelling attention. The models developed, which have been reviewed

elsewhere [11,12], range in complexity from relatively simple phenomenological

models [13–15] to detailed models that capture the multiple stages of the parasite

life cycle within and outwith the host, allowing effects such as temperature, climate,

grazing behaviour, nutrition and management to be incorporated [10,16–19].
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Figure 1. Model schematic. The region inside the dotted line represents the life cycle within the host. Worms develop from egg to adults with the larval stages L3
and L4 being explicitly included in the model. The L3 and L4 larval stages each influence a different component of the immune response of the host and, at the
same time, different genetic parameters control the intensity of the immune response resulting from exposure to L3 and L4. The number of adults, as well as IgA,
affects the average worm length, which is the major determinant of worm fecundity. The number of worms and the average fecundity determine the number of
eggs excreted in the faeces each day. This deposition adds to the current pasture contamination. Arrows indicate the direction of the effect.
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The focus of these models has encompassed the use of grazing

management as a control measure [20,21], the impact of drench-

ing regimes [16], the generation and spread of anthelmintic

resistance [18,22–26], selective breeding for disease resistance

[27] and the implementation of targeted or strategic treatments

[28], including the unexpected prediction that estimated breed-

ing values for faecal egg counts (FECs) derived from pedigrees

were less effective tools than the original data [29].

Two important themes that recur in these modelling stu-

dies are the aggregation of infection loads and the acquisition

of immunity by the host. Some studies have characterized

the observed aggregation of parasite burdens across nume-

rous host–parasite systems [30–33], whereas mathematical

modelling has been used to investigate the mechanisms and

consequences of aggregation [30,34–38]. The studies by Cornell

et al. [39] and Grenfell et al. [35] suggest that much of

the observed variation in parasite burden between hosts is

attributable to some form of host heterogeneity.

Although the importance of acquired immunity has long

been recognized, there are few models addressing in detail

the ‘immunoepidemiology’ of farmed ruminants. Host immu-

nity has been assumed to increase over time following

exposure to infective larvae, and to reduce the establishment,

fecundity and survival of adult parasites [14,40]. However,

Roberts [41] identifies a need to move beyond the common phe-

nomenological approaches to host immunity in host–nematode

models in order to facilitate the integration of epidemiological

models with data from immunological studies. Hellriegel [42]

and Stear et al. [43] also issued calls for the greater integra-

tion of immunology, parasitology, genetics, epidemiology,

mathematical modelling and statistics in host–parasite models.

Teladorsagia circumcincta infection in sheep is one of the best

understood of all host–parasite interactions, where detailed

investigations have led to a much clearer understanding of

the development of acquired immunity and the mechanisms

involved in within-host regulation of parasite burden, length

and fecundity [44–46]. Previous analyses show that there are

two components to the host response in sheep. Immunity is

acquired in response to exposure and develops in two stages,

with lambs initially regulating worm growth and fecundity,

and then worm number [47]. Immunoglobulin A (IgA)
regulates worm growth and consequently fecundity as well

as the numbers of eggs in utero [48–50]. The immunoglobulin

E (IgE) response regulates larval establishment and therefore

the number of worms in the host [44]. In addition, we have a

detailed understanding of the genetic basis for variation in

resistance to T. circumcincta infection, ranging from quantifi-

cation of heritabilities to the identification of particular genes

associated with resistance [46,51]. This detailed understanding

of the epidemiology, immunology and genetics underpinning

the sheep–T. circumcincta interaction makes it an ideal model

system for the development of data-driven models, which

capture and integrate information from these disciplines.

Here, we create an immunologically explicit model of infec-

tion dynamics in a sheep flock that links host genetic variation

with variation in the two key immune responses described

above to predict observed parasitological measures. One impor-

tant advantage of this model is that by capturing the mechanistic

link between the immune response and parasitological variables

the model allows identification of improved markers for diagno-

sis and control. We first fit our model to genetic, immunological

and parasitological data using approximate Bayesian compu-

tation (ABC). Second, using the fitted model, we contrast FEC

with an immune marker (plasma IgA) as a measure of host

resistance by comparing selective breeding in which selection

is based either on low FECs or on high plasma IgA activity.
2. Model outline
2.1. Overview of the sheep – Teladorsagia circumcinta

system
Teladorsagia circumcincta is a parasitic nematode that lives and

reproduces as an adult in the abomasum (fourth stomach)

of sheep. The worms lay eggs that are excreted with faeces

onto pasture. The eggs hatch and after two larval stages (L1

and L2), they develop into infective L3 (stage 3 larvae). The

L3 cannot develop further unless ingested by a potential

host. Once inside the host, if they successfully establish,

they moult to become L4 (stage 4 larvae) and subsequently

progress to the adult stage (figure 1).
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The life cycle of the nematode inside and outside the host

is reproduced in our model, which is based on a published

model of immunity to T. circumcincta infection in lambs

[52]. Here, we modify and extend this model to capture infec-

tion dynamics in a flock of sheep in which genetic variation

between individuals underpins heterogeneous immune

responses to infection. A complete description of this individ-

ual-based discrete time (daily time step) model is given in the

electronic supplementary material, but the key details that

define the integration of the immunology and genetics are

outlined below.

An important feature that distinguishes our model from

previous models is that we explicitly model the protective

mechanisms. Sheep control T. circumcincta infection through

two key protective immune responses, which vary between

hosts according to their genetic predisposition (figure 1).

Antibodies including IgGI, IgA and IgE are produced against

all parasitic stages of gastrointestinal nematodes, but pro-

tection is most strongly associated with IgE activity against

L3 and IgA activity against L4. Larval establishment is

controlled by the local IgE response, whereas worm fecund-

ity is controlled by local IgA. As these two immune

responses act upon different stages of the nematode life

cycle, the L3 and L4 stages as well as the adults are modelled

explicitly. The ingestion of L3 triggers mast cell degranula-

tion that prevents worms from establishing [44]. L3 that

establish develop into L4 and IgA responses to L4, possibly

in conjunction with eosinophils [50], influence worm size

and consequently worm fecundity [53]. We modelled IgA

at two sites in the host: mucosal IgA (IgAm), which is unob-

served (other than at post-mortem) and represents local IgA

at the site of infection and affects worm length; and plasma

IgA (IgAp), which represents the IgA that has migrated to

the plasma and can be routinely measured in the bloodstream

of live animals.

Worm fecundity is strongly correlated with the size of

the worm; at the same time, worm size depends on the

strength of the IgA response (specifically, IgAm) and a

density-dependent effect of the number of worms in the

animal [44]. Worm number and worm fecundity determine

the egg deposition onto pasture and subsequently the

number of infective L3 larvae available to be ingested.

Infective larvae are ingested during grazing. The amount

of herbage consumed depends upon the size of animal.

The growth of an animal during the course of the grazing

season in our flock has been described in a standard

manner by the Gompertz equation [52]. Rather than model

herbage intake and larval intake separately, we modelled

daily variation in larval intake among animals as a Poisson

distribution with its parameter equal to the mean daily

number of ingested L3 larvae. The mean number of ingested

larvae increased concomitantly with lamb growth.

2.2. Genetic variation among lambs in immune
responsiveness

Lambs differ in their capacity to mount the anti-establishment

and anti-fecundity immune responses. This is captured by

allowing parameters rA and rE, which determine the rates at

which IgAm and IgE respond to parasite exposure of the

lamb, to vary across the population. These parameters are

assumed to be normally distributed across the flock and com-

prise an additive genetic component and an environmental
component, as follows (with i representing each of the two

immune responses):

ri ¼ rgeni
þ renvi

and ri ¼ rgeni
þ renvi

:

9=
; (2:1)

Total phenotypic variation is conventionally divided into

additive genetic, non-additive genetic and environmental com-

ponents [54]. As the non-additive component does not affect

the response to selection, it was subsumed into the environ-

mental component. The additive genetic and environmental

components are sampled from normal distributions, which

for immune response i can be written in the general form

rgeni
� N(mri

, h2
ri
� s2

ri
) (2:2a)

and

renvi
� N(0, (1� h2

ri
) � s2

ri
), (2:2b)

such that the additive genetic component has mean mri and

the variance is partitioned between the genetic and the environ-

mental component; h2
ri denotes the heritability of the trait, i.e. the

proportion of the variance attributable to additive genetic effects

[54]. These six parameters (mrA, mrE, s2
rA, s2

rE, h2
rA, h2

rE) parame-

trizing the IgE- and IgAm-mediated immune responses are the

free parameters used to fit the model to the field data. The

other parameters in the model have been described in the litera-

ture and are assigned appropriate values (see the electronic

supplementary material for details).

These parameters link host genetic variation with variation

across the population in response to infection and ultimately

determine the observed parasitological variables. As discussed

above, one component of the immune response is related to the

generation of mucosal IgA (IgAm), and is assumed to increase

with rate rA in proportion to the number of established L4

larvae, with a delay between exposure and initiation of an

immune response of z days, and a half-life of t days

IgAmt ¼ 0:51=t � IgAmt�1
þ rA � L4t�z: (2:3)

The fecundity of worms is defined as the number of eggs pro-

duced per adult female worm per day. It depends on worm

length, which is determined by both worm burden (number)

and IgA activity [44] as follows:

WLt ¼ a� b � log10(IgAmt þ 1)� g �WBt, (2:4)

where a is the intercept term in the regression model, giving

the expected mean length of adult worms in the absence of

the immune response and density-dependent effects. b and g

are the coefficients for the effect of the immune response and

worm number, respectively [44].

The number of eggs per worm on day t, Wft, as a function of

worm length, was adapted from the published relationship [55]

Wft ¼ (1 �WLv
t � 1) � 500, (2:5)

where the scaling by 500 accounts for the average weight of

faeces (in grams) produced by lambs in this experiment to pro-

duce a fecundity in terms of eggs per worm per day.

The second component of the immune response controls

the establishment of adult nematodes, which is strongly

associated with mast cell degranulation and IgE activity

[44]. The combined effect of these two responses we refer to

as the establishment control factor (ECF). This is assumed

to increase with rate rE in proportion to the daily number

of ingested L3 larvae, with a delay between exposure and
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initiation of an immune response of z days, and a half-life t

(measured in days):

ECFt ¼ 0:51=t � ECFt�1 þ rE � It�z: (2:6)

Under the assumption that establishment decreases over the

grazing season as the immune system develops, we specified

an establishment equation that reproduces field observations

[52] summarized in a meta-analysis [56]. Establishment at

time t is given by

Et ¼ (Eearly � Elate) � e�ECFt þ Elate, (2:7)

where Eearly is the establishment in naive lambs, whereas Elate

is the minimum establishment.

2.3. Observation processes
The FEC is a measure of the number of eggs in 1 g of faeces.

The McMaster technique counts the number of eggs in 1/50th

of a gram of faeces and is multiplied by 50. Measurement

error was simulated by assuming Poisson counting error

and accounting for the scaling up by a factor of 50. The

model could therefore be used to output both the true FEC

(i.e. without measurement error) and the predicted count

with measurement error. Model fitting and selection were

based on the measured rather than the true FEC.

Plasma IgA, denoted IgAp, has been previously shown to

depend on IgAm and the worm burden, WB, which is the

number of worms at the site of infection [57]. We found a

slightly improved fit to the data [58] with the following func-

tion relating IgAm and worm biomass (WM, the product of

the worm number and the mean worm length), with IgAp:

IgApt
¼l1 � IgAmt � l2 � log10(WMt þ 1) � IgAmt : (2:8)

The IgA in the mucus is acting against the parasites, whereas the

IgA in the plasma is a ‘spillover’ [58]. The advantage of model-

ling them separately is that IgAp can be measured in live

animals. We modelled IgE based on the meta-analysis of Gaba

et al. [56]. Most local IgE is bound on the surface of mast cells,

and the relationship between plasma IgE and local IgE is not

known. Therefore, we did not attempt to model plasma IgE.

3. Selective breeding with alternative markers
The model can be used to compare different methods of parasite

control such as grazing management, vaccination, nutritional

supplementation and selective breeding, but here we choose to

focus on selective breeding [59,60]. Currently, FECs are the

marker most widely used to assess the intensity and severity of

gastrointestinal nematode infection, and these are also used in

selective breeding schemes. However, they are not particularly

useful for T. circumcincta infections, because density-dependent

constraints on fecundity mean that heavily infected animals pro-

duce few eggs [61]. The use of FECs is therefore hampered by

their nonlinear and indirect relationship with host immune

responses, and compounded by difficulties in obtaining accurate

measurements of them. A possible alternative is IgA, which

affects worm size and fecundity [53,62]. Here, we focus on a

selection scheme for reduced FECs and compare it with selection

for high plasma IgA activity to seewhich of these markers gives a

better overall reduction in the intensity of infection.

3.1. Reference scenario
Our reference scenario is two selection schemes (selection on

low FECs versus selection on high plasma IgA activity) run
for 10 successive generations. For each year of selection,

the model was used to simulate infection dynamics over

the course of the grazing season, which started in early

May and ended in September. The simulations ran for 140

days, updating daily, with simulated anthelmintic treatment

every 28 days to match the timing of treatments that were

administered to the animals in the field. We assumed a

100% effectiveness of the treatment, i.e. all adult and larval

stages in the host of all gastrointestinal nematode species

were killed. The model was based on data from a naturally

infected flock [32]. This flock was treated with albendazole

sulfoxide every 28 days from 4 to 24 weeks of age. FEC

reduction tests were used every year to test drug efficacy,

and there was no evidence for resistance during the trial.

As the model is stochastic, 100 repeats were run, and the

model outputs are taken to be the arithmetic means of

the 100 repeats.

The initial flock in each repeat run of the model (i.e. gen-

eration 0) comprised 500 male and 500 female sheep with

ages uniformly distributed between 1 and 3 years of age.

The 500 female sheep were used to breed the next generation

of 1000 lambs (500 male and 500 female), and were kept as a

breeding flock of ewes that was updated every generation. As

is common practice in sheep breeding, these ewes were not

selected on performance. Each year, around one-third of the

ewes are assumed to leave the flock owing to sale or mortality

and replacement female sheep were picked at random from

the flock of young sheep in that generation (1 year of age).

Each year, 25 males were used for breeding. To avoid

inbreeding, rams are often bought in from outside and are

chosen to improve the flock. We therefore assumed that each

year the rams were unrelated to the ewes and conservatively

assumed they had a distribution of resistance to infection simi-

lar to the current flock. In practice, in selective breeding,

farmers would buy rams from more resistant flocks. These

rams were used to breed the first generation. In subsequent

years of selective breeding, the rams used mimicked the distri-

bution of resistance among the best male lambs in the existing

flock. Rams were selected for either low FECs or for high

plasma IgA responses, with the 25 best rams selected for breed-

ing. If more than 25 rams had a zero FEC, then 25 rams were

chosen at random from this group. Each ram was mated to

20 ewes, resulting in each case in a twin male–female birth

(1000 lambs in total).

3.2. Defining offspring parameters
To create a new generation of lambs, values for rA (used in

equation (2.3)) and rE (used in equation (2.6)) for each new

lamb were calculated. The additive genetic component (or

breeding value) for each offspring is given by

r
offspring
gen ¼

(rram
gen þ rdam

gen )

2
þN(0, 0:5 � h2

rs
2
r), (3:1)

i.e. it is simply the mean of the parental values plus a Mende-

lian sampling term [63]. The environmental component is as

given by equation (2.2).

3.3. Heritabilities
The heritabilities in the model were obtained by breeding one

unselected generation of lambs and recording the parental

values for each lamb. The heritability for a particular trait

was then calculated by taking the ratio of the covariance of



Table 1. Summary statistics to be used as target model outputs taken
from the fifth month of the grazing season for plasma IgA (IgAp) and
faecal egg count (FEC), and at post-mortem (sixth month) for worm
length (WL).

mean IgAp 0.2

mean log (FEC þ 1) 1.85

variance of IgAp 0.027

rsif.royalsocietypublishing.
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the parental mean and offspring values to the variance in the

parental values:

h2 ¼
cov(offspring, mparental)

var(mparental)
: (3:2)

As heritability calculations are typically based on normal distri-

butions [63], simulated values such as plasma IgA and worm

length were normalized using a Box–Cox transformation [64]

before calculating the covariances and variances.

variance of log (FEC þ 1) 0.88

heritability (h2) of IgAp 0.56

heritability (h2) of WL 0.6

Table 2. Ranges for the uniform prior distribution of the six parameters
used to fit the model.

m (31025) s2 (310211) h2

rA 1.7 – 2 8 – 10 0.5 – 1

rE 1.25 – 1.55 2.8 – 4.8 0.4 – 1

org
J.R.Soc.Interface

11:20140416
3.4. The carryover effect
At the start of the season, the number of infective larvae on

the pasture is largely determined by the deposition of

worm eggs onto pasture by the ewes. As the flock improves

through successive generations of selective breeding, the

deposition by the replacement ewes will be less owing to

their increased resistance. This relative reduction in start of

season deposition is assumed to reflect the relative reduction

in average FEC. The deposition, Syþ1, for the following year

therefore depends on the previous year’s deposition, Sy, via

Syþ1 ¼
newes � rewesy

newes
� Sy þ

rewesy

newes
� Sr, (3:3)

where newes and rewes are the total and the replaced number

of ewes, respectively, and Sr is the deposition of the replaced

ewes which is calculated by scaling the initial deposition S0

with the reduction seen in the FECs (Sr ¼ (FECy/FEC0) . S0).

This carryover effect captures the expected reduction in the

initial larval availability in subsequent generations as the flock

becomes more resistant. Simulations were run with and with-

out this effect but, unless stated otherwise, the results shown

are for simulations with the carryover effect.
4. Field data and approximate Bayesian
computation model fitting

The field data used to fit the model are generated from a

study based on five cohorts, each of 200 lambs, from a natu-

rally infected commercial flock in southwest Strathclyde

[32,53]. The lambs were monitored monthly during their

first grazing season (from mid-April to late September) for

plasma IgA and FECs, and post-mortem analyses were per-

formed late September and early October to obtain worm

number and length. The parameters (mrA, mrE, s2
rA, s2

rE,

h2
rA, h2

rE), namely the means, variances and heritabilities of

the immune response factors, are fitted to the field data.

The values of all other model parameters have been exten-

sively researched previously and were therefore determined

from the literature as described in the electronic supplemen-

tary material. Six summary statistics from the field data were

used as target values for the fitting (table 1); these values cor-

respond to the average between the 5 years at the end of the

grazing season (or post-mortem) and have been extensively

analysed elsewhere [32]. The remaining field data were

used to provide independent checks on the model fit (mean

and variance of worm number).

An ABC regression-based conditional density estimation

algorithm was used to fit the model [65–67]. This assumes

that we are conducting inference in a Bayesian framework

where given a set of data y (i.e. the summary statistics in

table 1), we seek to determine the posterior distribution p(ujy)
of the parameter vector u given the data. In Bayesian inference,

the posterior summarizes all information about the parameters

conditional on the data and the specification of the model

(including any fixed parameters) and the prior distribution

of unknown parameters p(u). A common approach we adopt

here is that the prior assumes that the parameters are drawn

from independent uniform distributions whose ranges are

given in table 2.

In the ABC algorithm, a so-called particle is defined as a set

of values, one per parameter being fitted, so that each particle

corresponds to a different value of the parameter vector u. In

our case, it contains the means and variances and heritabilities

of the immune response factors u ¼ (mrA, mrE, s2
rA, s2

rE, h2
rA,

h2
rE). A different value for any one of the parameters in u

corresponds to a distinct particle. The steps are as follows.
(1) Given the unknown parameters u and their prior distri-

bution p(u), M particles (M ¼ 100 000 in our case) are

generated by

(a) drawing the parameter values randomly from the

prior p(u) for each particle (range of the uniform dis-

tributions in table 2) and

(b) running the model for each particle.

(2) Compute the empirical standard deviation, across the M
particles, for each of the simulated model outputs.

(3) Calculate the distance for each particle between the

model and target outputs using the distance kernel as

in Beaumont et al. [66].

(4) Choose a tolerance or proportion of points accepted; in

our case, we accepted 1000 (1%) with the lowest distance.

(5) Weight the accepted particles as in Beaumont et al. [66].

(6) Correct the particles (i.e. adjust their position in par-

ameter space) with the results from a weighted linear

regression applied to the accepted particles as in

Beaumont et al. [66].

(7) These corrected particles with the weights obtained

in step 5 are taken to be random draws from an

approximation to the posterior distribution p(ujy).
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Figure 2. Approximate posterior distributions for the six fitted parameters: mean of rA (a) and rE (b), variance of rA (c) and rE (d ), and heritability of rA (e) and
rE ( f ). Vertical dashed lines indicate the 95% credible interval. (Online version in colour.)
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This ABC algorithm yields an approximate posterior distri-

bution for each of the fitted parameters (mrA, mrE, s2
rA, s2

rE,

h2
rA, h2

rE; figure 2). Random draws from the corrected particles

previously obtained are used in our model simulation. One

draw is used for each of the repeats. The results presented

in this paper are the average of 100 repeats.

4.1. Assessing model fit
To assess the fit of the model and observe the distribution of

FEC and plasma IgA across the flock, we pooled the results of

each repeat and averaged across the 100 repeats.

The model, as expected after the fitting, successfully repro-

duces the mean and the variance of the FEC and plasma IgA.

Moreover, the distributions for each of these observed quan-

tities are also successfully reproduced (figure 3a,b). We also

investigated the model fit to quantities the model was deliber-

ately not fitted to. For the worm number, the estimated mean,

variance and distribution obtained in the model are also similar

to the field observations (figure 3c). The heritability of the FECs

was also calculated (as in equation (3.2); value obtained 0.22)

and although the model was not fitted to it, is in accordance

with the field observation (0.2–0.3). These outcomes provide

additional independent validation of the model.
5. Results
In our reference scenario, we compared model predictions for

selective breeding based on low FECs versus high plasma

IgA. We also included the breeder’s equation prediction

(figure 4a), which is the expected response to selection esti-

mated from the average difference between the whole

parental generation and the subset of selected parents [54]. In

our case, it is the difference in average FEC breeding values

between all the male lambs and the subset of 25 selected rams.
Under each selection scenario, the mean FEC across the flock

is calculated at the end of each grazing season. The reduction in

FEC at the end of each grazing season based on selection for low

FEC was 1.7 times faster than is estimated by the breeder’s

equation over 10 generations (figure 4a, dotted line). A more

rapid decrease in the mean flock FEC is observed under selec-

tion for high plasma IgA responses (figure 4a, light solid line).

By the seventh generation, selection on plasma IgA achieved a

drop in FEC of almost 85%, whereas selection based on FEC

achieved a reduction of approximately 50%.

We defined the WM to be the product of worm number

and average worm length [58]. As this quantity accounts

for the reported decrease in worm activity and fecundity in

shorter worms [44], we use this as a measure of the intensity

and pathology of infection. WM decreases by almost half

after 10 generations of selection based on high plasma IgA

activity while, when selecting on low FECs, the WM slightly

increases before starting to drop (figure 4b).

Under selection for low FECs, after the initial increase in

WM, running simulations for more than 10 generations

shows that values for WM similar to those prior to selection

are obtained after 15 generations of selection. However, it

takes 50 generations of selection based on low FEC to obtain

similar values of WM to the ones obtained after only 10 gener-

ations of selection on plasma IgA (figure 4c in comparison with

figure 4b, light solid line).
6. Discussion
This paper presents an immunologically explicit model of

an important host–parasite system and links host genetic

variation with variation in the two key immune responses,

accurately reproducing the means and distributions of
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parasitological and immunological observations. To the best

of our knowledge, this is the first data-driven model of the

host–nematode interaction that combines the epidemiology,

the genetics and the explicit development of the adaptive
immune response. This model therefore represents an impor-

tant step forward in host–parasite modelling and moreover,

provides a tool that can be used for multiple purposes. In

this paper, we focused on selective breeding schemes as a
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means of parasite control and tested novel markers for the

efficient identification of resistant animals.

An important advantage of our model is that we connect

the underlying genetic variation with variation in the two

protective components of the immune response across the

host population to predict observed parasitological variables.

By capturing the mechanistic link between the immune

response and parasitological variables, the model allows us

to identify alternative markers for diagnosis and control.

Novel markers could offer substantial improvements over

the widely used FEC, which suffers from substantial measure-

ment error, and is only indirectly and nonlinearly related to the

host immune response. Specifically, we hypothesized that the

IgA response would provide a better marker than FEC, because

IgA activity directly affects worm length and fecundity and

therefore FEC, but is subjected to less observation error than

the FEC. To test this hypothesis, we compared the outcome

of selection schemes based on selection for low FEC versus

selection for high plasma IgA activity.

The estimated response to selection based on low FECs is

much faster than that predicted by the breeder’s equation,

which is typically used to predict the response to selection

for quantitative traits when there is no change in the environ-

ment during selection. Our result is similar to the one

presented in Bishop & Stear [27], although their predicted

end of season average FEC was much higher as the flock

was initiated with a higher mean infection load. Our predic-

tions are consistent with independent field observations;

Karlsson & Greeff [68] calculated in their Rylington Merino

flock a genetic reduction of 2.7% in FECs per year in their

selection scheme based on both production traits and FECs.

In our model, the predicted response rate was a comparable

average reduction in FECs of 4.2% per year for selection

based solely on FEC.

We have shown that an immune marker, plasma IgA,

which can be sampled in live animals, provides a potentially

valuable alternative to FECs. However, the ultimate objective

of a selection scheme is to reduce the pathology associated

with infection. To this end, we defined WM as the product

of worm length and worm number; because small worms

are thought to be less damaging than large ones [69], this

measure provides a better measure of the pathology associ-

ated with infection than worm number alone. Thus, the

outcome of the selection scheme should be assessed not

only in terms of FEC, but also in terms of the predicted

reduction in WM.

Our comparisons between selection schemes based on

low FEC versus high plasma IgA activity show that after a

few years of stabilization, the worm mass decreases in both

selection scenarios. Selection on low FEC will indirectly act

on both components of the immune response, reducing the

establishment, and thus the worm number, and the fecund-

ity. With a lower establishment, the number of L4 will also

be smaller, which in turn causes animals to have a weaker

anti-fecundity response. For the first years of selection, the

reduction in adult worms (owing to the reduction in estab-

lishment) is not enough to compensate for a slightly higher

mean worm length (owing to the weaker anti-fecundity

response), which causes the overall WM to be higher.

Although both selection schemes successfully reduce

worm mass in the long run, selection for high plasma IgA

reduces WM substantially more quickly, with a decrease of

around 50% in 10 generations. Although it is commonly
assumed that selection directly on a trait is the most effective

way to alter it, our system differs: because plasma IgA has a

higher heritability than FECs and high levels of IgA reduce

worm growth and fecundity, selection on this trait reduces

both the egg output and WM more quickly than direct

selection on FEC.

Our model uses monthly anthelmintic treatment. This is a

widely used method of parasite control particularly when

pasture contamination is high. Our model was validated by

testing it against field data from a farm that treated lambs

every 28 days. Other farmers treat less frequently or use

anthelmintics that are less efficacious because of drug resist-

ance in the parasite population. These scenarios could lead

to higher levels of infection and stronger immune responses

depending on the initial pasture contamination. However,

there are too few detailed field studies to predict the conse-

quences with confidence.

Future models will examine the impact of selection on

growth as a production trait. This will allow us to evaluate

IgE as a marker of resistance. The IgE-mediated hypersensitiv-

ity response is associated with reduced larval establishment

[44] but is weakly associated with reduced growth [70].

Binding of parasite molecules to IgE induces mast cell degranu-

lation which breaks down the tight junction between epithelial

cells and induces a relative protein deficiency [3]. Therefore,

IgE is less attractive as a marker than IgA, which is not associ-

ated with reduced growth rate [3]. In future work, we will

extend the model to allow growth to depend on worm

number and IgE activity. We will then be able to contrast selec-

tion schemes that use growth, IgA and IgE to identify the

optimal combination of markers.

Our model addresses long-standing gaps and issues in

host–parasite models, simultaneously capturing aggregation

of infection burdens, explicitly modelling the development

of the adaptive immune response and the role of host

heterogeneity. This step forward has been facilitated by our

understanding of immunological mechanisms of control,

extensive parasitological and immunological observations,

and the availability of pedigree data to determine the heritabil-

ity of these traits. Fitting these data to a mechanistic model has

enabled us to characterize the variation and heritability of the

underlying immune responsiveness, providing new insights

into the role of host heterogeneity in the host–parasite inter-

action. The most promising methods of control in parasite

infections of livestock—selective breeding, improved nutrition,

vaccination—all involve improving the immune response. This

model provides not only a deeper understanding of the role of

host heterogeneity and adaptive immunity, but also a valuable

tool for improved understanding, analysis and prediction of

the impacts of a wide range of control measures.

In conclusion, this paper has presented a model of develop-

ing immunity through the grazing season and has been

applied, as an example, to the comparison of selection schemes

that use different indicators of resistance. The model is immu-

nologically and genetically explicit, and it has been fitted to

field observations. The results show that IgA can be a better

indicator of resistance to infection than FEC and that selection

schemes based on parasite-specific IgA activity are likely to be

more effective than selection based on FEC.
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