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Alpha 7 nicotinic acetylcholine receptor (a7 nAChR) is critical for the pathogenesis of
Escherichia coli (E. coli) K1 meningitis, a severe central nervous system infection of the
neonates. However, little is known about how E. coli K1 manipulates a7 nAChR signaling.
Here, through employing immortalized cell lines, animal models, and human
transcriptional analysis, we showed that E. coli K1 infection triggers releasing of
secreted Ly6/Plaur domain containing 1 (SLURP1), an endogenous a7 nAChR ligand.
Exogenous supplement of SLURP1, combined with SLURP1 knockdown or
overexpression cell lines, showed that SLURP1 is required for E. coli K1 invasion and
neutrophils migrating across the blood-brain barrier (BBB). Furthermore, we found that
SLURP1 is required for E. coli K1-induced a7 nAChR activation. Finally, the promoting
effects of SLURP1 on the pathogenesis of E. coli K1 meningitis was significantly abolished
in the a7 nAChR knockout mice. These results reveal that E. coli K1 exploits SLURP1 to
activate a7 nAChR and facilitate its pathogenesis, and blocking SLURP1-a7 nAChR
interaction might represent a novel therapeutic strategy for E. coli K1 meningitis.
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INTRODUCTION

Despite the widespread use of antibiotics, sepsis and meningitis remain to be severe complications
in premature neonates, leading to high morbidity and mortality (1–3). Thus, developing more
targeted therapeutic methods for meningitis is urgently needed. Escherichia coli K1 (E. coli K1), an
opportunistic pathogen in the gut, accounts for 17.7% of meningitis patients and causes a mortality
rate of 40%–58% in developing countries (4, 5). Recent studies from our group have revealed that
alpha 7 nicotinic acetylcholine receptor (a7 nAChR) mediated the key E. coli K1 meningitis
pathogenesis by promoting bacteria migrating across the blood-brain barrier (BBB). a7 nAChR-
deficient mice had a higher survival rate, lower pathogen counts, and less inflammatory responses in
the brain tissues than the wild-type littermates upon E. coli K1 infection (6–8). Furthermore, we
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found memantine, an antagonist of a7 nAChR approved by the
FDA for therapy of dementia, could ameliorate E. coli K1
meningitis very efficiently (9, 10). While these studies revealed
the critical role of a7 nAChR in E. coli K1 meningitis, little is
known about how E. coli K1 manipulates a7 nAChR to facilitate
its translocation into the central nervous system (CNS).

As a ligand-gated ion channel, a7 nAChR is abundantly
expressed throughout the brain, including brain microvascular
endothelium and astrocytes, which are major components of the
BBB (11–13). The a7 nAChR is activated by many endogenous
and exogenous ligands. Nicotine, a notable exogenous a7
nAChR agonist derived from tobacco, has been reported to
impair the BBB permeability and host-microbial defense via
stimulation of a7 nAChR (14–18). Many researchers have
demonstrated that children under 5 years who had exposure to
tobacco smoke in the air suffered from a higher risk of meningitis
(19, 20). In contrast to nicotine, secreted Ly6/Plaur domain
containing 1 (SLURP1) is an endogenous a7 nAChR ligand.
SLURP1 serves as a positive allosteric modulator to potentiate a7
nAChR activity effectively (21, 22). However, whether this
endogenous a7 nAChR ligand could dampen host defense
against E. coli K1 to promote its penetration of the BBB is
unclear. Thus, the present study aimed to explore the role of
SLURP1 in the pathological process of E. coli K1 meningitis.
MATERIALS AND METHODS

Ethics Approval
The Medical Ethics Committee of Southern Medical University
approved all of the animal experiments (Protocol number:
L2018018). All the experiments on mice were done according
to the corresponding guidelines. Every attempt was taken to
minimize the number and suffering of mice used. We purchased
neonatal C57BL/6 mice (8 days old) from the Animal
Experimental Center of Southern Medical University. The a7
nAChR heterozygous (A7R+/−) mice with C57BL/6J background
were obtained from the Jackson Laboratory (B6.129S7-
Chrna7tm1Bay/J, Stock No: 003232, Bar Harbor, ME).
Littermate A7R−/− and A7R+/+ (wild-type) mice were generated
from the heterozygous for the experiment. All animals were
specific pathogen free and were kept on a 12-h light/dark cycle
and free to get food and water.

Public Transcriptional Data and Analysis
Two transcriptional data of E. coli infection patients were
retrieved from Gene Expression Omnibus database (GSE33341,
GSE65088). The metadata and SLURP1 transcriptional levels, as
measured by fragments per kilobase of exon per million reads
mapped (FPKM), were directly extracted from the data sets.

Chemicals and Reagents
The chemicals and reagents used in this study were obtained as
follows: Sigma-Aldrich (St. Louis, MO, USA) for bull serum
albumin (BSA), Evans blue, Triton X-100, Tween-20, 4′,6-
diamidino-2-phenylindole (DAPI), isopropyl-b-d-thiogalactoside
Frontiers in Immunology | www.frontiersin.org 2
(IPTG), Coomassie brilliant blue G 250, rifampin, kanamycin,
gentamicin, and methyllycaconitine citrate (MLA); Thermo Fisher
Scientific (Waltham, MA, USA) for fluorescent a-bungarotoxin
conjugates; Gibco (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) for penicillin G, streptomycin, glutamine, and pyruvate;
Abcam (Cambridge, UK) for antibodies against SLURP1, a7
nAChR or b-actin; Proteintech (Proteintech Group, Chicago, IL,
USA) for enzyme-linked immunosorbent assay (ELISA) kits. The
rest reagents were purchased from Beyotime Institute of
Biotechnology, Shanghai, China.

Clone, Expression, and Purification of
Recombinant SLURP1
In this study, the amino acid sequence of SLURP1 we used to
construct recombinant was described by previously (23), which
is secreted by N-terminal signal cleavage (23-103 aa, as showed
in Supplementary Figure S1A). Total RNA was extracted and
used to amplify the SLURP1 cDNA, using primers containing 5′
BamHI and 3′Not I restriction sites at their termini. The primers
used in the study were: sense, 5′-CGGGATCCCTCAAGTGC
TACACCTGCAA-3′, and antisense, 5′ TTGCGGCCGC
TCAGAGTTCCGAGTTGCAGA-3′. The cDNA was ligated
into BamHI- and NotI- digested pET-28a, and transformed
into E. coli BL21(DE3). Bacteria was added into the LB broth
(1:100, containing 50 mg/ml kanamycin) and incubated at 37°C
for 3–4 h (OD≈1). Afterward, IPTG was added at the final
concentration of 0.1 mM and incubated at 30°C for 8 h for
induction of protein expression. The protein was expressed as
inclusion body form and purified using His-Tagged Protein
Purification Kit (KangWeiShiJi Inc, Beijing, China) at
denatured condition according to the manufacturer’s
instructions. Purified SLURP1 was refolded in a series of
gradient solutions of urea containing 50 mM Tris-HCl (pH
7.0), 0.5 M L-arginine, 4 mM glutathione, 1 mM glutathione
disulfide, and 20% glycerin. The potential endotoxin was
removed by passing through a Detoxi-Gel Endotoxin
Removing Gel (Pierce Biotechnology, Rockford, IL, USA).

Bacterial Strains, Cell Lines, Invasion, and
PMN Transmigration Assay
E. coli K1 strain RS218 (O18:K1:H7) was isolated from the
cerebrospinal fluid (CSF) of a meningitis neonate and showed
rifampicin-resistant property (8, 24). The brain heart infusion
broth was used to culture E. coli K1 at 37°C for 14 h, with
supplementation of rifampin (100 mg/ml). The immortalized
human brain microvascular endothelial cells (HBMEC) were
isolated and cultured as described previously (8, 24, 25). RPMI
1640 medium (Gibco; Thermo Fisher Scientific, Inc., Waltham,
MA, USA) was used as basic medium, with the following
supplementations: 10% fetal bovine serum from Gibco
(Thermo Fisher Scientific, Inc., Waltham, MA, USA), 50 U/ml
penicillin G, 50 mg/ml streptomycin, 2 mM glutamine, and 1 mM
pyruvate according to previous studies (8, 25).

For invasion assays, HBMEC were cultured in 24-well plates
and incubated with SLUPR1 (0.1–2 mg/ml) for 2 h, followed by
infected with E. coli K1 [1 × 107 colony-forming unit (CFU)] for
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another 2 h. To kill the extracellular bacteria, the HBMEC was
washed twice with sterile PBS and incubated with RPMI 1640
medium containing gentamicin (100 mg/ml) for 1 h. Then, the
HBMEC were washed again and lysed using sterile water.
Internalized bacteria were counted by plating the cell lysates
on Luria-Bertani broth agar (containing 100 mg/ml rifampicin).

Polymorphonuclear leukocytes (PMN) transmigration
experiments were carried out as previously (8, 14, 25).
HBMEC monolayers on transwell filters (3 mm pore size,
6.5 mm diameter, Corning, product number 3415) were
monitored by measuring trans-endothelial electrical resistance
(TEER) changes across the endothelial cell monolayer using an
End Ohm epithelial voltohmeter (World Precision Instruments,
Sarasota, FL, USA). To exclude the possibility that the PMN
migration elicited was due to destruction of HBMEC monolayer,
the integrity of the monolayer was inspected by TEER and
microscopy before the start of the PMN transmigration assay.
Transwell filters with or without supplementation of SLUPR1
(0.1–2 mg/ml) were employed to culture fully confluent HBMEC
monolayers for 2 h. Then E. coli K1 (1 × 105 CFU/ml) was added
to the bottom of the Transwell filters and infected for another
2 h. Then PMNs were applied to the upper compartment at a
concentration of 1 × 106 cells. The Transwell filters system was
kept at 37°C, 5% CO2. After incubated for 4 h, the Transwell
filters were removed and migrated PMNs in the bottom of 24-
well plates were harvested and counted in a blinded manner.

Knockdown and Overexpression of
SLURP1
SLURP1 expression was knockdown using RNA interference. In
brief, predesigned siRNA specific for SLURP1 and nontargeting
scrambled siRNA (control) were obtained from Santa Cruz
Biotechnology (CA, USA). The Lipofectamine™3000
transfection reagents (Invitrogen, USA) were mixed with the
siRNA solutions, applied to the HBMEC monolayers, and
maintained at 37°C, 5% CO2 for 24 h. The transfected HBMECs
were used for invasion and PMN transmigration assays as
described above.

For overexpression of SLURP1, the full-length cDNA of
SLURP1 was cloned into a pcDNA3.1(+) vector to construct
the pcDNA3.1-SLURP1 expression plasmid. The control vector
or pcDNA3.1-SLURP1 plasmid was transfected into HBMEC for
24 h using Lipofectamine™3000. The transfected HBMECs were
used for invasion and PMN transmigration experiments as
described above.

For the transfection in the Transwell filters, HBMECs were
seeded onto Transwell filters and grown to confluency, then
transfected with siRNA or SLURP1 expression vector as
mentioned above. In order to ensure the barrier function
remains comparable between different groups, HBMEC
transfected with nontargeting scrambled siRNA or control
vector were served as the scrambled control.

Mouse Model of E. coli K1 Meningitis
From postnatal days 8 to 10, neonatal C57BL/6 mice were
intraperitoneally injected with SLURP1 or BSA daily at a dose
of 0–100 mg/kg body weight. To establish an E. coli K1
Frontiers in Immunology | www.frontiersin.org 3
meningitis model, mice were injected with E. coli K1 (1 × 106

CFU, in 20 ml PBS) intraperitoneally at day 10. Control mice
were given 20 ml PBS using the same route of injection. After
infection for 18 h, the blood samples were collected and plated on
Luria-Bertani agar (containing 100 mg/ml rifampicin) plates.
Puncture through cisterna magna were carried out to collect
CSF samples, followed by inoculating into the Luria-Bertani agar
plates (containing 100 mg/ml rifampicin). Mice were perfused
with 30 ml sterile PBS by the intracardiac route. Then brain
tissues were harvested under aseptic conditions and
homogenized in saline. Serial tenfold dilutions of brain
homogenates were carried out and plated on Luria-Bertani
agar (containing 100 µg/ml rifampicin) for counting. CSF
samples were stained with a FITC-Ly-6G (Gr-1) (ProteinTech
Group, Chicago, IL, USA) antibody and counted under
fluorescence microscopy for PMN counting. For Evans blue
assay, mice were injected intraperitoneally with Evans blue at a
concentration of 40 mg/kg body weight 3 h before sacrificing.
After intracardiac perfused with 30 ml PBS, the brain tissues
were harvested and immersed in formamide. The OD620 of the
supernatant was measured using a spectrophotometry.

Immunohistochemical Staining
Brain tissues were kept in formalin and transported to histological
examination. After cutting into 3 µm sections, the tissues were
hematoxylin-eosin (H&E) stained to assess tissue inflammation
and damage. For the immunohistochemical staining, xylene was
first used to dewax paraffin sections for 10 min, followed by
gradient alcohol to dehydrated and rinsing in distilled water. Then
the sections were heated in citrate buffer solution at 100°C for
40 min to retrieve the antigen. Hydrogen peroxide/methanol
(30%) was used to stop endogenous peroxidase activity (45 min
at 25°C). One percent BSA was used to block tissue sections and
then incubated with an antibody specific for rabbit anti-SLURP1
(1:200, Abcam) at 4°C for 12 h. After repetitive washing by PBS,
the sections were incubated with peroxidase-conjugated antirabbit
antibodies, followed by visualization using 3,3-diaminobenzidine
with hematoxylin counterstain. Immunostaining was quantified
by ImageJ software.

For the immunofluorescence staining, the deparaffinization
and antigen retrieval of sections were done as described above.
Three percent normal goat serum and 0.1% Triton X-100 were
used to block sections. After washing, sections were incubated
with antibody specific for SLURP1 (1:200, Abcam) and a7
nAChR (1:200, Abcam) at 4°C for 16 h. After washing and
incubating with appropriate secondary antibodies and DAPI, the
sections were observed using fluorescence microscopy. NIH
image analysis software (ImageJ) was employed to quantify the
results of immunofluorescence staining.

Fluorescent a-Bungarotoxin Binding
HBMEC cells cultured in 24-well tissue were treated with BSA (2
mg/ml), SLURP1 (2 mg/ml), E. coli K1 (1 × 105 CFU) or E. coli K1
(1 × 105 CFU) + anti-SLURP1 antibody (1 mg) at 37°C, 5% CO2

for 2 h. The SLURP1 antibody was added simultaneously with E.
coli K1. After general washing, 4% paraformaldehyde were used
to fix cells for 10 min and 5% BSA was employed to block cells
October 2021 | Volume 12 | Article 745854
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for 30 min. Alexa Fluor 488-conjugated a-bungarotoxin was
then added at a concentration of 1 mg/ml and kept for 6 h at
room temperature. Followed by washing, the sections were
observed using fluorescence microscopy. The relative
fluorescence intensity was determined using the ImageJ
software (NIH). Briefly, the Spot Enhancing Filter 2D plugin
was used to amplify signals from the cells, and then threshold
settings were used to specifically select the fluorescent regions.
The selected regions were overlaid on the original images and
analyzed for mean fluorescence intensity of the area.

Immunoblot Analysis
The culture supernatants of HBMEC infected with or without E.
coli K1 were concentrated using ultrafiltration for immunoblot
analysis. Cell lysates were prepared in RIPA buffer. SDS-
polyacrylamide gel was used to separated protein (20–30 mg),
followed by transferring onto polyvinylidene difluoride
membranes (Millipore). Five percent of skim milk was used to
block membranes for 1 h. Membranes were then incubated with
rabbit-anti-SLURP1 antibody (1:1,000, Abcam) at 4°C overnight.
b-Actin (1:20,000) or Coomassie staining of total proteins was
employed as an internal control. SLURP1 expression was
detected using goat antirabbit IgG antibody conjugated with
horseradish peroxidase and enhanced chemiluminescence
reagent kit.

ELISA
The proinflammatory cytokines TNF-a (ab208348, Abcam),
MMP-9 (ab253227, Abcam), and ICAM-1 (ab100688, Abcam)
from homogenized brain extracts were evaluated using ELISA
kits according to the manufacturer’s instructions.

Statistical Analysis
Data are shown in mean ± standard error. All the analyses in this
study were done by SPSS (v25.0). Group differences between two
groups were analyzed using the Student’s t-test. Group
differences between three or more groups were analyzed using
the one-way ANOVA followed by Bonferroni post-hoc test.
Survival rates comparations were analyzed with log-rank test.
Two-side p-value less than 0.05 was considered significant and is
represented as *p < 0.05, **p < 0.01, and **p < 0.001.
RESULTS

E. coli K1 Infection Induces SLURP1
Secretion in Cell Lines, Murine Model,
and Humans
Secretion of SLURP1 in the culture supernatants of E. coli
K1-infected HBMEC were analyzed using immunoblot assay
and ELISA. We found E. coli K1 infection enhanced the
SLURP1 secretion in both time- and dose-dependent manner
compared with uninfected HBMECs (Figures 1A, B). To confirm
these results in vivo, we assessed the SLURP1 expression in brain
sections of neonatal C57BL/6 mice infected with or without E. coli
K1 by immunohistochemical detection. As shown in Figures 1C, D,
Frontiers in Immunology | www.frontiersin.org 4
SLURP1 protein expression from hippocampus areas was
significantly increased in mice infected with E. coli K1
compared with that of control. Notably, we also found a lot of
SLURP1 was specially gathered around the blood vessels in the
cortex sections of mice infected with E. coli K1 (Figures 1E, F).
ELISA showed that mice infected with E. coli K1 showed a higher
concentration of SLURP1 both in the serum and CSF than that of
control (Figures 1G, H). Pearson correlation analysis indicated
that the concentrations of SLURP1 were positively correlated with
E. coli K1 counts in the CSF (Figure 1I, r = 0.7635, p = 0.0167).

To identify if E. coli infection can upregulate SLURP1
transcription in humans, we analyzed one public human data
set encompassed sepsis caused by E. coli or Staphylococcus aureus
(S. aureus), and found that SLURP1 transcription level was
higher in E. coli-infected patients, as compared with healthy
controls or S. aureus-infected patients (Figure 1J). Furthermore,
SLURP1 transcription levels get higher at 8 h postinfection than
4 h postinfection of E. coli (Figure 1K). Together, these results
revealed that E. coli infection could induce SLURP1 secretion.

SLURP1 Promotes E. coli K1 Invasion and
PMN Transmigration Across the
BBB In Vitro
The pathogenesis of E. coliK1meningitis required two key events:
invasion of the brain microvascular endothelial cells by the
bacteria and PMN transmigration across the BBB (8), we
therefore next employed immortalized HBMEC monolayers to
determine whether exogenous supplement of SLURP1 could
promote E. coli K1 penetrating the endothelial cells, as well as
support PMN transmigration across the BBB in vitro. SLURP1
was obtained recombinantly with a His-tag as described in the
Material and Methods section. The amino acid sequence is
shown in Supplementary Figure S1A. The results of double-
digestion analysis, protein purity, and immunoblot detection,
DNA sequencing are shown in Supplementary Figures S1B, C
and Supplementary Material 1, respectively. As shown in
Figures 2A, B, supplement with SLURP1 promoted E. coli K1
penetrating the endothelial cells, accompanied by enhancing
E. coli K1-induced PMN transmigration across the HBMEC
monolayers in a dose- and time-dependent manner. To explore
the possibility that SLURP1 may promote E. coli K1 growth, we
compared its growth on brain heart infusion broth in presence or
absence of SLURP1. The result showed that SLURP1 has no
obvious influence on E. coli K1 growth (Figure 2C), suggesting
that the promotive effects of SLURP1 on E. coli K1 infection is not
through promoting the growth of the pathogen. In order to
further confirm the promotive role of SLURP1, we generated
SLURP1 overexpression or knockdown HBMEC. Figures 2D, G
showed the effects of SLUPR1 overexpression or knockdown,
respectively. We found overexpression/knockdown of SLUPR1
significantly increased/decreased E. coli K1 penetrating the
endothelial cells and PMN transmigration across the HBMEC
monolayers, respectively (Figures 2E, F, H, I). Taken together,
these results indicate that SLURP1 promotes E. coliK1 invasion of
the endothelial cells, as well as enhances PMN transmigration
across the BBB.
October 2021 | Volume 12 | Article 745854
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FIGURE 1 | E coli K1 enhances SLURP1 secretion. (A, B) Immunoblot analysis (A) and ELISA (B) showed the SLURP1 release in the culture supernatant of
HBMEC infected with E coli K1 (5 × 106 CFU) at different time intervals (0–2 h, left panel), or infected with various doses of E coli K1 (0–1 × 107 CFU) for 2 h (right).
(C) Immunohistochemical staining of SLURP1 in the hippocampus sections of mice infected with or without E coli K1, scale bar = 200 mm. (D) The semiquantitative
results of immunohistochemical staining of SLURP1, shown as fold change relative to control. (E) Immunohistochemical staining of SLURP1 in the cortex sections
from mice challenged with or without E coli K1, scale bar = 40 mm. (F) Semiquantitative analysis of immunohistochemical staining of SLURP1, shown as fold change
relative to control. (G, H) Quantification of SLURP1 secretion in the serum (G) or CSF (H) of mice infected with or without E coli K1. (I) Correlation analysis of
SLURP1 levels and E coli K1 counts in the CSF. (J) Relative SLURP1 transcription levels (FPKM) among patients with E coli or S. aureus sepsis. (K) Change of
relative SLURP1 transcription levels (FPKM) of five patients in 4- or 8-h post-E. coli infection. FPKM, fragments per kilobase of exon per million reads mapped. Data
are presented as mean ± SEM. The immunoblots and immunohistochemical results are representative of two independent experiments (A, C, E). The data are
displayed as the mean ± SEM from two independent experiments (B, D, F, G–I). *p < 0.05; **p < 0.01; ***p < 0.001 by one-way ANOVA followed by Bonferroni
post-hoc test (B, J) and Student’s t-test (D, F–H). Correlation analysis was performed using Pearson and Spearman correlation tests. ns, not significant.
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7458545
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SLURP1 Promotes the Pathogenesis
Process of E. coli K1 Meningitis In Vivo
In order to confirm the biological significance of the in vitro
findings described above, we further tested the effect of SLURP1
on E. coli K1 meningitis pathogenesis in the murine model.
Neonatal mice were intraperitoneally administered with BSA or
SLURP1 two consecutive days prior to E. coli K1 challenge. The
survival rate, pathogen counts in CSF, PMN transmigration, and
brain damage were detected as described in Materials and
Methods. The results showed that only 20% of the SLURP1-
pretreated mice infected with E. coli K1 survived within 60 h
postinfection (Figure 3A), while the survival rate for E. coli K1-
infected mice without SLURP1 supplementation reached almost
Frontiers in Immunology | www.frontiersin.org 6
50%. Furthermore, we found administration with SLURP1 was
able to markedly increase pathogen and PMN counts in the CSF
(Figures 3B, C). Evans blue assay showed that SLURP1-pretreated
mice have more severe BBB damage than the control group
(Figure 3D). Notably, we found SLURP1 has no influence on
the BBB integrity of uninfected mice. H&E staining of brain
sections indicated that supplement with SLURP1 dramatically
promotes neutrophil infiltration into the meninges and
meningeal inflammation (Figures 3E, F). Additionally, we found
exogenous supplement of SLURP1 could robustly enhance the
levels of proinflammatory cytokines in brain homogenates
(Figures 3G–I). Above all, these results suggested that SLURP1
promotes the pathogenesis process of E. coli K1 meningitis.
A B C

D E F

G H I

FIGURE 2 | The effect of SLURP1 on E coli K1 penetration and PMN transmigration across the BBB in vitro. (A) The invasion of E coli K1 into HBMEC which
pretreated with indicated doses of BSA or SLURP1. Data are presented as percent of the control values. (B) Transwell-cultured HBMEC monolayers were pre
treatment with indicated doses of BSA or SLURP1 for 2 h, followed by incubated with E coli K1 in the bottom and PMN in the top of filter successively. PMN in the
bottom of filter were harvested and counted. (C) The growth curve of E coli K1 in medium containing indicated doses of SLURP1. (D) The upregulation effect of
SLURP1 in HBMEC which had been transfected with pCNDA3.1+-SLURP1. (E) The invasion of E coli K1 into HBMEC which had been transfected with pCNDA3.1
+-SLURP1. Data are presented as percent of the control values. (F) Effect of SLURP1 upregulation on E coli K1-induced PMN transmigration across the HBMEC
monolayers. Data are presented as percent of the control values. (G) The knockdown effect of SLURP1 in HBMEC transfected with siRNA. (H) The invasion of E coli
K1 into HBMEC which had been transfected with siRNA. Data are presented as percent of the control values. (I) Effect of SLURP1 knockdown on E coli K1-induced
PMN transmigration across the HBMEC monolayers. Data are presented as percent of the control values. Over., overexpression; Kno., knockdown. The
immunoblots results are representative of three independent experiments (D, G). The data are displayed as the mean ± SEM from three independent experiments
(A–I). *p < 0.05; **p < 0.01 by one-way ANOVA followed by Bonferroni post-hoc test (A, B, F, I) and Student’s t-test (D, E, G, H). ns, not significant.
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E. coli K1-Induced SLURP1 Activates
a7 nAChR
We further confirmed if E. coli K1-induced SLURP1 activates a7
nAChR. Firstly, a fluorescent a-bungarotoxin (a-bgtx) binding
assay was performed to detect the activity of a7 nAChR. HBMEC
were cultured in 24-well plates, followed by incubating with
SLURP1 or E. coli K1 for 2 h. Afterward, fluorescently labeled a-
bgtx incubation was carried out to test a7 nAChR activity. As
shown in Figures 4A, B, SLURP1 or E. coli K1-treated HBMEC
showed brighter green fluorescence than control, indicating an
increase in a7 nAChR activity. Notably, when added with
SLURP1 antibody, the promotive effect of E. coli K1 on a7
nAChR activity was blocked, indicating the E. coli K1-induced
SLURP1 was responsible for the a7 nAChR activation. To further
confirmwhether SLURP1 is directly linked to a7 nAChR activation,
we analyzed the colocalization offluorescently labeled SLURP1 with
a7 nAChRs by immunofluorescence staining. The cortex sections of
E. coli K1-treated mice showed colocalization of SLURP1 (green)
Frontiers in Immunology | www.frontiersin.org 7
and a7 nAChRs (red) (Figure 4C). What is more, with increasing
doses of E. coli K1 challenge, the Pearson’s coefficient and overlap
coefficient of colocalization also increased (Figure 4D). These
results suggest that E. coli K1-induced SLURP1 is responsible for
a7 nAChR activation.

Inhibition of a7 nAChR Blocks the
Promotive Effects of SLURP1 in the
Pathogenesis of E. coli K1 Meningitis
Finally, we determined whether a7 nAChR is necessary for
SLURP1-enhanced E. coli K1 meningitis. We first used the MLA,
an a7 nAChR inhibitor, to explore the role of a7 nAChR on the
function of SLURP1 in vitro. As shown in Figures 5A, B, MLA
inhibited the promotive effects of SLURP1 in a dose-dependent
manner, including attenuating E. coli K1 invasion and PMN
transmigration. Furthermore, we used a7 nAChR knockout
(A7R−/−) mice to confirm these findings in vitro. Wild-type
(A7R+/+) and A7R−/− mice were intraperitoneally injected with
BA DC

E

H IG

F

FIGURE 3 | SLURP1 promotes the pathogenesis of E coli K1 meningitis in mice model. (A) Survival curve of C57BL/6 mice treated with SLURP1 (100 mg/kg body
weight) + E. coli K1 (1 × 106) or treated with only E coli K1 (1 × 106). SLURP1 was intraperitoneally injected 2 days before E coli K1 challenge. n = 10 per group.
(B, C) Pathogen (B) and PMN (C) counts in the CSF of E coli K1-infected mice pretreated with BSA or indicated doses of SLURP1. (D) The OD620 values of Evans
blue extracted from the brain of E coli K1-infected mice pretreated with BSA or indicated doses of SLURP1. (E) Representative H&E staining of the cortex sections,
scale bar = 200 mm; and (F) meningeal inflammation score. (G–I) The cytokines levels in the CSF were analyzed by ELISA: TNF-a (G), MMP-9 (H), and ICAM-1 (I).
The H&E staining are representative of two independent experiments (E). Data are presented as mean ± SEM from two independent experiments. Each dot indicates
an individual mouse (n = 5). *p < 0.05; **p < 0.01; ***p < 0.001 by log-rank test (A), Student’s t-test (F), and one-way ANOVA followed by Bonferroni post-hoc test
(B–D, G–I). ns, not significant.
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BSA or SLURP1 for 2 days, followed by challenge with E. coli K1 for
18 h. As shown in Figures 5C–F, SLURP1 treatment has enhanced
the pathogen load, PMN transmigration and the BBB damage in the
A7R+/+ mice, while all these promotive effects of SLURP1 were
blocked in the A7R−/− mice. H&E staining of the brain sections
showed that neutrophil recruitment andmeningeal inflammation of
SLURP1-treated A7R−/− mice was not significantly increased when
compared with untreated A7R−/− mice (Figures 5G, H). Above all,
these results indicated that SLURP1 acts through a7 nAChR to
enhance the pathogenesis process of E. coli K1 meningitis.
DISCUSSION

As an important cholinergic anti-inflammatory signaling, a7
nAChR has been intensively investigated in sterile inflammation
Frontiers in Immunology | www.frontiersin.org 8
over the last decades (26–30). However, there are few studies that
focus on the role of a7 nAChR in the host immune response to
microbial infection. A number of studies showed that activation
of a7 nAChR impairs host defense to bacterial infections,
indicating that the use of a7 nAChR ligands might not be a
good strategy in treating infectious diseases (31–37). Ilona and
coworkers have demonstrated that stimulates a7 nAChR
promotes the development of E. coli peritonitis after
intraperitoneal infection (37). Consistent with their study, our
group recently revealed that a7 nAChR impaired the host
defense against E. coli K1 infection in the CNS (7–9). In this
report, we further found that E. coli K1 infection promotes
SLURP1, an endogenous a7 nAChR ligand secretion, and
supplement of SLURP1 could greatly facilitate E. coli K1
dissemination into the CNS. These findings expand our
knowledge of the pathogenesis process of E. coli K1 infection
BA

DC

FIGURE 4 | E coli K1-induced SLURP1 activates a7 nAChR. (A) The Alexa Fluor 488-conjugated a-bungarotoxin binding to HBMEC was detected upon treatment
with BSA (control, 2 mg/ml), E coli K1 (1 × 105 CFU), SLURP1(2 mg/ml) or E coli K1 (1 × 105 CFU) + SLURP1 antibody (1 mg). SLURP1 antibody was added
simultaneously with E coli K1. Scale bars = 40 mm. (B) Fluorescence intensity of Alexa Fluor 488-conjugated a-bungarotoxin binding to HBMEC. Data are presented
as percent of the control values. (C) The cortex sections of neonatal mice infected with indicated doses of E coli K1 were permeabilized and immunofluorescence
stained with either a7 nAChR and SLUPR1 antibodies. Nuclei were stained by DAPI. Arrows show the colonization of a7 nAChR (red) and SLUPR1 (green). Scale
bars = 50 mm (left) or 10 mm (right). (D) Quantification of the Pearson’s correlation coefficient (upper panel) and overlap coefficient (bottom) for colonization of a7
nAChR and SLURP1. Data are presented as mean ± SEM from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 by one-way ANOVA followed by
Bonferroni post-hoc test (B, D). ns, not significant.
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and provide a new perspective on the establishment of the
CNS infection.

SLURP1 is a secreted protein that has structural homology
with three-finger snake a-neurotoxins, acts in a both autocrine
and paracrine manner, to activate a7 nAChR and thus exert
potent anti-inflammatory activity (38–43). Although the
function of SLURP1 in modulated sterile inflammation has
been extensively studied, its effects on the inflammation
induced by microbial infection are largely unknown, especially
on neuroinflammation. Taken into account that SLURP1 is
highly expressed in the CNS, a study into its pathologist effects
Frontiers in Immunology | www.frontiersin.org 9
on the CNS infection constitutes a promising field for developing
new therapeutic methods (44–46). To the best of our knowledge,
this is the first study that reported that microbial infection could
induce SLURP1 expression, and consequently stimulate a7
nAChR to establish infection. Whether the enhanced SLURP1
secretion is a universal phenomenon upon infection is very
interesting and warrants further investigation.

How E. coli K1 promotes SLURP1 secretion needs to be
addressed. Kruppel-like factor 4 (Klf4) is the first reported factor
that regulates SLPRP1 expression (47, 48). Klf4 is a member of
the Krüppel-like factor transcription factor family, which can
A

C D E
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F

B

FIGURE 5 | Effects of a7 nAChR knockout on SLURP1-enhanced E coli K1 entry into the CNS and PMN transmigration across the BBB. (A) The invasion of E coli K1
into HBMEC which pretreated with indicated doses of SLURP1 or SLURP1+a7 nAChR inhibitor MLA. Data are presented as percent of the control values. (B) E coli
K1-induced PMN transmigration across the HBMEC monolayers which pretreated with indicated doses of SLURP1 or SLURP1+a7 nAChR inhibitor MLA. Data are
presented as percent of the control values. (C, D) Pathogen counts in the brain tissues (C) or CSF (D) of E coli K1-infected wild type (A7R+/+) or a7 nAChR knockout
(A7R−/−) mice pretreated with or without SLURP1 (100 mg/kg body weight). (E) PMN counts in the CSF of E coli K1-infected A7R+/+ or A7R−/− mice pretreated with or
without SLURP1 (100 mg/kg body weight). (F) Measurement of the BBB permeability by Evans blue assay in E coli K1-infected A7R+/+ or A7R−/− mice administrated
with or without SLURP1 (100 mg/kg body weight). (G) Representative H&E staining of the brain cortex sections, scale bar, 200 mm, and (H) meningeal inflammation
score. The H&E staining are representative of two independent experiments (G). Data are presented as mean ± SEM from two independent experiments. Each dot
indicates an individual mouse. *p < 0.05; **p < 0.01; ***p < 0.001 by one-way ANOVA followed by Bonferroni post-hoc test (A–F, H). ns, not significant.
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stimulate microglial activation and induce neuroinflammation.
As a zinc finger protein, Klf4 could effectively induce SLURP1
expression via binding to its promoter. Interestingly, two recent
studies reported that Klf4 is robustly upregulated upon infection
with pathogens like E. coli or Streptococcus pneumoniae (49, 50).
Thus, we speculated that E. coli K1 might upregulate Klf4
expression to promote SLURP1 release. Another question that
needs to be addressed is how SLURP1-a7 nAChR mediated the
pathogenesis process of E. coli K1 meningitis. Previous studies by
our groups and others have reported that nuclear factor-kB (NF-
kB) is critical for E. coli K1 entry into the CNS (51, 52). Actually,
Chernyavsky and coworkers have reported that SLURP1 can
bind to a7 nAChR, activate the Raf-1/MEK1/ERK1/2 cascade to
modulate NF-kB signaling (53). It has been demonstrated in our
previous research that NF-kB modulation, CaMKII, ERK, and
protein kinase C are involved in a7 nAChR-mediated signaling
(7, 52, 54). It is most likely that the same pathway may contribute
to SLURP1-mediated signaling as SLURP1 is an endogenous a7
nAChR ligand. It thus seems that SLPRP1-a7 nAChR-NF-kB
cascade might be critical for E. coli K1 meningitis.

The limitation of the present study is that the recombinant
SLURP1 used was not a native one. Recently, several studies
reported the contradictory role of SLURP1 on a7 nAChR based
on recombinant SLURP1 with N- and/or C-terminal extensions.
In 2003 (22), it was demonstrated that a recombinant SLURP1
containing N-terminal hemagglutinin tag and C-terminal myc
tag, could potentiate the a7 nAChRs-mediated responses, while
a recent study by Lyukmanova et al. (38, 46) has reported the
inhibitory role of recombinant SLURP1, which only added a Met
residue in its N-terminal. However, this inhibitory effect was not
observed in the case of a synthetic human SLURP1, which
is identical with the amino acid sequence of the native source
(55). These contradictory findings indicate that additional
extensions may produce marked changes in the functional
activity of SLURP1. To the best of our knowledge, we believe
that SLURP1 may act as a positive modulator, because mutations
in SLURP1 cause Mal de Meleda (an inflammatory palmoplantar
hyperkeratosis), and a7 nAChR plays a central role in the
differentiation of stratified squamous epithelium (22, 56, 57).
In spite of this, the conclusion that SLURP1 facilitates E. coli K1
crossing the blood-brain barrier needed to be further verified by
using the native SLURP1.

Taken together, the present study reveals that SLURP1, an
endogenous a7nAChR ligand, is the key mediator for E. coli K1
meningitis pathogenesis. Blocking initial SLURP1-a7nAChR
interaction would be an attractive strategy for preventing
E. coli K1 meningitis.
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