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Introduction 
Lung cancer (LC) is one of the primary causes of 
mortality worldwide, with about 2,200,000 new 
cases and around 1,800,000 deaths estimated in 
the world in 2020 by the Global Cancer 
Observatory (https://gco.iarc.fr). LC originates 
from basal epithelial cells of the lung and is classi-
fied into two main categories: non-small-cell lung 
cancer (NSCLC) and small cell lung cancer 
(SCLC).1 NSCLC is the most prominent form of 
LC; about 85% of all LC are NSCLC, this sub-
type represents one of the most frequent causes of 
cancer-related death.2,3 The prognoses and thera-
peutic strategies for NSCLC depend on the dis-
ease stage at diagnosis. While the surgery remains 
the standard of care for NSCLC,4 it is often 
unsuccessful in patients with metastasis. 

Unfortunately, NSCLC patients are mostly diag-
nosed at advanced stages since they are frequently 
asymptomatic at early stages;5,6 thus, finding new 
biomarkers for early diagnosis is an urgent need.

The understanding of NSCLC pathogenesis has 
improved through the identification of activating 
mutations and amplifications of oncogenes, 
including Kirsten rat sarcoma virus (KRAS),7,8 
epidermal growth factor receptor (EGFR),9 and 
inactivating mutations in tumor suppressive 
genes, such as p53.10 Nowadays, it is estimated 
that up to 69% of advanced NSCLC patients 
carry druggable genetic alterations in different 
genes, such as EGFR, KRAS, anaplastic lym-
phoma kinase (ALK), human epidermal growth 
factor receptor 2 (HER2), c-Ros oncogene 1 

Emerging noncoding RNAs contained in 
extracellular vesicles: rising stars as 
biomarkers in lung cancer liquid biopsy
Giuseppe Cammarata, Diego de Miguel-Perez , Alessandro Russo, Ariel Peleg,  
Vincenza Dolo, Christian Rolfo# and Simona Taverna#

Abstract:  Lung cancer has a high morbidity and mortality rate, and affected patients have 
a poor prognosis and low survival. The therapeutic approaches for lung cancer treatment, 
including surgery, radiotherapy, and chemotherapy, are not completely effective, due to late 
diagnosis. Although the identification of genetic drivers has contributed to the improvement 
of lung cancer clinical management, the discovery of new diagnostic and prognostic tools 
remains a critical issue. Liquid biopsy (LB) represents a minimally invasive approach and 
practical alternative source to investigate tumor-derived alterations and to facilitate the 
selection of targeted therapies. LB allows for the testing of different analytes such as 
circulating tumor cells, extracellular vesicles (EVs), tumor-educated platelets, and cell-free 
nucleic acids including DNAs, RNAs, and noncoding RNAs (ncRNAs). Several regulatory 
factors control the key cellular oncogenic pathways involved in cancers. ncRNAs have a wide 
range of regulatory effects in lung cancers. This review focuses on emerging regulatory 
ncRNAs, freely circulating in body fluids or shuttled by EVs, such as circular-RNAs, small 
nucleolar-RNAs, small nuclear-RNAs, and piwi-RNAs, as new biomarkers for early detection, 
prognosis, and monitoring of therapeutic strategy of lung cancer treatment.

Keywords:  extracellular vesicles, liquid biopsy, lung cancer, noncoding RNA, circular-RNA, 
piwi RNA

Received: 20 June 2022; revised manuscript accepted: 12 September 2022.

Correspondence to: 
Simona Taverna  
Institute of Translational 
Pharmacology (IFT), 
National Research Council 
(CNR) of Italy, Via Ugo La 
Malfa, 153, Palermo 90146, 
Italy. 
simona.taverna@cnr.it

Christian Rolfo 
Center for Thoracic 
Oncology, Tisch Cancer 
Institute, Icahn School of 
Medicine at Mount Sinai, 
One Gustave Levy Place, 
Box 1079, New York, NY 
10029-6574, USA. 
christian.rolfo@mssm.edu

Giuseppe Cammarata 
Institute of Translational 
Pharmacology (IFT), 
National Research Council 
(CNR) of Italy, Palermo, 
Italy

Diego de Miguel-Perez 
Ariel Peleg 
Center for Thoracic 
Oncology, Tisch Cancer 
Institute, Icahn School of 
Medicine at Mount Sinai, 
New York, NY, USA

Alessandro Russo 
Medical Oncology 
Unit, A.O. Papardo & 
Department of Human 
Pathology, University of 
Messina, Messina, Italy

Vincenza Dolo 
Department of Life, 
Health and Environmental 
Sciences, University of 
L'Aquila, L'Aquila, Italy

# Co-last authors

1131229 TAM0010.1177/17588359221131229Therapeutic Advances in Medical OncologyG Cammarata, D de Miguel-Perez
review-article20222022

Review

https://journals.sagepub.com/home/tam
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
https://gco.iarc.fr
mailto:simona.taverna@cnr.it
mailto:christian.rolfo@mssm.edu


Therapeutic Advances in 
Medical Oncology Volume 14

2	 journals.sagepub.com/home/tam

(ROS1), or V-raf murine sarcoma oncogene 
homolog B1 (BRAF).11 The list of exploitable 
targets is rapidly growing and includes eight dif-
ferent genes with approved targeted therapies, 
including EGFR, ALK, ROS1, MET, BRAF, 
KRAS, NTRK, and RET.12 Despite initial 
responses to targeted therapies, the clinical bene-
fit of these agents is typically limited and virtually 
all patients progress through the acquisition of 
multiple on-target and/or off-target resistance 
mechanisms.13 Therefore, it is important to iden-
tify new therapeutic targets for NSCLC.14 In the 
era of precision medicine, NSCLC clinical man-
agement can benefit from a new tool, liquid 
biopsy (LB).15

LB is a minimally invasive procedure, alternative, 
or complementary to tissue biopsy, and utilizes 
body fluids, such as blood, plasma, serum, saliva, 
or urine to collect elements mirroring the patient-
specific disease state.12 LB allows the analysis of 
circulating biomarkers that reflect systemic tumor 
burden and represent intra-tumoral heterogene-
ity. LB includes the analysis of circulating tumor 
cells (CTC), extracellular vesicles (EVs), tumor-
educated platelets (TEPs), and cell-free nucleic 
acids (cf-NAs) such as circulating tumor DNA 
(ctDNA) and circulating tumor RNA (ctRNA). 
The combination of circulating factors trans-
ported in the bloodstream has been referred to as 
‘tumor circulome’. In the near future, the diagno-
sis based on cf-NAs could represent a new route 
in personalized medicine.16,17 Currently, CTCs 
and ctDNA are the only components of LB 
approved in clinical practice by the Food and 
Drug Administration, as biomarkers for diagno-
sis, prognosis, and monitoring treatment 
response.

LB is an important source of cf-NAs and provides 
information about cancer cell mutation profiles, 
while cell-free noncoding RNAs (ncRNAs) are 
promising biomarker candidates in the diagnosis 
and prognosis of cancer.14 The clinical applica-
tion of LB technology in LC, includes early diag-
nosis, personalized treatment, prognosis 
prediction, longitudinal monitoring for cancer 
progression, and therapeutic response. LB is also 
considered a promising method for the identifica-
tion of patients with a high risk of disease progres-
sion after curative surgery.18

The analysis of CTCs in patients with early 
NSCLC reflects their value in early diagnosis. 
CTC amount increases significantly in most 

patients with tumor progression.19 CTCs could be 
used as an additional method to detect ALK gene 
rearrangement when appropriate tissue biopsy 
samples could not be obtained.20 Moreover, 
CTCs are used to supplement the tissue-based 
EGFR mutation detection in LC and to guide the 
precision treatment of EGFR.21 LB has also 
entered in clinical practice as ctDNA-based tumor 
genotyping for the management of advanced-stage 
LC.22 It was reported that the plasma ctDNA lev-
els, in NSCLC patients, are higher than in sub-
jects with chronic respiratory inflammation or 
healthy individuals. Collecting ctDNA from blood 
is a non-invasive method, with high clinical poten-
tial, that can be repeated over time, contributing 
to the identification of small residual diseases or 
recurrence rates.23

In advanced NSCLC, the use of ctDNA, which 
had previously been limited to EGFR mutation 
detection in patients with inadequate tissue for 
tumor genotyping and/or for the identification of 
EGFR, T790M-resistant mutation, has now 
been extended to other genetic aberrations. 
Thanks to the use of plasma next-generation 
sequencing (NGS), this analysis, termed the 
‘plasma-first’ approach, is moved to a treatment-
naïve setting.3

Recently, it was also developed a new integrated 
genomic strategy for early-stage LC detection 
using a ctDNA-based machine-learning platform, 
named LC likelihood in plasma. This study intro-
duces improvements to Cancer Personalized 
Profiling by deep Sequencing ctDNA analysis that 
facilitates screening applications.24 Nowadays, the 
European Society for Medical Oncology and the 
International Society for Study of LC have recom-
mended the use of a multigene NGS approach in 
the molecular evaluation of advanced-stage 
NSCLC patients.3 Although LB is a growing field 
in cancer management, some challenges to the 
sensitivity of CTCs and ctDNA in clinical practice 
remain. The percentage of ctDNA is often as low 
as 1% and the number of CTCs is limited. EVs, 
ctRNA, and TEPs are considered novel tumor cir-
culome elements with great potential at any stage 
of cancer for adequate clinical management.25 EVs 
could overcome some limits of LB; they have the 
advantages to be abundant in blood samples of 
cancer patients, stable in biofluids, and protect cf-
NAs from degradation. Although EVs isolation 
and quantification are challenging and need stand-
ardization, the analysis of the different biological  
components of LB could be used to explore  

https://journals.sagepub.com/home/tam


G Cammarata, D de Miguel-Perez et al.

journals.sagepub.com/home/tam	 3

complementary aspects to illustrate the molecular 
profiles of LC comprehensively.3

This review focuses on circulating-free or EVs 
containing emerging regulatory ncRNAs, such as 
circular-RNAs (CircRNAs), small nucleolar-
RNAs (snoRNAs), small nuclear-RNAs (snR-
NAs), and piwi-interacting RNAs (piRNAs), in 
LC. These ncRNAs are essential in maintaining 
the spatial–temporal architecture of transcrip-
tional and translational programs under malig-
nant conditions and have gained the progressive 
attention of the scientific community. In addi-
tion, we discuss the potential roles of EVs and 
ncRNAs as biomarkers in LC LB (Figure 1).

Extracellular vesicles
EVs are nanoscale membrane particles, released 
by all eukaryotic and prokaryotic cytotypes, in 
physiological and pathological conditions.26–28 
EVs carry proteins, metabolites, lipids, and 
nucleic acids, including DNA fragments and 
RNAs that can induce phenotypic reprogram-
ming of target cells.29–31 Based on their biogenesis 
and size, EVs are classified into two main classes: 
exosomes and microvesicles (MVs; Figure 2).32

Exosomes are lipid bilayer nanovesicles of endo-
somal origin, with a diameter of 30–150 nm 
instead, MVs have a diameter of 200–1000 nm 

and are shed directly from discrete microdomains 
of the plasma membrane, enriched in phosphati-
dylserine, cholesterol, and lipid rafts.33

EVs can be collected from various biofluids, such 
as serum, plasma, saliva, breast milk, nasal secre-
tions, urine, semen, and pathological effu-
sions.6,29,34,35 Several mechanisms of EV release 
have been described, that involve different machin-
eries such as ESCRT complex, tetraspanins, 
sphingomyelinases, redistribution of phospholip-
ids, and depolymerization of cytoskeletal actin.26

EVs can be internalized by target cells through 
receptor-ligand binding, direct fusion with plasma 
membranes, phagocytosis, micropinocytosis, 
actin polymerization, and filopodia extension. It 
has also been reported that EVs can be internal-
ized by target cells as intact vesicles surfing on 
filopodia.27,36–38 EVs encapsulate their cargo in a 
phospholipidic bilayer, providing high stability, a 
long half-life, and resistance to degradation. Their 
stability is attributed to the lipid components of 
their membranes, which are enriched in choles-
terol, phosphatidylserine, glycosphingolipids, 
sphingomyelin, and annexin, as compared to the 
cellular plasma membrane.39

EVs can travel long distances and deliver their 
cargo to specific cell types through specific ligand–
receptor interactions.39

Figure 1.  LB as a tool for LC management. Schematic representation of LB and EV components, focusing on 
emerging ncRNAs described in EVs.
EVs, extracellular vesicles; LB, liquid biopsy; ncRNAs, noncoding RNAs.
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Another intriguing feature of EVs is their poten-
tial to cross tissue barriers. Several studies showed 
their ability to cross the blood–brain barrier. EVs' 
stability, addressability, and barrier penetration 
make them encouraging therapeutic delivery 
devices.40,41

EV cargos, transported in directed ways to target 
cells, can act in autocrine, paracrine, and systemic 
manners. EVs regulate biological processes and 
crosstalk between cells, playing an important role 
in cancer.34,42–44 Several reports demonstrate the 
key role of EVs in cancer progression,45 premeta-
static niche formation,46 metastasis,47,48 and drug 
resistance.49,50 The potential for EVs as biomark-
ers in LC early detection and progression has 
been reported as well. EVs have been identified as 
good biomarkers for monitoring response to LC 
therapies.26

Since anticancer therapies alter the amount of 
EVs in biofluids, the dynamic analysis of circulat-
ing EVs and their contents can provide real-time 
information on therapeutic responses.51 EVs 
promise to be a next-generation diagnostic and 

therapeutic tool in LC, to monitor immune-
checkpoint inhibitors (ICIs) therapy with pro-
grammed cell death protein 1 (PD-1) or 
programmed cell death-ligand 1 (PD-L1) anti-
bodies, a standard treatment for advanced 
NSCLC. It was reported that specific microR-
NAs (miRNAs) in plasma EVs are differentially 
expressed between responders and non-respond-
ers’ patients to ICIs and have potential as predic-
tive biomarkers for anti–PD-1/PD-L1 treatment 
response.52 Recently, de Miguel-Perez et  al.53 
evaluated EVs containing PD-L1, as a biomarker 
for the prediction of durable treatment response 
and survival in patients with NSCLC undergoing 
treatment with ICIs. An increase in EV-PD-L1 
was observed in non-responders’ patients in com-
parison to responders. These findings indicate 
that EV-PD-L1 dynamics could be used to strat-
ify patients with advanced NSCLC, who would 
experience durable benefits from ICIs.53

As aforementioned, EVs are natural intercellular 
shuttles for NAs such as DNA, and RNAs includ-
ing ncRNAs.54,55 The DNA packaging into EVs 
was significantly higher in cancer-derived EVs 

Figure 2.  Schematic representation of EV biogenesis. Donor cells release exosomes and MVs with different 
mechanisms.
EV, extracellular vesicle; MVs, microvesicles.
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compared to EVs from noncancer cells. In LC, 
the combination of RNA/DNA contained in 
exosomes (exoRNA/DNA) and ctDNA for 
T790M detection has higher sensitivity and spec-
ificity compared to ctDNA alone.56

Recently, Park and colleagues demonstrated that 
also EVs derived from bronchial washing 
(BW-EVs) could be used for accurate and fre-
quent genotyping of EGFR mutation in patients 
with NSCLC. BW-EVs are useful for the early 
detection of actionable mutations, for the selec-
tion of personalized therapy, and for monitoring 
disease progression. The well-known T790M 
mutation seems to be detected from BW-EV-
DNA with a superior detection rate to plasma-
derived ctDNA or tissue biopsy.57 Although the 
‘gold standard’ source for LB testing on EGFR is 
represented by ctDNA, recovered from plasma, 
recent studies indicate that EVs are a good source 
of RNA to identify EGFR mutations. EV-RNA 
and ctDNA can function as independent biologi-
cal sources in LB of NSCLC patients providing a 
complementary informative set of tumor dynam-
ics. While ctDNA is predominantly released as a 
consequence of the apoptotic and necrotic pro-
cess, EVs are released from viable cells to trans-
mit information to other cells providing a complex 
cargo available for molecular analysis.58 Moreover, 
it was demonstrated that EVs carry mutated 
EGFR as mRNA and protein, mirroring the dis-
ease status in metastatic NSCLC. Sensitizing 
(exon 19 deletion, L858R) and resistance 
(T790M) mutations were quantified in EV-RNA. 
The comparison of mutation detection between 
EV-RNA and ctDNA using digital droplet PCR 
(ddPCR) indicates that EVs have a better detec-
tion rate for exon 19 deletions and L858R point 
mutation.59 These reports suggest that EV-RNA 
provides a new tool appropriate for use in clinical 
practice to investigate the dynamics of common 
driver EGFR mutations in NSCLC patients 
receiving TKIs.

Noncoding RNAs
ncRNAs are molecules of RNA with no protein 
translation potential, involved in physiological 
and pathological processes.60 Data from genome-
wide transcriptional analysis in humans have 
shown that the amount of protein-coding tran-
scripts account for approximately 2% of the entire 
genome, while ncRNAs represent about 98% of 
all genomic output.29,61 Interestingly, it has been 
reported that the proportion of noncoding regions 

in the genome increases according to the com-
plexity of organisms, suggesting an important role 
for these sequences in the physiology and devel-
opment of organisms.62,63 Studies on these non-
protein-coding RNAs have received a lot of 
interest in many fields, especially in cancer, lead-
ing to new hypotheses about cancer biology.64 
ncRNAs can be classified as housekeeping and 
regulatory. Housekeeping ncRNAs are abun-
dantly and ubiquitously expressed in cells, and 
primarily regulate generic cellular functions. 
While regulatory ncRNAs are usually considered 
key regulatory RNA molecules, function as mod-
ulators of gene expression at epigenetic, tran-
scriptional, and post-transcriptional levels.65–67

Based on their molecular size, all regulatory ncR-
NAs are subclassified into small ncRNAs, with 
transcripts shorter than 200 nucleotides, includ-
ing miRNAs, snRNAs, snoRNAs, and piRNAs 
and large ncRNAs, with transcripts longer than 
200 nucleotides, that include CircRNAs.68

Despite comprising less than 1% of total cellular 
ncRNA content, regulatory ncRNAs play crucial 
roles in transcription, post-transcriptional mecha-
nisms, and translation. Regulatory ncRNA-medi-
ated gene silencing constitutes one important type 
of epigenetic alteration and has been implicated in 
several cases of human carcinogenesis. Regulatory 
ncRNAs (Figure 3) modulate gene expression 
through various mechanisms.69,70 ncRNAs can 
influence lung tumorigenesis, and they play an 
important role in premetastatic niche formation 
and metastasis of NSCLC.71 Since ncRNAs circu-
late in biofluid freely or encapsulated in EVs, they 
are intriguing as potential biomarkers and thera-
peutic targets in LC LB scenario.

In recent years, a variety of regulatory ncRNAs 
have been identified, as key modulators of gene 
expression in different cellular pathways and sys-
tems.68,69 Recent findings changed the descrip-
tion of ncRNAs from ‘junk’ transcriptional 
products to functional regulatory molecules that 
mediate key processes such as gene expression, 
chromatin remodeling, transcription, post-tran-
scriptional modifications, and signal transduc-
tion.70 The tRNA-derived fragments (tRFs)-based 
or RNA-related fragments (rRFs)-based thera-
pies might become useful to offer new therapeutic 
options.72

In the classical view, housekeeping ncRNAs, 
involved in the maintenance of normal cell 
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functionalities, include transfer RNAs (tRNAs) 
and ribosome RNAs (rRNAs), which are impor-
tant in protein translation. This viewpoint was 
challenged by recent findings on the dysregu-
lated expression of tRNAs in several cancers, 
including LC.54 The tRNAs are cleaved by angi-
ogenin in tRNA-derived stress-induced RNAs 
(tiRNAs), which can be further processed by 
Dicer into tRFs. In LC tissue, tRNAs-Leu and 
tRNAs-Val are overexpressed, respectively, in 
37% and 26% of samples.73 The tRF-Leu-CAG 
is upregulated in LC and involved in cell prolif-
eration and cell cycle progression, interacting 
with AURKA protein.74 The tRF-Leu-CAG 
could be a new diagnostic marker and potential 
therapeutic target in NSCLC. Specific blockade 
of some tRFs, such as tRF-Leu-CAG, may have 
considerable clinical application in suppressing 
LC cell proliferation and cell cycle progres-
sion.73 Recently, it was reported that EVs shut-
tle tRFs with effects on various cellular 
processes; the dysregulation of EV-tRFs has 
been associated with cancer progression and 
they are potential novel biomarkers for cancer 
diagnosis.75

The rRNAs, like tRNAs, can be cleaved into 
small ribosomal rRFs. The function of rRFs is not 
limited to gene silencing, their structure also plays 
a key role in rRNA stability.72 The rRNAs are 
abundant in EVs released by different cancer cell 
lines; a high-throughput study on human breast 
cancer cell lines showed that over 80% of RNAs 

contained in EVs are rRNAs.76 The rRNAs were 
also detected in EVs collected by different body 
fluids such as the serum, plasma, urine, and 
saliva.77

Circular-RNAs
CircRNAs have been identified as a new class of 
ncRNA with high regulatory potential.78 CircRNAs 
contained in blood, either free or encapsulated 
within EVs, have several advantages over canonical 
linear RNAs as cancer biomarkers.79

CircRNAs, which are found in a large amount 
within tissues, cells, and body fluids, are aber-
rantly expressed in cancer tissues and regulate 
tumor progression. Since they are expressed in 
stage-specific manners, several studies have 
shown their potential as helpful diagnostic and 
prognostic biomarkers for cancers.80

CircRNAs are generated for back-splicing pro-
cessing from linear pre-messenger RNAs when 
the 3′ and 5′ ends are ligated to form a continuous 
loop and covalently closed.79 CircRNAs were first 
discovered in 1990 when observing that exons of 
a tumor suppressor gene after their splicing were 
joined in a different order than their genomic 
sequence.81 CircRNAs are highly resistant to 
RNAse activity because of the lack of 5′ and 3′ 
ends,82 being more stable and having longer half-
lives than canonical linear isoforms. In 2015, 
CircRNAs were described in EVs for the first 

Figure 3.  RNA classification. RNAs are divided into two main classes: mRNAs and ncRNAs. Each category has 
different components.
ncRNAs, noncoding RNAs.
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time, when high-throughput technologies such as 
genome-wide RNA-seq analyses showed that 
CircRNAs were enriched in EVs in comparison 
with parental cells. CircRNAs contained in EVs 
may be controlled by alteration of associated 
miRNA levels in parental cells, transferring the 
biological activity to target cells.83,84

The principal functions of CircRNAs are miRNA 
inhibition, interaction with RNA-binding pro-
teins, and regulation of parental genes. 
Particularly, CircRNAs act as miRNA sponges 
protecting target genes from repression by miR-
NAs. Notably, one CircRNA can sponge differ-
ent miRNAs, establishing an intricate and precise 
regulatory network.85,86

CircRNAs are emerging candidates as biomarkers 
for diagnosis, prognosis, and therapeutic response 
of NSCLC in LB.86 CircRNAs are involved in 
various aspects of LC progression such as cell 
growth, proliferation, migration, metastasis, drug 
resistance, and immune escape as summarized in 

Figure 4. Recently, it was reported that ciRS-7 is 
associated with NSCLC development. CiRS-7, 
also called CDR1as, is one of the earliest discov-
ered CircRNAs originating from the back-splic-
ing of CDR1 gene.87 This CircRNA has about 70 
miRNA-binding sites and acts as a sponge for 
miR-7. CiRS-7 is overexpressed in tissues and 
cell lines of NSCLC and may promote cancer cell 
proliferation via ciRS-7/miR-7/EGFR/CCNE1/
PIK3CD signaling. High levels of ciRS-7 were 
found to be associated with TNM stage and 
lymph node metastasis of NSCLC.88

Another CircRNA overexpressed in NSCLC tis-
sues compared to adjacent tissues is has_
circ_0014130 (circPIP5-K1A), which acts as a 
sponge for miR-600 and inhibits its activity, upreg-
ulating hypoxia-inducible factor 1α, which is 
involved in tumor proliferation and metastasis.89

The proto-oncogenic CircRNA (circ-PRKCI) 
originates from the 3q26.2 amplicon, one of the 
most frequent genomic aberrations in cancer. 

Figure 4.  CircRNAs are involved in different steps of LC progression such as cell growth, migration, 
metastasis, drug resistance, and immune escape.
CircRNAs, circular RNAs.
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The increased expression of Circ-PRKCI in lung 
tissues, caused by amplification of 3q26.2 locus, 
induces tumorigenesis and progression of LC. 
Circ-PRKCI functions as a sponge for miR-545 
and miR-589 and annuls their suppression of pro-
tumorigenic transcription factor E2F7.90

In addition, circMAN2B2 is a product of 
MAN2B2 mRNA splicing and promotes FOXK1 
expression by sponging miR-1275 in LC cells, 
inducing LC progression.91 FLI1 exonic Circ 
RNA (FECR) is considered an oncogenic driver 
that helps tumor metastasis by modulating the 
miR584-ROCK1 pathway. Notably, FECR1 is 
contained in exosomes collected in the serum of 
LC patients. Exosomal FECR1 has been associ-
ated with poor tumor survival and clinical 
response to chemotherapy and is useful as a can-
cer prognostic factor and as a potential biomarker 
to track LC progression.91

Recently a novel CircRNA-103809/miR-377-3p/
GOT1 axis that contributes to cisplatin resistance 
in NSCLC in vitro and in vivo, has been identi-
fied. Targeting this pathway enhances cisplatin 
sensitivity in NSCLC, and provides new chances 
for improving the clinical management of 
NSCLC.92

Moreover, it has been observed that has-Cir-
cRNA-002178 can enhance PD-L1 expression in 
cancer cells inducing T-cell exhaustion via miR-
34 inhibition. Tumor cells grow and metastasize 
by escaping the immune system through different 
mechanisms, such as PD-L1 expression. PD-L1 
is a transmembrane protein, found abundantly 
expressed in cancer cells, and involved in tumor 
immune escape by interacting with PD-1.93 
CircRNA-002178 has been also detected in 
exosomes isolated from plasma of LC patients 
and may be useful as a biomarker for LC early 
diagnosis. CircRNA-002178 is delivered into 
CD8+T cells by exosomes to induce PD-1 
expression. This CircRNA may promote PD-L1/
PD-1 expression in LC.94

Furthermore, Circ-CPA4 is highly expressed in 
NSCLC relative to normal human bronchial epi-
thelial cells. Circ-CPA4 regulates cell growth, 
migration, stemness, and drug resistance in 
NSCLC cells and is involved in CD8+ T-cell 
inactivation, via the let-7/PD-L1 axis. Circ-CPA4 
also positively regulates PD-L1 contained in 
exosomes.95

Recently, it was demonstrated that CircRNA- 
102481 is overexpressed in exosomes collected 
from serum in EGFR-TKIs-resistant patients. 
The silencing of this CircRNA inhibits EGFR-
TKIs-resistant NSCLC cell proliferation and 
induces apoptosis. CircRNA-102481 overex-
pression could promote EGFR-TKIs-sensitive 
NSCLC cell proliferation and inhibit cell apop-
tosis, which suggests that CircRNA-102481 may 
contribute to EGFR-TKIs resistance in 
NSCLC.96 Another CircRNA highly expressed 
in NSCLC cells is circSATB2, which positively 
regulates fascin homolog 1, actin-bundling pro-
tein 1 (FSCN1) expression via miR-326. 
CircSATB2 is shuttled by exosomes promoting 
migration, proliferation, and invasion of NSCLC 
cells. It also induces aberrant proliferation of 
normal human bronchial epithelial cells. 
CircSATB2 is highly expressed in serum 
exosomes in LC patients.71

The specificity and stability of CircRNAs and the 
capacity of EVs to interact with target cells while 
remaining stable in the bloodstream, make 
CircRNAs shuttled by EVs very attractive as bio-
markers for LC early detection.97

Emerging evidence demonstrates that CircRNAs 
are aberrantly expressed in progressive degenera-
tive lung diseases such as chronic obstructive pul-
monary disease (COPD), in which cigarette 
smoke is considered a crucial risk factor. Recently, 
it was reported that circ-RBMS1 derived from the 
RBMS1 gene was higher in COPD patients, and 
cigarette smoke increased circ-RBMS1 expres-
sion in a dose-dependent manner. Circ-RBMS1 
directly targeted miR-197-3p and this miRNA 
targeted FBXO11. In vitro, the knockdown of 
circ-RBMS1 attenuated cigarette smoke extract 
induced inflammation and oxidative stress in epi-
thelial cells, via miR-197-3p/FBXO11 axis, sug-
gesting a new insight into the pathogenesis of 
cigarette smoke-induced COPD.98 Nowadays, 
the overlapping prevalence of COPD with LC is 
clear; chronic inflammation and reactive oxygen 
species can be considered the molecular links 
between COPD and LC.99 Future findings could 
demonstrate a key role for circRNAs in this 
progression.

Furthermore, it was reported that circ-FASRA in 
plasma has diagnostic value for NSCLC and can 
be used as a biomarker for the detection of non-
invasive NSCLC. With the development of 
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second-generation sequencing technology, 
screening CircRNA differentially expressed in 
body fluid samples of LC patients and healthy 
controls can be used to find a new biomarker for 
diagnosis and prognosis and as a potential thera-
peutic target.100

Small nuclear RNA
Several diseases such as cancer and chronic lung 
disease have been associated with snRNAs altera-
tions, acting on the cellular transcriptome. Each 
snRNA, such as U1, and U2 (the nomenclature 
arises from high uridine content), is complexed 
with small nuclear ribonucleoproteins to exert 
their functions.70 The snRNAs act in spliceosome 
complexes, recognizing 5′ and 3′intron/exon 
boundaries during splicing of introns from pre-
messenger RNA transcripts.101

snRNAs (<200 nucleotides) include a small 
group of non-polyadenylated, noncoding tran-
scripts that act in the nucleoplasm. snRNAs are 
divided into two classes, Sm and Lsm class RNAs, 
based on common sequence features and protein 
cofactors. Sm-class RNAs are characterized by a 
5′-trimethylguanosine cap, a 3′ stem-loop, and a 
Sm-site that consists of a binding site for a group 
of seven Sm proteins, forming a hetero-hepta-
meric ring structure. Lsm-class RNAs consist of a 
mono-methyl-phosphate cap and a 3′ stem-loop, 
ending in a stretch of uridines that form the bind-
ing site for a hetero-heptameric ring of Lsm pro-
teins. The principal components of Sm-class 
RNAs are U1, U2, U4, U4atac, U5, U7, U11, 
and U12, whereas the more studied Sm-class 
RNAs are U6 and U6atac.102

The high stability of snRNAs in biological samples 
makes them novel diagnostic biomarkers, sup-
porting prognostic or predictive indicators, and 
tools to monitor treatment in cancer patients.103

Fragments of U2 snRNA (called RNU2-1f) may 
be collected in sera of patients with pancreatic, 
colorectal, and ovarian cancers and cerebrospinal 
fluid of patients with primary central nervous sys-
tem lymphoma.104–106 RNU2-1f has also been 
found in the serum of patients with metastatic 
melanoma.107 High levels of this snRNA have 
been associated with tumor progression and after 
surgical removal of pancreatic and colorectal 

tumors, RNU2-1f levels have been shown to 
decrease.101 Furthermore, RNU2 is highly 
expressed in lung tissue and efficiently exported 
into circulation, elevated levels of RNU2-1f have 
been detected in the serum of LC patients. 
RNU2-1f may be a potential biomarker for LC 
patients.108 LC snRNAs can regulate alternative 
splicing to drive genetic and neoplastic disease 
and alter mRNA profile in TEPs. Platelets are 
‘educated’ by their tumor environment, contain-
ing a dynamic variety of RNA subsets, including 
snRNAs. RNA profiles of TEPs allow for the dis-
tinction between cancer patients and healthy con-
trols. For instance, RNA profiles of TEPs can be 
utilized to predict oncogenic status, such as MET 
or HER2 positivity, and reveal gene mutations in 
KRAS or EGFR. In addition, U1, U2, and U5 
are significantly downregulated in TEP of LC 
patients compared with healthy controls. TEP 
U1, U2, and U5 levels can be decreased in LC 
patients, and their downregulation has been cor-
related with LC progression. Moreover, TEP U1, 
U2, and U5 levels may be directly correlated with 
paired exosomes and TEP from treated patients 
but not from untreated patients. U1, and U5 but 
not U2 in platelets can be elevated by exosomes 
released from apoptotic cells.109

Small nucleolar RNA
snoRNAs are a group of intron-encoded ncRNAs 
mainly accumulated in nucleoli that consist of 
60–300 nucleotides. snoRNAs are grouped into 
two families called box C/D snoRNAs (SNORDs) 
and box H/ACA snoRNAs (SNORAs).110

snoRNAs are involved in post-transcriptional 
modification and maturation of ribosomal RNAs, 
snRNAs, and other RNAs.111 snoRNAs are 
involved in several physiological and pathological 
processes. In addition, snoRNAs have oncogenic 
or tumor-suppressive functions in different can-
cers activating invasion, metastasis, angiogenesis, 
and sustained proliferative signaling or increasing 
growth suppressors and cell death. Some reports 
suggest that snoRNAs are associated with p53 
regulation. P53 is a well-known tumor suppressor 
that responds to cellular stresses to regulate the 
expression of target genes involved in cell cycle 
arrest, apoptosis, and DNA repair.112 Recently, it 
was reported that snoRNAs are associated with 
p53 pathway. In particular, SnoRNA42 is 
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overexpressed in NSCLC and has an oncogenic 
role by affecting p53 expression.113

Moreover, SNORD78 is upregulated in LC and 
tumor-initiating cells of LC, suggesting that it 
might play a role in lung tumorigenesis. 
SNORD78 is also upregulated in cancer stem 
cells in NSCLC and is essential for the self-
renewal of cancer stem cells in NSCLC.114

It was reported that SNORD46 acts as an onco-
gene in LC. In vitro silencing of SNORD46 
leads to decreased cell viability, invasion, and 
migration inhibition.115 An in silico analysis of 
the expression and clinical relevance of SNORDs 
in human cancer indicates that SNORD46 is 
negatively correlated with forkhead box O3 
(FOXO3), a transcription factor that triggers 
apoptosis.116

snoRNAs can predict LC progression from the 
initial stages. The overexpression of SNORD28, 
SNORA21, SNORA47, SNORD66, 
SNORA78, and SNORA68 leads to worse 
overall survival in LC patients and these snoR-
NAs are differentially expressed between lung 
tumors of stage I and normal tissue.116 In 
NSCLC patients, SNORD33, SNORA42, 
SNORD66, and SNORD78 are overexpressed. 
Moreover, snoRNAs can be considered LC bio-
markers in combination with other miRNAs.117 
A panel of biomarkers for LC, comprising miR-
21, miR-32, and miR-210 and SNORD66, 
SNORD78, collected from sputum, was devel-
oped to be used as a potential tool for a non-
invasive LC diagnosis. It was reported that the 
combined use of miRNAs and snoRNAs dem-
onstrated higher sensitivity and specificity com-
pared with a single type of ncRNA biomarkers, 
offering a new approach for LC early 
detection.118

Interestingly, it was reported that five snoRNAs: 
SNORA14B, SNORA18, SNORA25, SNOR 
A74A, and SNORD22 were encapsulated in 
exosomes isolated from the serum of pancreatic 
cancer patients and conditioned medium of pan-
creatic cell lines. SNORA74A and SNORA25 are 
highly expressed in the early stages of pancreatic 
cancer in comparison with healthy controls.119 
These data indicate that exosomal snoRNAs are 

useful in the diagnosis of cancer; further studies 
are needed to confirm their role in LC.

Piwi-interacting RNAs
P-element-induced wimpy testis piRNAs are a 
new investigated class of small ncRNAs.120 piR-
NAs have been discovered in male gonadal cells, 
with the central role of protecting germinal cells 
from transposable elements (TEs), especially of 
viral origin, and are germline specific.121 piRNAs 
are small ncRNAs of 26–31 nt; they have a 
2′-O-methylation at the 3′ end as a distinctive and 
exclusive feature of all piRNAs. The precursors of 
piRNAs are single-stranded transcripts without 
secondary hairpin structures.122,123 These precur-
sors are generated from precise genomic locations 
with repetitive elements with a Dicer-independent 
process. The nascent piRNAs require further post-
transcriptional modifications to become mature 
piRNAs. The biogenesis of piRNAs includes two 
steps: a primary and secondary amplification cycle 
referred to as a ‘ping-pong cycle’ in which piRNAs 
are bound to piwi proteins.124 piRNA biogenesis is 
an adaptive process that silences active transpo-
sons with sequences complementary to piRNA 
cluster transcripts. piRNAs control and silence 
TEs to protect the genome since uncontrolled TE 
expression may lead to a loss of genome integ-
rity.125 Recently, it was reported that piRNAs are 
widely expressed in somatic cells and human can-
cer cells. About 30,000 piRNAs were found in the 
human genome and recent studies have suggested 
that piRNAs play a role in human cancer patho-
genesis. Cancer, stem, and germ cells share key 
biological characteristics such as the ability for self-
renewal and rapid proliferation. Although piRNAs 
were first described as important regulators in 
maintaining germline stem cells, it is conceivable 
that rapidly dividing cancer cells might adopt and 
utilize self-renewal machinery like germ cells. 
Recently, a growing number of studies have 
revealed the role of piRNAs in cancers, introduc-
ing a new biological concept in which mechanisms 
of piRNA-mediated gene regulation specific to 
germline cells also have oncogenic and tumor sup-
pressive roles.126

piRNAs are expressed in a tissue-specific manner 
in several human tissues, regulating important 
signaling pathways at the transcriptional or 
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post-transcriptional level. In malignant cells, 
piRNAs participate in the epigenetic regulation 
of DNA123 and are essential for maintaining can-
cer stemness.127 The aberrant expression of piR-
NAs and PIWI proteins in cancers might be used 
as new biomarkers and therapeutic targets for 
tumor diagnosis and treatment. It was suggested 
that piRNA-54265 can be used as a biomarker 
for the early detection and clinical monitoring of 
colorectal cancer. piRNA-36712 has been 
described as a novel tumor suppressor and might 
be a breast cancer prognostic predictor. In addi-
tion, piR-823 has been found in cancer cells and 
plasma, has a role in regulating tumor cell growth, 
and its expression fluctuates in many cancers, 
including gastric cancer and multiple mye-
loma.128 In colorectal cancer, piR-823 downreg-
ulation increases cell apoptosis by inducing 
transcription factor HSF1, an apoptosis activa-
tor, and inhibits cell proliferation.129 piRNA-
54265 is highly expressed in colorectal cancer 
tissue and serum; this piRNA activates STAT3 
signaling, thereby inducing cancer progres-
sion.130 In multiple myeloma, piRNA-823 silenc-
ing induces the expression of apoptosis-related 
genes, modulating DNA methylation.131 Another 
piRNA, piR-651, is downregulated in patients 
with Hodgkin lymphoma relative to healthy con-
trols. Furthermore, low levels of piR-651 corre-
late with poor prognosis in Hodgkin lymphoma 
patients.132 piRNAs are not easily degradable and 
can move across the plasma membrane. This fea-
ture suggests that piRNAs can easily be detected 
in body fluids, and recent studies have indicated 
that piRNAs, contained in EVs released by can-
cer cells, remain stable in body fluids. Peng and 
colleagues have demonstrated that piRNAs are 
contained in EVs from the urine of patients with 
prostate cancer. The expression of piR349843, 
piR382289, piR158533, and piR002468 in uri-
nary EVs is increased in prostate cancer patients 
relative to healthy controls.133

Emerging findings suggest that piRNAs may be 
considered potential biomarkers for LC diagnosis. 
It has been shown that piR-hsa-211106 can inhibit 
the progression of lung adenocarcinomas enhanc-
ing chemotherapy sensitivity, suggesting that piR-
hsa-211106 is a potential therapeutic target for 
LC.134 piRNA expression profiles of lung adeno-
carcinoma tissues and adjacent normal tissues 
have identified ten piRNAs overexpressed in 
tumor tissues. Among these, piR-hsa-26925 and 

piR-hsa-5444 are upregulated in EVs collected 
from the serum of patients with lung adenocarci-
noma.135 These findings indicate that LB can 
allow for the detection of both free piRNAs and 
piRNAs contained within EVs. Moreover, piR-
NAs may become therapeutic and diagnostic tools 
for various cancer types, including LC.

Conclusion and perspectives
LB is a promising diagnostic tool with several 
advantages over conventional invasive methods. 
LB is useful to identify prognostic, diagnostic, 
and predictive biomarkers in LC not only for its 
minimal invasiveness, which allows repeating the 
biopsy within the scope of tumor surveillance 
and yields genetic information about cancer, 
considering the tumor heterogeneity and the 
presence of subclones. LB represents a source of 
biomarkers including EVs, ctDNA, CTC, and 
cf-NAs such as ncRNAs. EVs appear to be ideal 
for LB thanks to the stability of their membrane 
and their ability to travel in body fluids, at long 
distances.

Several ncRNAs have been detected in biofluids. 
The origin of these molecules might be passively 
released by dead cells or active secretion via EVs 
or vesicle-free RNA-binding protein-dependent 
pathways. Several studies focus on ncRNAs con-
tained in EVs for their high stability, derived from 
the packaging in a membranous structure that 
protects them from the degrading effects of 
RNases. Recent findings suggest that ncRNAs are 
differentially expressed between disease patients 
and healthy individuals, supporting their use as 
potential biomarkers for diagnostic tests. ncRNAs 
provide useful information regarding tumor bur-
den, treatment responsiveness, and malignant 
progression.136 The development and diffusion of 
high-throughput technologies such as NGS and 
ddPCR have boosted LB as a potential diagnostic 
tool in cancer.

Emerging ncRNA can be useful for their diagnos-
tic and prognostic potential (Figure 5). The 
structural stability of CircRNAs may have inter-
esting applications for designing drugs that can be 
delivered free or encapsulated in EVs.137 In addi-
tion, EVs containing CircRNAs are internalized 
by recipient cells, where they affect post-tran-
scriptional regulation of gene expression and can 
be exploited for their therapeutic potential.138 
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Some CircRNAs are found to be significantly 
associated with LC. Many clinical results have 
demonstrated that CircRNAs can be considered 
potential biomarkers. Nevertheless, the sample 
quantities of these studies are limited, and the 
precise regulatory mechanism of CircRNAs in 
LC should be better defined.139

The aberrant expression of piRNAs has been 
associated with cancer progression and metastasis 
in different cancer types, suggesting their role in 
cancers as oncogenes or tumor suppressors. 
Although they can be detected in the blood of 
cancer patients, few reports have been published 
about piRNAs contained in EVs.140

Although snoRNAs localize primarily to the 
nucleus and have previously been considered 
housekeeping genes, accumulating evidence indi-
cates that snoRNAs have oncogenic roles. Since 
snoRNAs are abundant and easily detectable in 
cancers and blood and are functionally relevant in 
oncogenesis, they may become an important tar-
get for cancer therapy.141 Moreover, snoRNAs 
contained in EVs can be considered novel bio-
markers for LC diagnosis.142 snoRNAs might 
become pivotal elements to improve the knowl-
edge of LC and relevant multimodal tools to ame-
liorate cancer patient management from their 
diagnosis to their treatment.143

While the evaluation of actionable mutations in 
LB has a confirmed clinical value, the use of 

epigenetic alterations, with few exceptions, has 
not reached clinical practice yet. Among the dif-
ferent fields where epigenetic factors may play a 
role as biomarkers, screening and diagnosis are 
the areas closer to the clinic.144

Since the functions of many ncRNAs are not 
completely known and EVs shuttle a myriad of 
biomolecules, EV language remains difficult to 
decode. Understanding the complex networks of 
interactions coordinated by ncRNAs would offer 
a unique chance to design better therapeutic 
options. Further studies are needed to confirm 
the potential role of ncRNAs freely circulating in 
body fluids or contained in EVs as biomarkers in 
the field of precision oncology.

Currently, few clinical trials (precisely 13) on EVs 
in LC management have been proposed (www.
clinicaltrials.gov), but the number of clinical stud-
ies on EV-ncRNAs (as reported in Table 1) in this 
field growing exponentially.

The combined analysis of the different compo-
nents of LB, including the ncRNAs contained in 
EVs, may potentially help to comprehend the 
dynamics of molecular alterations and support 
the clinical decisions in LC management. Overall, 
while this field may seem to be in infancy, the evi-
dence reported in this review indicates the poten-
tial of ncRNAs as rising stars biomarkers and 
therapeutic targets for precision oncological treat-
ments in LC patients.

Figure 5.  ncRNAs as diagnosis and prognostic biomarkers in LC.
ncRNAs, noncoding RNAs.
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