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Abstract 

EEG plays an integral part in the diagnosis and management of children with genetic epilepsies. 

Nevertheless, how quantitative EEG features differ between genetic epilepsies and neurological 

outcomes remains largely unknown. Here, we aimed to identify quantitative EEG biomarkers in 

children with epilepsy and a genetic diagnosis in STXBP1, SCN1A, or SYNGAP1, and to assess 

how quantitative EEG features associate with neurological outcomes in genetic epilepsies more 

broadly. 

We analyzed individuals with pathogenic variants in STXBP1 (95 EEGs, n=20), SCN1A (154 

EEGs, n=68), and SYNGAP1 (46 EEGs, n=21) and a control cohort of individuals without epilepsy 

or known cerebral disease (847 EEGs, n=806). After removing artifacts and epochs with excess 

noise or altered state from EEGs, we extracted spectral features. We validated our preprocessing 

pipeline by comparing automatically-detected posterior dominant rhythm (PDR) to annotations 

from clinical EEG reports. Next, as a coarse measure of pathological slowing, we compared the 

alpha-delta bandpower ratio between controls and the different genetic epilepsies. We then trained 

random forest models to predict a diagnosis of STXBP1, SCN1A, and SYNGAP1. Finally, to 

understand how EEG features vary with neurological outcomes, we trained random forest models 

to predict seizure frequency and motor function. 

There was strong agreement between the automatically-calculated PDR and clinical EEG reports 

(R2=0.75). Individuals with STXBP1-related epilepsy have a significantly lower alpha-delta ratio 

than controls (P<0.001) across all age groups. Additionally, individuals with a missense variant 

in STXBP1 have a significantly lower alpha-delta ratio than those with a protein-truncating variant 

in toddlers (P<0.001), children (P=0.02), and adults (P<0.001). Models accurately predicted a 
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diagnosis of STXBP1 (AUC=0.91), SYNGAP1 (AUC=0.82), and SCN1A (AUC=0.86) against 

controls and from each other in a three-class model (accuracy=0.74). From these models, we 

isolated highly correlated biomarkers for these respective genetic disorders, including alpha-theta 

ratio in frontal, occipital, and parietal electrodes with STXBP1, SYNGAP1, and SCN1A, 

respectively. Models were unable to predict seizure frequency (AUC=0.53). Random forest 

models predicted motor scores significantly better than age-based null models (P<0.001), 

suggesting spectral features contain information pertinent to gross motor function. 

In summary, we demonstrate that STXBP1-, SYNGAP1-, and SCN1A-related epilepsies have 

distinct quantitative EEG signatures. Furthermore, EEG spectral features are predictive of some 

functional outcome measures in patients with genetic epilepsies. Large-scale retrospective 

quantitative analysis of clinical EEG has the potential to discover novel biomarkers and to quantify 

and track individuals’ disease progression across development. 
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Introduction 

EEG is an integral part of routine, standard care in children with a known or presumed genetic 

epilepsy. EEG is typically analyzed visually through manual review and annotation by clinicians. 

This qualitative process is imperfect, with both low inter- and intra-rater reliability, leading to 

worse outcomes. For example, individuals without epilepsy have a 20-30% chance of misdiagnosis 

of epilepsy, and there is 50% interrater reliability in identifying epileptiform discharges from 

EEG.1-4 Furthermore, visual review of EEG limits our sensitivity to detect subtle alterations that 

may serve as biomarkers of epilepsy diagnoses or disease severity. 

Many studies have demonstrated the potential of quantitative biomarkers extracted from both 

clinical and research EEG to identify, predict, and quantify severity in neurological and psychiatric 

conditions such as autism spectrum disorder (ASD), attention deficit/hyperactive disorder 

(ADHD), and Alzheimer’s disease.5-8 While quantitative analysis of intercranial EEG (iEEG) in 

presurgical epilepsy patients has been a prominent segment of epilepsy research for over a decade, 

scalp EEG has received considerably less attention.9 This is in part due to the fact that scalp EEG 

is significantly more prone to artifacts and noise, resulting in a lower signal to noise ratio. More 

recent, modern signal processing techniques however can quickly and effectively remove artifacts, 

and machine learning approaches can identify underlying signals from large samples of noisy 

data.10,11 

Identifying quantitative biomarkers of disease severity would be particularly impactful in genetic 

epilepsies. Many genetic epilepsies, particularly developmental epileptic encephalopathies (DEE), 

are devastating lifelong diagnoses resulting in seizures as well as impairments in cognition, motor, 

speech, and social skills.12,13 Many clinical trials to treat these disorders are underway or in 
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preparation. However, quantifying the severity and tracking the progression of these disorders is 

often difficult or unfeasible with traditional methods.14,15 Furthermore, many of the tests are long, 

labor intensive, and require highly specialized training to perform. Finding electrophysiological 

correlates to these comorbidities and their severities could aid in diagnostics and inform the 

response to treatment to existing and novel therapies. 

Here, we hypothesized that quantitative EEG features differ between genetic epilepsies and 

correlate with functional outcomes. To test this hypothesis, we developed a pipeline to extract 

quantitative spectral features from a large dataset of pediatric clinical scalp EEG. We validated 

our pipeline by comparing automatically-measured posterior dominant rhythm (PDR) against 

clinical annotations. We then compared quantitative spectral features between patients with 

genetic epilepsy diagnoses and patients without epilepsy or cerebral disease. Finally, we developed 

machine learning models using spectral features to predict seizure frequency and motor 

development. Our findings suggest that quantitative EEG measures extracted from standard 

clinical EEG can be reliably analyzed at scale to identify electrophysiological biomarkers for 

disease populations and some clinically relevant outcome measures, tracking disease progression 

across development. 
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Materials and methods  

Participant recruitment 

We conducted a retrospective cohort study of patients treated within the Children’s Hospital of 

Philadelphia (CHOP) Care Network, consisting of a main hospital and 50 satellite clinics. We 

studied three separate cohorts of patients, described below: a non-epilepsy control cohort, a gene-

specific epilepsy cohort, and a broader cohort of individuals with known or presumed genetic 

epilepsy. 

For all individuals in our STXBP1, SYNGAP1, SCN1A, seizure frequency, and our primary gross 

generalize motor function assessment (GMFM) cohorts, informed consent for participation in this 

study was obtained from parents of all probands in agreement with the Declaration of Helsinki. 

For all individuals in our control cohort and a subset of individuals in our expanded GMFM cohort, 

the institutional review board (IRB) waved the requirement for consent. All data was collected per 

protocol with local approval from the IRB. 

Control cohort 

We first aimed to identify patients without epilepsy or other cerebral disease which could result in 

electrographic abnormalities, serving as a control cohort with anticipated normal EEGs. We 

identified patients seen at CHOP with EEGs reviewed by a clinician and marked as normal. From 

all individuals with a clinically normal EEG, we extracted every ICD9/10 diagnosis code available 

up until September 25, 2024. We composed a list with three epileptologists of all potential ICD9/10 

codes which could affect cerebral function or result in an abnormal EEG (for list of ICD9/10 codes 

restrictions, see Supplementary Table 1). We then filtered for controls with no history before or 
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after their EEG recording of any abnormal diagnosis codes from our composed list. Individuals 

had to have at least one years of available medical record data following their EEG. 

Genetic epilepsy cohorts 

Our analyses focused on three specific genetic epilepsy disorders: STXBP1, SYNGAP1, and 

SCN1A. The CHOP epilepsy center specializes in these disorders and thus a greater number of 

individuals and their EEGs were accessible for a more comprehensive analysis. Furthermore, these 

disorders differ greatly in presentations and outcomes, making them ideal candidates for 

investigation into the capabilities of quantitative EEG analysis. We also collected a broader cohort 

of individuals with a known or presumed genetic epilepsy and an EEG to investigate 

electrophysiological biomarkers of seizure control and gross motor function. 

All individuals from our genetic epilepsy cohorts were consented and enrolled in the Epilepsy 

Genetics Research Project (EGRP) at CHOP, which has been enrolling individuals with known or 

presumed genetic epilepsy since 2014. All genetic diagnoses were reviewed in a clinical and 

research setting and, if necessary, reclassified according to the criteria of the American College of 

Medical Genetics and Genomics (ACMG). 

In relevant analyses, EEG recordings were placed in age bins based on the age of the individual at 

the time of the recording. Age bins included: infant (0.25-1 year of age), toddler (1-4 years of age), 

child (4-10 years of age), and adult (10-21 years of age). Bins were determined by balancing trade-

offs between typical EEG age bins and limited sample sizes in our gene-specific cohorts. Similarly, 

EEGs below three months of age were removed based on common practice of EEG analyses when 

examining infants and limited sampling in this age range.16 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.09.24315105doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.09.24315105
http://creativecommons.org/licenses/by-nd/4.0/


EEG collection and preprocessing 

We included any clinical EEGs from the above cohorts recorded in the context of a non-urgent 

visit, which included outpatient <60 minute EEGs, outpatient 4-hour EEGs, inpatient longterm 

monitoring (LTM) EEGs, and longterm ambulatory home monitoring EEGs (Supplementary 

Table 2). All clinical notes relating to inpatient continuous monitoring in the gene-specific cohorts 

and all scheduled intensive care unit (ICU) recordings in other cohorts were reviewed to ensure 

they were not miscoded in the medical record as non-urgent and that the patient was not in an 

altered state leading up to or at the time of the EEG recording. If deemed otherwise, recordings 

were removed. For multiday recordings, only the first day was taken. 

All EEGs were recorded using a standard 10-20 system of electrode placement with a varying 

number of additional EMG, EOG, and EKG electrodes. The machine reference was an electrode 

placed on the mastoid between electrodes ‘Cz’ and ‘Fz’. All scans were cropped to a maximum of 

the first 4 hours to reduce the potential accumulation of artifacts. To ensure consistent sampling 

rate across EEG recordings, we downsampled all EEGs to 200Hz. Prior to downsampling, we 

performed a 60Hz harmonic filter and a 2nd order infinite impulse response (IRR) filter applied at 

95Hz for anti-aliasing. 

To remove artifacts such as ocular movement, blinks, cardiac noise, and muscle artifact, we applied 

an automated Independent Component Analysis (ICA) pipeline through the Python EEG/MEG 

processing package MNE-ICALabel, following filtering criteria similar to past work.17,18 All scans 

then had a 0.5-70Hz 2nd order bandpass filter applied. We then applied a Laplacian montage. We 

followed previously published methods to identify and remove artifact-heavy segments.19 We also 

manually reviewed EEG annotations from our control and gene-specific cohort and developed a 

search algorithm to identify and remove segments of EEG indicating sleep, photic stimulation, 
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induced hyperventilation, and seizures based on clinician and technician annotations. Only 

recordings with at least 15 clean four-second epochs (one minute of data) following all filters were 

used in subsequent analyses (preprocessing described in detail in Supplementary material).  

Spectral feature extraction 

To estimate EEG bandpower, we applied Welch’s method to each EEG electrode across all clean 

epochs. We extracted delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), and beta (13-30Hz) 

bandpowers. We then calculated the relative power of these bands and the alpha-delta, beta-delta, 

alpha-theta, and beta-theta power ratios. The median of these features was found across epochs in 

each electrode. We then measured the median across all electrodes as well as across spatial 

subgroups: frontal (defined as electrodes ‘Fp1’, ‘Fp2’, ‘F3’, ‘F4’, ‘F7’, ‘F8’, ‘Fz’), temporal (‘T3’, 

‘T4’, ‘T5’, ‘T6’), occipital (‘O1’, ‘O2’), parietal (‘P3’, ‘P4’, ‘Pz’), and central (‘C3’, ‘C4’, ‘Cz’).  

Automated posterior dominant rhythm detection 

To validate our automated EEG processing pipeline, we compared an automatically-detected 

posterior dominant rhythm (PDR) to that annotated in the clinical report. Our automated PDR 

calculation followed previously described methods, optimizing peak detection parameters to a 

subset of our data with a resolution of 0.25Hz (see Supplemental methods).20 

We hypothesized that the automatically-detected PDR could more precisely capture biologically-

relevant features pertaining to neural development than the clinician-annotated PDR. To test this, 

we compared the ability of the automatically-detected PDR and the clinician-annotated PDR to 

predict an individual’s age at the time of the scan. Given that PDR has an approximately 

logarithmic relationship with age from infancy to adulthood (Supplemental Fig. 2), we fit a 

generalized additive model (GAM) fit using a gamma distribution with a logarithmic link function. 
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We performed 1000 permutations with an 80/20 training testing split, evaluating mean absolute 

error (MAE) and root mean squared error (RMSE) each time. 

STXBP1, SYNGAP1, and SCN1A random forest models 

We hypothesized that EEG spectral features would differ between patients with genetic epilepsies 

and non-epilepsy control patients. We used spatial spectral features including relative bandpowers 

and power ratios to train random forest models to predict if an EEG originated from a control or 

an individual with a specific genetic disorder. Including age, this resulted in 41 features. We 

developed models for STXBP1, SYNGAP1, and SCN1A, identifying age-matched controls for each 

individual for a 1:1 target-control ratio (see Supplemental methods). To test to what extent EEG 

changes in the genetic epilepsies were diffuse or focal, we also compared our models to those that 

contained no spatial information. In other words, spectral features were averaged across all 

electrodes rather than separately by region, resulting in 9 features including age. Performance was 

evaluated using leave-one-out cross validation (LOOCV).  

An additional three-class random forest model was trained to distinguish a diagnosis of STXBP1, 

SYNGAP1, and SCN1A from each other. To correct for data imbalance, we performed 1000 

bootstraps with an 80/20 training-testing split, resampling each time from STXBP1 and SCN1A 

cohorts to match the size of the smallest cohort, SYNGAP1. Similar to past work, feature 

importance from all models was determined by calculating the Gini index across LOOCVs.21 

EEG models to predict seizure frequency and motor development 

We also hypothesized that spectral features differ according to clinical outcomes in individuals 

with a known or presumed genetic epilepsy. As an estimate of seizure outcomes, we obtained 

seizure frequencies from outpatient clinical notes. Seizure frequency annotations in CHOP notes 
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are binned into the standardized categories: ‘>1 per day’, ‘>1 per week’, ‘>1 per month’, ‘>1 per 

6 months’, >1 per 1 year’, ‘1-2 years ago’, and ‘>2 years ago’. To time-align seizure frequencies 

to EEGs, we required respective clinical notes to have an accompanying non-urgent EEG between 

1 month prior to two weeks after the note, reasoning that seizure frequency can change rapidly and 

medication changes are more likely following a visit. To simplify our model, we split seizure 

frequency categories into two categories, “severe” (poor seizure control) consisting of the 

categories ‘>1 per day’ and ‘>1 per week’ and “moderate” (moderate seizure control) consisting 

of all other categories. We tested other combinations in our Supplementary analyses. Here, we 

also employed age-matching resulting in a 1:1 “severe” to “moderate” outcome ratio followed by 

LOOCV. 

As an estimate of functional outcomes, we obtained clinically-documented gross motor function 

measure (GMFM) scores from individuals with a known or presumed genetic epilepsy. GMFM 

scores are a standard diagnostic test to quantify and track motor function in children.22-24 We 

utilized only GMFM scores with an accompanying EEG collected close in time, scaling for age as 

motor development is non-linear (see Supplementary Table 3). Like our PDR analysis, we trained 

random forest models with spatial spectral features and null models with just age as a feature, 

performing 1,000 bootstraps with an 80/20 training-testing split, evaluating MAE and RMSE each 

bootstrap. To test if our findings were specific to genetic epilepsies, we performed the same 

analyses on a broader cohort of any individual with a clinical EEG and accompanying GMFM 

under the same constraints. 
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Statistical analysis 

Nonparametric multi-group comparisons were assessed with a Kruskal Wallis followed by a Dunn 

test with a Benjamini-Hochberg correction for multiple testing. Statistical difference across 

childhood between PTV and missense alpha-delta ratios in individuals with a STXBP1 variant was 

evaluated by fitting two generalized additive mixed models (GAMM) with individuals as random 

intercepts, but one with alpha-delta ratio as a fixed effect and one without it. Model comparison 

was performed via the R function KRmodcomp which approximates an F-test based on Kenward-

Roger.25 Mann-Whitney U tests determined differences between variants within age groups. 

Performance of random forest models was determined primarily through receive operator curves 

(ROC) and area under the curve (AUC). Statistical difference between ROCs was determined with 

a DeLong's test. Similar to previous work, when evaluating performance of models with scalar 

outcomes (PDR and GMFM) against a null model, we calculated the difference in RMSE and 

MAE between models each bootstrap, then performed a one-sided t-test comparing RMSE and 

MAE differences against 0.26 In scatterplots, a 95% confidence interval was calculated using the 

R function geom_smooth() default locally estimated scatterplot smoothing (LOESS) regression 

model, where standard error of the fit is used to estimate the interval around predicted values. All 

statistical analyses were performed using the R Statistical Framework.27 

Data availability 

De-identified power spectral data, outcome measures, and code for primary analyses are available 

at: https://github.com/galerp/scalp_EEG_DEE. Raw EEG data in a de-identified format will be 

made available by request to the corresponding author. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.09.24315105doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.09.24315105
http://creativecommons.org/licenses/by-nd/4.0/


Results 

Real-world EEG can be retrieved from the medical record for comprehensive 

analysis 

Clinical EEG is an integral part of routine clinical care for children with known or suspected 

epilepsy and other neurological disorders. Nevertheless, clinical EEG data is often difficult to 

extract in large numbers from hospital data warehouses and convert to a readable file format due 

to proprietary software. We developed an automated pipeline to overcome these hurdles, retrieving 

a total of 1957 EEGs from 1585 individuals ages 0.03-38.68 years (median 7.23 years, IQR 2.61-

12.37 years). The focus of this study was on three genetic epilepsy disorders: STXBP1, SCN1A, 

and SYNGAP1. We extracted 95 EEGs from 20 individuals with STXBP1 ages 0.16-17.77 years 

(median 2.36 years), 154 EEGs from 68 individuals with SCN1A ages 0.30-24.62 years (median 

4.35 years), and 46 EEGs from 21 individuals with SYNGAP1 ages 1.19-27.47 years (median 4.07 

years; Table 1). As seen in Fig. 1A, there were some marked differences in age of recordings 

between the populations particularly at younger ages, validating ages of seizure onset expected in 

these disorders.21,28-30 

A significant obstacle to isolating biomarkers that correlate with neurological abnormalities is the 

identification of a large cohort of age-matched healthy controls. Leveraging the EMR, we 

implemented a strict set of criteria to identity a control cohort consisting of 847 EEGs from 806 

individuals ages 0.03-38.68 years (median 6.02 years), densely sampling ages across childhood 

and with a median of 3.98 years (IQR 2.92-5.05 years) follow-up in the medical record after each 

EEG. We also obtained EEGs from two additional cohorts with standardized clinical measures: 

400 EEG (range 0.64-22.18 years of age at recording, median 7.07 years) from 340 individuals 
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with GMFM scores and 440 EEG (range 1.59-20.03 years of age at recording, median 10.33 years) 

from 354 individuals with a known or presumed genetic epilepsy and a seizure frequency 

annotation (Table 1). Our primary analysis of the GMFM cohort utilized 77 individuals with a 

clinically known or presumed genetic epilepsy, consisting of 91 EEGs (range 1.04-20.04 years of 

age at recording, median 4.08 years). 

QEEG can provide higher precision than clinical visual review in detecting 

electrographic correlates of brain maturation 

To assess the accuracy of our pipeline, we tested it against known patterns of spectral features and 

EEG biomarkers that develop across childhood. We see clear differences in the power spectral 

density across age groups (Fig. 1C ungrouped; Fig. 2A grouped). When focusing on the occipital 

electrodes, we see the development of the posterior dominant rhythm (PDR) as individuals age 

into adulthood as demonstrated by the small bump in the alpha band (Fig. 2A).  

To further validate our pipeline, we retrieved clinical annotations from 781 EEG reports from 

respective control EEG from 746 individuals greater than 3 months of age. We could automatically 

identify a PDR in 737 EEGs (711 individuals; range 0.26-19.27 years, median=7.30 years) with 

an accompanying clinician annotated PDR. We could not identify a PDR in 31 EEGs with our 

pipeline. We found that our annotations were highly correlated with those of clinicians (R2=0.75, 

P<0.001; Fig. 2B). While clinician annotated PDR typically has a resolution between 0.5-1Hz, 

our pipeline had a resolution of 0.25Hz demonstrating the potential of small resolution 

enhancement with minimal computational cost. 

Next we examined whether our extracted PDR provided any additional biologically relevant 

information beyond what can be gleaned from visual review. We trained and tested logarithmic 
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GAM models to predict age from clinician annotated and our automated PDR (Fig. 2C). We found 

that our models consistently outperformed models trained from clinician annotations, having both 

a lower mean absolute error (MAE; median=2.38 years) than clinicians (median=2.76 years; 

P<0.001) and lower root mean squared error (RMSE; median=2.76 years) than clinicians 

(median=3.18; P<0.001) across permutations (Fig. 2C inset). Taken together, these results suggest 

that our automated pipeline has high agreement with clinicians for common EEG features and that 

it may exceed clinician precision at estimating electrographic correlates of brain maturation. 

Alpha-delta ratio correlates with severity in some genetic epilepsy disorders 

The alpha-delta ratio is a commonly-investigated quantitative EEG feature in neurological 

disorders as a rough estimate of the ratio of faster-to-slower activity in the brain that has previously 

been used to identify sleep.19,31,32 We hypothesized that the alpha-delta ratio would be reduced in 

patients with genetic epilepsies relative to neurologically healthy controls. When examining this 

feature across age groups and genes in our primary cohort, after multiple testing correction we find 

that individuals with STXBP1 exhibit a significantly lower alpha-delta ratio than controls across 

all age ranges (P<0.001, median Cohen's d=−0.95), SCN1A in infancy (P<0.001, Cohen’s 

d=−1.82), childhood (P=0.047, Cohen’s d=−0.61), and adulthood (P=0.013, Cohen’s d=−1.10) 

and SYNGAP1 in toddlers (P=3.8x10-3, Cohen’s d=−0.68; Fig. 3A). Additionally, SCN1A 

demonstrated significantly lower alpha-delta ratio compared to controls in toddlers (P=0.013, 

Cohen’s d=−0.43) and children (P=0.042, Cohen’s d=−0.23), and SYNGAP1 displayed lower 

alpha-delta ratio than controls in children (P=0.033, Cohen’s d=−0.62). 

Alpha-delta ratios also varied within gene groups. We hypothesized that this could be due in part 

to variant type, which can correlate with disease outcomes. As a secondary analysis, we compared 
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alpha-delta ratios between individuals with missense variants in STXBP1 to those with protein-

truncated variants (PTV; Fig. 3B). A generalized additive mixed effect model (GAMM) fit with 

the inclusion of this variant type variable provided a significantly higher fit to the data than those 

without it (P=0.017).25 Examining these results more closely, we find individuals with missense 

variants in STXBP1 had a significantly lower alpha-delta ratio than those with PTVs across all age 

groups except infants (toddler, child, and adult: P<0.001, P=0.012, P<0.001). Overall, these 

findings support that, relative to neurologically healthy controls, the alpha-delta ratio is reduced in 

STXBP1, and in some age groups in SCN1A and SYNGAP1. 

Spectral features of EEG can distinguish between STXBP1, SYNGAP1 and 

SCN1A and controls with high accuracy 

We next hypothesized that different genetic epilepsies demonstrate distinct patterns of spectral 

abnormalities that can be probed in a multi-feature machine learning model. We used the median 

spectral features relative delta, theta, alpha, and beta and the power ratios alpha-delta, beta-delta, 

alpha-theta, and beta-theta in five pre-defined regions of the scalp. We applied these features along 

with age of the individual at the time of the EEG to train random forest models to make binary 

predictions between a particular genetic epilepsy disorder (STXBP1, SYNGAP1, and SCN1A) and 

age-matched controls.  

STXBP1 random forest models outperformed all other gene prediction models, achieving an AUC 

of 0.91, F1 of 0.81, precision of 0.86, and recall of 0.76 (Fig. 4A). The most informative features 

originated predominantly from frontal electrodes (Fig. 4B). We could predict SYNGAP1 with an 

AUC of 0.82 and F1 of 0.71, precision of 0.71, and recall of 0.71 (Fig. 4C), and SCN1A from 

controls with an AUC of 0.86, F1 of 0.78, precision of 0.78, and recall of 0.77. The two most 
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important features localized to occipital electrodes in SYNGAP1 models and in parietal electrodes 

in SCN1A models (top features in Supplementary Fig. 5-7; feature correlations in 

Supplementary Fig. 8-11). All non-spatial models displayed a significant drop in performance 

(STXBP1 P<0.001, SYNGAP1 P=4.0x10-3, SCN1A P<0.001) as calculated by the DeLong test, 

suggesting the importance of spatial information in distinguishing genetic epilepsies. 

To compare genes to each other, we trained a three-class random forest model. When examining 

binary performance, one-vs-all, it achieved high performance with STXBP1 achieving a median 

AUC of 0.92 (IQR 0.88-0.96), SYNGAP1 a median AUC of 0.91 (IQR 0.86-0.96), and SCN1A a 

median AUC of 0.88 (IQR 0.82-0.93). Models with just age as a feature had a lower performance: 

STXBP1 with a median AUC of 0.73 (IQR 0.65-0.80), SYNGAP1 a median AUC of 0.82 (IQR 

0.76-0.88), and SCN1A a median AUC of 0.67 (IQR 0.60-0.76); suggesting age differences 

between genetic epilepsies do not fully explain model performance. The model achieved strong 

three-way classification performance with median F1s of 0.78, 0.75, and 0.70 in STXBP1, 

SYNGAP1, and SCN1A respectively. In summary these models demonstrate that spectral features 

can accurately distinguish individuals with STXBP1, SCN1A, and SYNGAP1 from controls and, to 

a lesser degree, each other across development. Furthermore, from these models we can extract 

the ensemble of biomarkers that aid in this discrimination and roughly isolate spatial importance 

of different brain regions. 

Seizure severity displays no spectral EEG correlates 

We hypothesized that spectral features may also contain information correlated with seizure 

control in individuals with a known or presumed genetic epilepsy. We extracted 440 clinical 

documentations of seizure frequency collected across 354 individuals each with an accompanying 
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EEG. Five individuals across seven EEGs were removed due to insufficient EEG epochs after 

filters. Scores were split into the binary categories “severe” and “moderate” (Fig. 5A). As age 

alone provided moderate predictive ability, we performed age matching which also balanced 

classes. We found models performed no better than chance (AUC=0.53, Fig. 5B). While 

alterations in the binary split of the categories resulted in small boosts in performance 

(Supplementary Fig. 1), overall, these results suggest spectral features do not contain correlates 

to seizure control. 

EEG spectral features contain correlates with abnormal motor function 

We collected 91 complete GMFM scores (median score=44.7; IQR 23.90-63.00), a standardized 

measure of gross motor development, from 77 individuals (median=4.19 years of age at time of 

GMFM, IQR 2.77-9.32 years) with a known or presumed genetic epilepsy. One EEG-GMFM pair 

was removed due to insufficient epochs in their EEGs after filters. As demonstrated by the red 

dashed line in Fig. 5C, in individuals with typical motor development, GMFM scores progresses 

exponentially before plateauing and reaching a perfect score of 100 at around 5 years of age.23,24 

Again, we tested a series of machine learning models using the same set of spatial spectral features 

along with age at the time of GMFM assessment. We compared these against a null model with 

only age as a feature. Across bootstraps, random forest models with age and spectral features 

consistently outperformed null models achieving a significantly lower MAE (P<0.001; median 

EEG model MAE=16.9; median difference=2.6) and lower RMSE (P<0.001; median 

RMSE=20.4; median difference=3.0; Fig. 5D).  

To test whether these findings were specific to individuals with a genetic epilepsy, we expanded 

the cohort to any individual with a GMFM and EEG at a similar point in time, resulting in 340 
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individuals across 400 unique GMFM-EEG data pairs recorded across 0.64 to 22.18 years of age 

(median=7.10 years, IQR 3.71-10.95 years), removing 6 GMFM-EEG prior to analysis due to 

excess noise. Results improved relative to null models with the larger, broader cohort in both 

RMSE (P<0.001; median EEG model RMSE=20.4; median difference=5.8; Fig. 5D) and MAE 

(P<0.001; median MAE=17.1; median difference=4.3), with age becoming a worse predictor of 

motor function. We found alpha-delta ratio in the central and occipital electrodes to be consistently 

among the most important features across both models (Fig. 5E and 5F).  

In summary, this consistently significant superior performance suggests that EEG contains some 

electrographic correlates of motor development, and this phenomenon is not restricted to 

individuals with a genetic epilepsy. 
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Discussion 

We analyzed the capability of an automated quantitative scalp EEG pipeline to identify known and 

novel biomarkers in a heterogenous dataset of 1957 EEGs from 1585 individuals 0.03-38.68 years 

of age. Scalp EEG is an integral part of routine clinical care in children with a genetic epilepsy. 

Nevertheless, analysis is largely manual and prone to error. The depth of information held within 

the electrophysiological recordings remains largely unexplored despite great technological 

advances, particularly in the fields of AI and machine learning.11 Much of the past research of 

quantitative EEG in childhood disorders often struggles to obtain a sufficient sample size, 

particularly in control populations. Consequently, the age dimension is often ignored or treated 

linearly. Here, we demonstrate the ability of an automated quantitative EEG pipeline to identify 

EEG signatures of STXBP1-, SYNGAP1-, and SCN1A-related epilepsy disorders and to predict 

neurological outcomes. 

A quantitative EEG processing pipeline identifies expected EEG signatures of 

normal brain maturation 

We demonstrate the ability to leverage the EMR to isolate a control population with normal 

electrophysiology. While all EEGs were manually reviewed and marked normal by a clinician, 

there still may be underlying abnormalities. By collecting all available diagnosis codes from 

controls and requiring at least one year of patient follow-up after the EEG recording, we can 

minimize the potential of individuals with electrophysiological abnormalities. Supporting this 

claim, we find the most common ICD10 code in this cohort is “Transient alteration of awareness” 

(R404; n=385) and “Unspecified abnormal involuntary movements” (R259; n=271) is the seventh 
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most common, suggesting an EEG was performed to rule-out seizure as the etiology of a transient 

event or other related abnormality. 

To provide further validation of this cohort and our automated methodology, we compared the 

PDR extracted from our automated pipeline to that gathered through manual review by clinicians. 

We closely match clinician annotations with an R2 of 0.75 (P<0.001). We also found that a model 

incorporating quantitative PDR estimates predicted the age of the individual with significantly 

higher accuracy than one incorporating clinician estimates. This may reflect higher precision and 

resolution in automated PDR estimates and suggests that even minor differences in PDR reflect 

actual changes in brain maturation. It remains unknown whether subtle deviations in the PDR 

below the threshold of clinician annotations are associated with neurological disease. Taken 

together, this provides evidence of the reliability and robustness of our pipeline and the potential 

benefit such automated techniques have in the clinic for even routine measures such as PDR.  

Alpha-delta ratio differentiates patients with genetic epilepsies from controls  

The alpha-delta ratio has been repeatedly implicated as an estimate slowing in the brain and 

impaired cognition. It has been shown to be statistically different in several neurological conditions 

such as Alzheimer’s disease, traumatic brain injury outcomes, ischaemic stroke, and CDKL5 

deficiency disorder and an estimate of sleep.19,31-34 We hypothesized that alpha-delta ratio may be 

diminished in certain genetic epilepsy populations, particularly those with more severe 

developmental comorbidities. Here, we demonstrate that across all age groups individuals with an 

STXBP1-related epilepsy disorder have a significantly lower alpha-delta ratio than controls and 

some other genetic epilepsy populations at certain ages (Fig. 3A). This supports past findings 

which, utilizing a novel metric, found a lower excitation-inhibition ratio in EEGs of individuals 
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with an STXBP1-related disorder.35 Furthermore, STXBP1 tends to present with more severe 

developmental impairment than SCN1A- and SYNGAP1-related disorders.28,36  

We also found that much of the variability in alpha-delta ratio among individuals with STXBP1 

could be explained by their variant. Those with a missense variant in STXBP1 tend to have a 

stagnate alpha-delta ratio from infancy onward, while those with a PTV have a ratio which rises 

similarly to controls up until approximately 4 years of life. This matches what has been observed 

clinically in individuals with STXBP1 disorders. It has been repeatedly observed that individuals 

with recurrent missense variants in STXBP1 that account for a large proportion of missense 

variants have a more severe presentation given a presumed dominant-negative effect.28,36 As seen 

in Fig. 3B, several data points from three individuals with a PTV do not match this trend, however, 

this may be in part explained by disease progression (see Supplemental material). 

Importantly, we see that these changes, along with most spectral features, are largely nonlinear 

and vary in trajectory and variance within the disease population (Fig. 3A; Supplementary Fig. 

3-7), emphasizing the importance of age and the statistical methods by which these signals must 

be examined. 

EEGs display distinct electrophysiological backgrounds in STXBP1, SYNGAP1, 

and SCN1A 

We found that EEG spectral features could be used to predict genetic epilepsies from controls with 

high accuracy, achieving an AUC of 0.91, 0.82 and 0.86 in STXBP1, SYNGAP1, and SCN1A 

respectively. This high performance is striking considering the known heterogeneity within these 

disorders’ outcomes and presentations and the wide range of ages sampled.15,28,29,37 Additionally, 

in some of these individuals, clinicians may not observe any abnormal activity in their EEG.38 For 
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example, clinicians observe normal EEGs in 43% of infants and 10% of older individuals with 

SCN1A-positive Dravet syndrome.38 Secondly, many individuals with a pathogenic variant in 

SCN1A can present with mild phenotypes. In our SCN1A cohort, 18 of 68 individuals had typical 

development as confirmed by manual chart review.  

As a preliminary investigation, we tested the ability of a model to distinguish between the three 

disorders. When examining binary performance, one-vs-all, it achieved high performance with 

STXBP1 achieving a median AUC of 0.92 (IQR 0.88-0.96), SYNGAP1 a median AUC of 0.91 

(IQR 0.86-0.96), and SCN1A a median AUC of 0.88 (IQR 0.82-0.93; Fig. 4G). Our inability to 

use age matching in this model due to diffuse sampling, however, makes it difficult to compare 

this performance to our primary models trained with controls. Notably, across all models alpha-

theta ratio was the top feature. Repeatedly shown to correlate with cognitive deficits and decline 

in other diseases, alpha-theta ratio could be a fruitful area of further investigation in the genetic 

epilepsies.39-41 In summary, our findings suggest that individuals with STXBP1, SYNGAP1, and 

SCN1A have underlying distinct spectral dynamics in their wake EEG that distinguish them from 

controls and each other. 

The higher performance of models that incorporated spatial information relative to spatially 

agnostic features suggests that EEG abnormalities are to some degree focal in these diseases,38,42 

which challenges our traditional clinical view of these disorders as diffuse cerebral processes. The 

specific location of EEG abnormalities generates hypotheses for future studies into the biological 

mechanisms underlying phenotypes in specific genetic epilepsies. For instance, in STXBP1 we 

found alpha-theta, alpha, and beta-theta in the frontal lobe and alpha-theta in the occipital lobe to 

be the top four most important features. Further carefully orchestrated hypothesis driven 
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experimentation could identify novel biomarkers of disease and severity and endpoints for clinical 

trials. 

Seizure frequency does not affect underlying spectral dynamics 

The primary aim of care for most epilepsy disorders is seizure control. However, self-reported 

seizure frequency is often unreliable, particularly with individuals that live alone.43 Past work has 

indicated that seizure frequency often correlates with quality of life and severity of other 

comorbidities.44-46 Nevertheless, we found that spectral features were indistinguishable between 

those with poor and moderate seizure control and a known or presumed genetic epilepsy. Follow-

up analyses on a subset of individuals with any genetic epilepsy diagnosis similarly performed no 

better than chance. These results suggest that seizure control does not significantly impact 

underlying spectral features in awake individuals with genetic epilepsy. Future directions include 

testing whether other quantitative EEG biomarkers, such as automated spike rate detections, vary 

with seizure frequency.47 

Spatial spectral features hold information indicative of motor development 

Motor developmental delay and abnormalities are a common comorbidity in the childhood 

epilepsies and other neurodevelopment conditions. We sought to determine if quantitative 

characteristics of EEG held information pertinent to functional status, in particular, gross motor 

ability. We extracted 91 gross motor function measures (GMFM) with an accompanying EEG 

recording from 77 individuals with a known or presumed genetic epilepsy. We found that random 

forest models trained with spatial spectral features from individuals’ EEG performed significantly 

better at predicting GMFM than a model trained with just age as a feature (P<0.001; Fig. 5D). 

Relative performance improved when including any individuals with a GMFM and EEG. These 
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findings suggest that some EEG spectral changes reflect motor function status. Future models with 

more complex feature sets may achieve even higher accuracy, suggesting the possibility of using 

EEG to track functional status in clinical trials and other applications. 

Limitations 

There were several notable limitations in our study. First, although we took steps to exclude 

patients from our control cohort with diagnoses that would suggest cerebral disease, it is possible 

that some of these individuals are not truly neurologically typical. Importantly, the inclusion of 

individuals with neurological disease in our control cohort would likely reduce observed 

differences between controls and our genetic epilepsy cohorts, resulting in reduced power rather 

than an increased rate of Type I errors. Similarly, there may have been a surveillance bias towards 

individuals with worse seizure control. Such individuals are more likely to obtain repeat EEGs. 

However, as demonstrated by the poor performance of our seizure control models, their spectral 

features were likely minimally affected by this. 

Secondly, scalp EEG is inherently noise ridden. Cleaning this signal can be particularly difficult 

in children with behavioral abnormalities and sensory sensitivities, both of which are common in 

genetic epilepsies. It is possible that EEG artifacts differ between children with genetic epilepsies 

and our control cohort, contributing to some of our model performance. To mitigate this concern, 

we use conservative filters, including an ICA, strict thresholding for epochs, and removal of events 

as marked by clinician and technician annotations. As a result, we may have removed some 

biologically relevant signals.  

Additionally, annotations alone could not ensure a consistent resting state across all individuals 

and their recordings. Medication, particularly benzodiazepines, have been also shown to 
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potentially impact EEG and were likely prescribed to some individuals in these cohorts.48  These, 

however, were very unlikely prescribed across an entire cohort. Consequently, their effects are 

likely insufficient to achieve the accuracies demonstrated by our models.  

Finally, in our analyses we used relatively simple spectral features. Past work, particularly in 

intercranial EEG, has shown the benefit of more complex network features.9,49,50 The importance 

of the spatial dimension in our results suggests the interplay between these regions may hold 

significance. 

Conclusion 

In summary, we developed an automated quantitative EEG pipeline to retrospectively identify and 

gather nearly 2000 clinical scalp EEGs and extract relevant spectral features. Our results suggest 

that the genetic epilepsies have distinct quantitative electrographic signatures. We demonstrate 

that with minimal clinician review, we can identify novel biomarkers for three distinct genetic 

epilepsy disorders, STXBP1, SYNGAP1, and SCN1A. Furthermore, our analyses suggest 

underlying electrophysiological activity suggestive of motor development. Additionally, we can 

track these changes across childhood, further demonstrating the importance of age as a feature 

when analyzing EEG. The approach and features outlined in this work can contribute to large-

scale quantitative EEG analysis, novel biomarker discovery, and more precise tracking of clinical 

outcomes and severity across development in a diverse set of neurological disorders. 
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Controls STXBP1 SYNGAP1 SCN1A Seizure 

Frequency 

GMFM 

Individuals 806 20 21 68 354 340 

EEG 847 95 46 154 440 400 

Median EEGs 

per person (IQR) 

1 

(1-1) 

2 

(1-4.25) 

2 

(1-4) 

2 

(1-3) 

1 

(1-1) 

1 

(1-1) 

Median age 

(IQR; years) 

6.02 

(1.21-12.45) 

2.36 

(0.72-4.77) 

4.07 

(2.54-11.65) 

4.35 

(1.46-8.88) 

10.55 

(7.18-14.01) 

7.07 

(3.69-10.93) 

Female/Male 446/360 8/12 12/9 35/33 153/201 153/187 

Race       

White 529 14 16 45 200 166 

Black/African 

American 

114 2 1 7 85 82 

Asian 17 0 0 4 10 10 

Other* 146 4 4 12 59 82 

Ethnicity       

Hispanic or 

Latino 

70 3 1 6 43 47 

Non-Hispanic 

or Non-Latino 

708 17 17 58 309 289 

Refused/Did 

not disclose 

28 0 3 4 2 4 

*Other includes American Indian or Alaska Native, Indian, multi-racial, refused, unknown, and other 

Table 1: Demographics. Age is calculated across all EEGs thus individuals can be counted multiple times. Race is 

calculated across individuals thus each individual is counted only once. Seizure frequency represents the cohort of 

individuals with a known or presumed genetic epilepsy and a seizure frequency clinical annotation with an EEG 

close in time. Here, the gross motor function measure (GMFM) cohort consists of individuals from the broader 

analysis of those with and without epilepsy and a GMFM with an accompanying EEG close in time. 
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Figure 1 Quantitative EEG pipeline. (A) Distribution of EEG recordings in each cohort. Each dot represents a single 

recording. Two control recordings greater than 30 years of age were removed for figure clarity. (B) An example 16 

second segment of EEG from an infant with STXBP1 before and after filters, noise reduction, and artifact rejection. 

In the cleaned segment, the blue dashed lines indicate clean four-second segments used in downstream analyses. The 

red dashed lines and red shaded region indicates a segment tagged for removal due to excess artifact, in this case, one 

or more electrodes exceeding an amplitude of 500µV in the fourth second of that epoch. (C) The resulting power 

spectral densities from all cleaned EEGs from the control cohort recorded after 0.25 years of age. Each line indicates 

a single EEG recording. 
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Figure 2 Validation of quantitative EEG pipeline. (A) Power spectral density from the occipital electrodes of all 

EEGs from controls ages 0.25 years and older. Colors indicate age group. Smoothed lines and shading display 

approximated 95% confidence intervals from a locally weighted smoothing function. Subsequent figures (B) and (C) 

display results from analyses comparing calculated vs clinician posterior dominant rhythm (PDR) annotations. (B) 

The correlation between clinician and automated PDR. Each dot is from a single EEG recording. The dotted line is a 

reference with a slope of one and intercept of zero. (C) Automated and clinically annotated PDR across ages. Every 

EEG from (B) is represented as two dots in (C), one PDR from clinical annotations (turquoise) and the other from 

automated extraction (red). The red and turquoise lines indicate a generalized additive model (GAM) fit with a gamma 

distribution with a logarithmic link function on an 80% sample of the calculated and the clinician PDR respectively. 

The inset indicates the root mean squared error (RMSE) between the predicted age and actual age across 1000 

bootstraps from the clinician model and the calculated model. The grey lines connect the RMSE of each model in the 

same bootstrap. The red line indicates the permutation with the median difference in RMSE between the two models 

across permutations. 
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Figure 3 Alpha-delta ratio in STXBP1, SCN1A, SYNGAP1, and Controls across childhood. (A) Alpha-delta ratio 

in discrete age bins (*P < 0.05; **P < 0.01; ***P < 0.001). For visualization purposes, 10 data points outside the 

displayed range were removed (10 adult controls), however, all were included in the analyses and boxplot construction. 

(B) Alpha-delta ratio in individuals with protein-truncating variants (PTV; purple) and missense variants in STXBP1 

(turquoise) and Controls (red). Dots depict a single EEG recording from individuals from one of the STXBP1 variant 

groups. Controls displayed for reference. Smooth lines and shaded regions are fitted via locally weighted scatterplot 

smoothing, the latter approximating a 95% confidence interval. 
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Figure 4 Random forest models to predict a diagnosis of STXBP1, SYNGAP1, and SCN1A. Random forest models 

trained on spectral features across 1000 bootstraps to predict STXBP1 [(A) and (B)], SYNGAP1 [(C) and (D)], SCN1A 

[(E) and (F)] from age-matched controls. ROC curves in (A), (C), and (E) displaying performance with colored lines 

indicating performance in models trained with localized spectral features, and red lines indicating performance in 

models with median spectral feature values across all electrodes. The performance of a 3-way model predicting 

STXBP1, SYNGAP1, and SCN1A from each other is displayed in a confusion matrix in (G). Numbers indicate mean 

percent guessed by the model in that category thus the diagonal indicating percent accuracy in predicting the respective 

gene. The shading reflects these mean percentage values, with darker blues indicating a higher relative percentage. 

Numbers in brackets indicate 95% confidence interval. The top 8 most important features as measured by the Gini 

index normalized across permutations is displayed in the boxplots (B), (D), (F), and (H). Features were chosen and 

ordered by their median normalized Gini index across permutations. 
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Figure 5 Ability of spectral features to predict outcome measures of seizure frequency and motor development. 

(A) Distribution of seizure frequency annotations from individuals with a known or presumed genetic epilepsy and an 

accompanying scalp EEG close in time that passed all filters. The dotted vertical line indicates where the data was 

split into binary outcomes: “severe” and “moderate” seizure control. The performance of the model using age-

matching between classes followed by leave-one-out cross validation is displayed in the ROC curve in (B). (C) All 

generalized motor function measure (GMFM) scores by age in years with an accompanying scalp EEG close in time. 

Colors indicate the disease group with light gray representing any individual without a known or presumed genetic 

epilepsy. This group contains individuals with and without epilepsy. The dotted red line indicates expected GMFM 

scores for normal development (Schwartz et al., 2021). (D) Random forest models’ performance trained to predict a 

GMFM from individuals with a known or presumed genetic epilepsy on the left (purple) and all individuals on the 

right (turquoise). Performance was measured by root mean squared error (RMSE). Lines indicate the same bootstrap 

between the primary and comparator age model. The red line indicates the bootstrap with the median difference in 

RMSE between each model. Normalized feature importance of the primary models, as measured by Gini index is 

displayed in (E) and (F) for models trained on individuals with a known or presumed genetic epilepsy and all 

individuals respectively. Features and their order were determined by the median normalized Gini index across 

bootstraps. 
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