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Purpose: Visual acuity (VA) is a critical component of the eye examination but is often only documented in
electronic health records (EHRs) as unstructured free-text notes, making it challenging to use in research. This
study aimed to improve on existing rule-based algorithms by developing and evaluating deep learning models to
perform named entity recognition of different types of VA measurements and their lateralities from free-text
ophthalmology notes: VA for each of the right and left eyes, with and without glasses correction, and with and
without pinhole.

Design: Cross-sectional study.
Subjects: A total of 319 756 clinical notes with documented VA measurements from approximately 90 000

patients were included.
Methods: The notes were split into train, validation, and test sets. Bidirectional Encoder Representations

from Transformers (BERT) models were fine-tuned to identify VA measurements from the progress notes and
included BERT models pretrained on biomedical literature (BioBERT), critical care EHR notes (ClinicalBERT), both
(BlueBERT), and a lighter version of BERT with 40% fewer parameters (DistilBERT). A baseline rule-based al-
gorithm was created to recognize the same VA entities to compare against BERT models.

Main Outcome Measures: Model performance was evaluated on a held-out test set using microaveraged
precision, recall, and F1 score for all entities.

Results: On the human-annotated subset, BlueBERT achieved the best microaveraged F1 score (F1 ¼ 0.92),
followed by ClinicalBERT (F1 ¼ 0.91), DistilBERT (F1 ¼ 0.90), BioBERT (F1 ¼ 0.84), and the baseline model (F1 ¼
0.83). Common errors included labeling VA in sections outside of the examination portion of the note, difficulties
labeling current VA alongside a series of past VAs, and missing nonnumeric VAs.

Conclusions: This study demonstrates that deep learning models are capable of identifying VA measure-
ments from free-text ophthalmology notes with high precision and recall, achieving significant performance im-
provements over a rule-based algorithm. The ability to recognize VA from free-text notes would enable a more
detailed characterization of ophthalmology patient cohorts and enhance the development of models to predict
ophthalmology outcomes.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100371 ª 2023 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
More information than ever is stored in free-text notes within
the electronic health record (EHR), including detailed de-
scriptions of patients’ symptoms, physical examination, and
the physician’s assessment and plan. Especially critical in the
field of ophthalmology is the eye examination portion of
clinical notes, which includes an assessment of visual acuity
(VA). Visual acuity gauges a patient’s ability to recognize
different figures or “optotypes” at a standard distance, and, in
doing so, evaluates refraction, retina function, and higher-
order cognitive processing to interpret visual stimuli.1

Visual acuity is critical in the study of ophthalmic disease
because it allows detailed characterization of patient
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
phenotypes, the definition of patient cohorts, and greater
understanding of treatment trajectories. It may also be used
to develop predictive models for patient outcomes, both as
an input feature and as an important patient outcome.
Visual acuity is clinical information that is only available in
the health record. Although some EHR software includes
semistructured data fields designed to facilitate easy input
and extraction of ophthalmic variables, not all systems
include this feature; in those cases, even the most important
clinical information, such as VA, may be sequestered as
unstructured free-text notes, requiring natural language pro-
cessing techniques to process, understand, and compute over.
1https://doi.org/10.1016/j.xops.2023.100371
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Transformer-based deep learning architectures such as
Bidirectional Encoder Representations from Transformers
(BERT) and its descendants have achieved high performance
on many natural language processing tasks, including named
entity recognition (NER) tasks.2 Bidirectional Encoder
Representations from Transformers models trained on
massive corpora of internet text are publicly available, as
well as extensions of BERT further trained on biomedical
domain text. These models include BioBERT3 (pretrained on
biomedical literature [PubMed]), ClinicalBERT4 (pretrained
on critical care EHR notes [MIMIC-III]), and BlueBERT5

(pretrained on both biomedical literature and critical care
EHR notes). DistilBERT6 is a smaller version of BERT with
40% fewer parameters. Despite not having been pretrained
on biomedical domain-specific texts, DistilBERT has been
shown to perform comparably to ClinicalBERT and BioBERT
on biomedical NER tasks, including recognition of protected
health information.7 DistilBERT’s advantage is that, owing to
its relatively smaller size, it is less computationally expensive
to train and perform inference with.

One major limitation of using deep learning models is the
need for large sets of high-quality training data. These data
sets are especially difficult, time-consuming, and expensive
to create in medical fields, such as ophthalmology, in which
domain expertise is required and data sets consist of pro-
tected health information. Weak supervision is an approach
that can be used to efficiently create large amounts of
training data by leveraging data structures, patterns, rules, or
other classifiers to label the corpora in an automated fashion,
enabling the training of deep learning models for NER that
would be otherwise infeasible.8 Here, we aimed to build and
evaluate deep learning models that can identify VA
measurements and their type and laterality from
unstructured, free-text ophthalmology notes. These models
are fine-tuned for this task using a large data set created
using a weakly supervised approach, and their application
for identifying VA from free-text notes does not require pre-
existing VA-specific data structures in the EHR. Applying
deep learning-based recognition of VA to the ever-
increasing amounts of unstructured data available in EHR
systems could catalyze the study of ophthalmic disease and
the development of clinical tools at scale.
Methods

Overview

We compared the performance of models initialized on pretrained
DistilBERT, BioBERT, ClinicalBERT, and BlueBERT on the task
of recognizing named entities documenting VA in ophthalmology
clinical notes. The HuggingFace library9 was used to fine-tune
pretrained BERT models on our data, which consisted of
ophthalmology clinical progress notes labeled with 8 different
types of VA measurements.

Data Source

We identified from the Stanford Research Repository all of the
clinical notes and VA measurements of patients who were seen by
the Department of Ophthalmology at Stanford University since
2008,10 documented on a single EHR system (Epic Systems
2

Corporation). From the total of 333 958 notes belonging to
approximately 90 000 patients, notes missing corresponding VA
labels were excluded, resulting in a final sample of 319 756
notes for the study. Data were split into train, validation, and test
sets at a ratio of 80:10:10. Full notes were split into shorter
subdocuments to accommodate input into models, which have
specified maximum length of tokens: 512 for both DistilBERT
and BioBERT and 128 for both BlueBERT and ClinicalBERT.
This study was approved by the Stanford University institutional
review board. The institutional review board granted a waiver of
informed consent given the scale of the data and observational
nature of the data set. The study adhered to the tenets of the
Declaration of Helsinki.

Preprocessing Labels

Technicians at this institution use semistructured fields to report VA
measurements in the eye examination portion of the EHR system.
There are 8 different classes of VA measurements (named entities)
that we sought to identify, including VA for each of the right (OD)
and left eyes (OS), with and without glasses correction, and with and
without pinhole. Once the technician enters the VA into the semi-
structured field, the information is usually imported into the clinical
free-text note using the providers’ custom note templates. Thus, the
semistructured fields were VA labels for their corresponding free-
text clinical notes, which were the inputs to the models.

Figure 1 illustrates a semistructured field with its corresponding
clinical progress note. Visual acuity labels are known at the
document level rather than the token level; from information
entered into the semistructured field, we know what the VA of
the patient is, but we do not necessarily know which exact
words or tokens in the note correspond to that VA. Therefore, a
custom preprocessing pipeline was developed to assign token-
level labels for each document (“training labels”). The full pre-
processing pipeline is illustrated in Figure 2.

Each document was pretokenized using the Treebank Tokenizer
in the Python Natural Language ToolKit version 3.5.11 For each
documented VA measurement in the semistructured field, we
found which tokens corresponded to that measurement in the
note. In some cases, there could be multiple matches, such as in
cases in which the OD and OS VAs were the same. A greedy
process was used to assign each label to a token, iterating
through each VA label and assigning the first matched token to
that label if the token was not already assigned to another VA
label. This makes use of the assumption that, in most cases,
reporting of VA starts with the right side. Labels were
constructed in the Inside-Outside-Beginning format,12 with “O”
for no label or outside of the entity, “B-valabel” for the
beginning of a VA entity, and “I-valabel” for tokens that
continue (or are inside of) a VA entity. The result of this process
is a list of tokens and a list of corresponding VA labels.

Bidirectional Encoder Representations from Transformers word
piece tokenization was performed to further break down tokens
into word pieces.13 Original full word token-level labels were then
“propagated” as appropriate to each word piece token: “O” labels
were assigned to each word piece within a word labeled with “O,”
and “I” labels were assigned to each word piece within a word
labeled “B” or “I.” Padding and truncation were used to stan-
dardize the length of each subdocument for input into models.

Evaluation on Human-Annotated Ground Truth
Set

The weak supervision approach involved training models on
semiautomatically labeled data using semistructured fields, which
may have generated errors in labels. Therefore, we further
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evaluated model performance on a sample of 300 manually labeled
ophthalmology notes from the test set. We used the Prodigy
annotation tool14 to visualize, analyze, and correct our models’
predictions. From the annotated sample of documents, we report
the standard evaluation metrics of each model (and its training
labels) to the ground truth human annotation. We also give
qualitative examples of typical contexts in which the models fail.

Modeling and Experimental Details

All pretrained models were initialized through the HuggingFace
transformers library for the token classification task and fine-tuned on
our task to identify the 8 different types of VA named entities. All
models were trained with standard cross-entropy loss function for
token classification, with the Adam optimizer (learning rate 5e�5 and
weight decay of 0.01) and warmup steps of 500. Early stopping was
used with patience equaling 3. Validation loss was calculated after
each epoch, and the model with the best validation loss was then used
for final evaluation. The HuggingFace library was used with the
Optuna backend15 for hyperparameter tuning of the trained models of
the validation set. Hyperparameters optimized included learning rate,
weight decay, number of epochs to train for, and number of warmup
steps. Hyperparameter search was initialized for 5 trials seeking to
minimize validation loss. The best-identified hyperparameters
(Table S1, available at www.ophthalmologyscience.org) were used to
retrainmodels, this timewithout early stopping, andfinal evaluation of
the models was performed on the test set.

Baseline Model

For our baseline classifier, we developed a rule-based algorithm
using regular expressions (regex) to identify VA-based keywords
and abbreviations corresponding to with or without correction, with
and without pinhole. The regexes used are presented in Table S2,
available at www.ophthalmologyscience.org. Regex 1 through 4
identified these keywords related to correction in the distance VA
examination section and their corresponding VAs. The algorithm
then checked if both VAs were presented consecutively after a
keyword or if only one VA was attached to each keyword. In the
consecutive case, the first VA was assigned to OD, and the
second was assigned to OS. If only one VA is attached to a
keyword, the first occurrence of a keyword and VA was assigned
to the right, and the second occurrence, if any, was assigned to
the left. We followed this assignment logic because the OD acuity
was reported first in almost all cases. Regex 5 was then used to
extract VA from its corresponding keyword. The algorithm then
checked if additional VAs were reported with pinhole (regex 6
through 8), and appropriate laterality was assigned. Additional
regex were used to flag multiword nonnumeric VAs (e.g., count
fingers at 3’, hand motion at 3’) so that the algorithm could
properly assign the first word in the VA with a beginning tag (B-)
and the subsequent words with an inside tag (I-), following Inside-
Outside-Beginning format. The general flowchart of this algorithm
is outlined in Figure S3, available at
www.ophthalmologyscience.org.

Evaluation Metrics

The performance of our NER system was evaluated using the Py-
thon seqeval package (version 1.2.2),16 a framework for sequence
labeling evaluation. We report precision (number of correctly
predicted entities/total number of predicted entities), recall
(number of correctly predicted entities divided by total number of
labeled entities), and F1 score (2 � precision � recall divided by
[precision þ recall]) for each named entity class. Microaveraged
metrics were also computed across all classes, defined as the sum
of correctly predicted entities for all the classes divided by the
sum of the total number of predicted entities for all the classes.

Code Availability

Code associated with this project is publicly available.17

Results

Common Sources of Training Label Errors

We compared the training labels and each of the model
predictions with the human-annotated ground truth on a
sample of 300 inputs from the test set. Because the training
labels were algorithmically derived, performing human re-
view of the training labels gives a sense of the magnitude of
the noise in the training labels (Table S3, available at
www.ophthalmologyscience.org). Overall, training labels
were very close to human-annotated ground truth, with a
microaveraged F1 score of 0.87. From qualitative review
during the human annotation of the training labels, it was
noted that VAs were sometimes not labeled in the exami-
nation portion but, instead, labeled in other sections of the
note, such as the refraction or assessment and plan sections.
However, VAs were still correctly recognized. Examples of
this error are presented in Figure S1, available at
www.ophthalmologyscience.org.

Model Performance Against Training Labels

Metrics assessing the performance of each fine-tuned model
on the held-out test set for each VA type are shown in
Table 1. Overall, BioBERT achieved the best
microaveraged F1 score at 0.90, followed by BlueBERT
(0.89), DistilBERT (0.87), the baseline model (0.76), and
ClinicalBERT (0.75). BioBERT also had the highest
microaveraged precision (0.89) and recall (0.91). The best-
performing VA type for this model was OS, without
correction, with pinhole, with an F1 score of 0.92, precision
of 0.93, and recall of 0.91. BioBERT’s worst performing
VA type was OS, without correction, no pinhole with an F1
score of 0.88, precision of 0.85, and recall of 0.91.

Model Performance Against Human-Annotated
Ground Truth

The performance metrics for each model’s predictions
compared with the human-annotated ground truth are shown
in Table 2. For these metrics, the biomedical models had
comparable microaveraged F1 scores, with BlueBERT
being the best (0.92), followed by ClinicalBERT (0.91),
DistilBERT (0.90), BioBERT (0.84), and, lastly, the
baseline model (0.83). Whereas BlueBERT held the
highest recall (0.97), the baseline model had the highest
precision (0.93) but the lowest recall (0.76). Examples of
common model errors are given in Figure S2. Common
mistakes included missing nonnumeric VA values, such as
no improvement, no light perception, count fingers, and
hand motion, recognizing VAs in the wrong portion of the
note, such as in the refraction or assessment and plan
section, difficulties recognizing VA along a series of visual
3
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Figure 1. Electronic health records (EHRs) free text data format.
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acuities (depicting VA changes over several dates, for
instance) misidentifying OD as OS and vice-versa, only
recognizing the numerator or denominator of the measured
VA, and recognizing “without correction” as CC instead of
SC. Figure S3-S6, available at www.ophthalmology
science.org, additionally highlight instances in which each
type of model was correct while others failed, and
Figure S7, available at www.ophthalmologyscience.org,
Figure 2. Pre-processing pipeline.

4

compares examples between the baseline model and the
BERT models. There was a lack of evident patterns that
clearly differentiated between the different types of BERT
models. However, there were consistent instances in which
the regular expression model performed poorly compared
with BERT models, likely due to the limited adaptability
of regular expressions (Tables S1, S2 and S4, available at
www.ophthalmologyscience.org).

http://www.ophthalmologyscience.org
http://www.ophthalmologyscience.org
http://www.ophthalmologyscience.org
http://www.ophthalmologyscience.org


Table 1. Model Performance on Test Set

Model Metric

OD OS

Microaveraged

CC SC CC SC

No PH PH No PH PH No PH PH No PH PH

Baseline model Precision 0.87 0.60 0.85 0.70 0.92 0.90 0.93 0.93 0.85
Recall 0.74 0.82 0.74 0.86 0.66 0.44 0.67 0.51 0.69
F1 0.80 0.69 0.79 0.77 0.77 0.59 0.78 0.66 0.76

DistilBERT Precision 0.83 0.85 0.84 0.90 0.79 0.89 0.83 0.92 0.84
Recall 0.93 0.94 0.88 0.93 0.93 0.91 0.86 0.94 0.91
F1 0.87 0.89 0.86 0.91 0.86 0.90 0.85 0.93 0.87

BioBERT Precision 0.93 0.87 0.87 0.88 0.91 0.88 0.85 0.93 0.89
Recall 0.89 0.94 0.95 0.95 0.87 0.93 0.91 0.91 0.91
F1 0.91 0.90 0.91 0.91 0.89 0.90 0.88 0.92 0.90

ClinicalBERT Precision 0.64 0.74 0.61 0.76 0.64 0.68 0.60 0.67 0.64
Recall 0.94 0.94 0.88 0.95 0.93 0.89 0.85 0.89 0.90
F1 0.76 0.83 0.72 0.84 0.76 0.77 0.70 0.77 0.75

BlueBERT PM Precision 0.86 0.92 0.92 0.93 0.83 0.89 0.90 0.89 0.88
Recall 0.93 0.89 0.88 0.93 0.91 0.89 0.86 0.90 0.90
F1 0.89 0.90 0.90 0.93 0.87 0.89 0.88 0.89 0.89

BERT ¼ Bidirectional Encoder Representations from Transformers; CC ¼ with correction; OD ¼ right eye; OS ¼ left eye; PH ¼ pinhole; SC ¼ without
correction.

Bernstein et al � Automated Visual Acuity Recognition
Discussion

In this study, we identified different types of VA measure-
ments and their lateralities from ophthalmology clinical
progress notes, comparing several different pretrained
BERT models that were fine-tuned to our task in a weakly
supervised manner. Bidirectional Encoder Representations
from Transformers models performed with microaveraged
F1 scores ranging from 0.75 to 0.90 on the weakly super-
vised test set and 0.84 to 0.92 on the human-annotated test
set. The most common model errors included labeling VA
Table 2. Model Performance on

Model Metric

OD

CC SC

No PH PH No PH P

Baseline model Precision 0.95 0.71 0.94 0.
Recall 0.81 0.88 0.82 0.
F1 0.88 0.79 0.88 0.

DistilBERT Precision 0.74 0.91 0.93 0.
Recall 0.98 0.75 0.97 0.
F1 0.84 0.82 0.95 0.

BioBERT Precision 0.94 0.93 0.79 0.
Recall 0.87 0.70 0.93 0.
F1 0.90 0.80 0.85 0.

ClinicalBERT Precision 0.72 0.97 0.99 0.
Recall 0.93 0.97 0.93 0.
F1 0.81 0.97 0.96 0.

BlueBERT PM Precision 0.73 1.00 0.97 0.
Recall 0.95 0.97 0.97 1.
F1 0.83 0.98 0.97 0.

BERT ¼ Bidirectional Encoder Representations from Transformers; CC ¼ with
correction.
outside of the examination section of the note and missing
nonnumeric VA values such as “hand motion” or “light
perception.”

To our knowledge, this is the first instance of training a
deep learning model to recognize VA from free-text clinical
notes. Previous studies have sought to identify VA from
free-text notes using rule-based algorithms on a much
smaller scale. A 2016 study by Mbagwu et al18 developed a
rule-based algorithm to abstract VA and evaluated its per-
formance compared with manual chart review of 100 patient
notes, with an exact match rate of approximately 80%.
Human-Annotated Test Set

OS

Microaveraged

CC SC

H No PH PH No PH PH

80 1.00 0.95 0.99 1.00 0.93
94 0.69 0.44 0.75 0.56 0.76
86 0.82 0.60 0.86 0.72 0.83
99 0.73 1.00 0.96 1.00 0.86
92 0.98 0.75 0.97 0.88 0.95
95 0.83 0.86 0.96 0.94 0.90
85 0.93 1.00 0.86 0.88 0.87
78 0.83 0.62 0.75 0.42 0.81
81 0.88 0.77 0.80 0.57 0.84
97 0.70 0.99 0.98 0.98 0.87
98 0.95 0.99 0.94 0.98 0.95
98 0.81 0.99 0.96 0.98 0.91
98 0.73 1.00 0.97 0.97 0.87
00 0.97 0.98 0.98 0.98 0.97
99 0.83 0.99 0.97 0.98 0.92

correction; OD ¼ right eye; OS ¼ left eye; PH ¼ pinhole; SC ¼ without

5



Ophthalmology Science Volume 4, Number 2, April 2024
However, this algorithm was developed to work only within
the VA section of the EHR note rather than the entire note,
limiting its utility. Another study by Baughman et al19

developed the regular expression-based “Total VA Extrac-
tion Algorithm (TOVA)” in Ruby, applying it to ophthal-
mology consult notes and reporting a 95% concordance
between TOVA and manual review of 644 notes. The most
common mistake made by the TOVA was identifying VA
outside of the examination section, similar to our models.
Ophthalmology consult notes may also contain VAs, which
are collected under somewhat different or less standardized
conditions than in the clinic because consults are usually
performed at the bedside in the emergency department or the
hospital; thus, they may contain many near VAs rather than
distance acuities, and generalizability of this algorithm may
be limited. We also developed a rule-based model in our
study to compare with the BERT models that performed
NER on the human-annotated notes with a microaveraged
F1 score of 0.83, precision of 0.93, and recall of 0.76.
Whereas these prior studies extracted VA values alone
(e.g., “20/50”) or VA values with laterality (e.g., “20/30,
OS”), our models identify both the VA value and type of
VA (e.g., “20/20, OD, without correction, with pinhole”).
This allows us to more precisely characterize or filter model
outputs before downstream applications. Rule-based algo-
rithms have some limitations which could be overcome by
deep learning approaches. For example, rule-based algo-
rithms require advanced domain knowledge to manually
encode each possible case, whereas deep learning models
learn representations of human language, allowing gener-
alizability to new cases. There is great variation in how VA
is documented in EHRs: the type may precede or follow the
measurement, sometimes all OD VAs are reported before
OS VAs, or OS and OD VAs are reported back-to-back. The
high precision of our rule-based model indicated that
extracted visual acuities tended to be correct, whereas the
low recall was driven by “missed” visual acuities in the text;
hand-crafted rules could not capture every possible context
in which a VA could be stated.

Our deep learning algorithms outperformed rule-based
algorithms in identifying VA from ophthalmology prog-
ress notes, with a level of performance similar to previous
reports of BioBERT’s performance on biomedical NER
tasks.3 In previous studies, BioBERT achieved F1 scores
ranging from 72.8 to 93.7 on 9 biomedical NER tasks.3

Similarly, ClinicalBERT has been shown on 3 i2b2 NER
tasks to achieve accuracy ranging from 79.5% to 92.6%.5

Across 3 NER benchmark data sets, BlueBERT achieved
F1 scores ranging from 77.1 to 92.4.6 In our study, the
best-performing model on the task of recognizing different
types of VA was BlueBERT, with a microaveraged F1 score
of 0.92 on human-annotated notes. This is potentially
because this model was trained on both PubMed and the
MIMIC-III data set, learning representations for the lan-
guage of biomedical literature and EHRs. Interestingly,
DistilBERT seemed to outperform BioBERT (micro-
averaged F1 of 0.90 vs. 0.84, respectively), despite only
having been pretrained on BooksCorpus and Wikipedia.
6

Unlike the other BERT models in this study, DistilBERT
requires fewer computational resources and thus trains more
quickly.7,8 Therefore, it may be beneficial in future studies
to pretrain a more compact model like DistilBERT on
biomedical corpora similar to BlueBERT.

Unlike rule-based algorithms, deep learning models
require large, high-quality training corpora, which may be
challenging to access or develop, especially in clinical do-
mains, such as ophthalmology.20 Accordingly, one unique
strength of our study was training on a large corpus of
ophthalmology notes using weak supervision to bypass
time-consuming domain-specific manual annotation. Our
study leveraged semistructured EHR fields to develop a large
training corpus for our VA-recognition models, an approach
we extended from our previously developed models that
identified the slit lamp examination (e.g., conjunctiva, sclera,
and cornea) and the fundus examination (e.g., macula and
cup-to-disc ratio) from ophthalmology notes.8 In this present
study, the VA-recognition BERT models generally per-
formed well on the human-labeled test set, despite having
been trained entirely on algorithmically labeled data. In some
cases, VA-recognition BERT models were able to “tran-
scend” the noise in the training labels to perform even better
compared with human-annotated ground truth, up to F1
scores of 0.92. It is noteworthy that the VA-recognition
baseline regex model was much better at detecting VA
than the slit lamp and fundus examination recognition models
were at detecting eye examination findings in our previous
study, because there is significantly more lexical variability
across the 12 components of the slit lamp and fundus ex-
amination (e.g., “AC narrow angle” or “Lens 3þ ACC, 2þ
NS”), whereas VA is most commonly presented as a numeric
fraction (e.g. “20/40”).8 Nonetheless, slit lamp and fundus
examination recognition BERT models also outperformed a
rule-based model on their tasks, with microaveraged F1
scores ranging from 0.87 (ClinicalBERT) to 0.90 (BioBERT)
vs. 0.72 (rule-based model). Thus, even on what seem to be a
lexically simpler task (recognizing VA rather than eye ex-
amination findings) BERT models outperform hand-crafted
rule-based algorithms in entity recognition.

Overall, our study can have implications for facilitating
the study of ophthalmic diseases at larger scales by reducing
dependence on manual data extraction of VA when such
data is sequestered in free-text progress notes. By enabling
rapid and automated extraction of VA data from EHR notes,
our approach could reduce the need for time-consuming and
error-prone human chart review and reduce the need for
tedious construction of brittle, rule-based approaches to
detect VA. Our models could be used at other EHR systems
in which VA is recorded entirely in free text, such as for the
Veterans Health Affairs system, which is an area of future
research. Our approach would thus mitigate the need for
specialized data fields for VA, streamlining the data acqui-
sition processes for downstream ophthalmology research
applications.

Our approach has several key limitations related to our
training corpus and architecture of the language models. Our
data were derived from a single institution, which may limit
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the generalizability of our models to EHR notes from other
institutions, who may wish to further fine-tune NER models
to their unique corpora. Our corpus only contained distance
VA (measured via eye chart on a wall 20 feet away), whereas
near VA (measured via hand-held card) is also commonly
measured in other contexts, such as bedside evaluations.
Additionally, our corpus does not contain instances of VA
documented from both eyes simultaneously, e.g., “the pa-
tient’s visual acuity was 20/20 OU,” such as might be found
in long-form prose letters or dictations. Also, by nature of
how the eye examination is performed, some VAs were less
represented in our data set, such as pinhole acuities, which
are only measured in some circumstances, which could lead
to variability in model performance across different VA
types. Other limitations pertain to our deep learning models.
Because BERT models require inputs to not exceed a specific
length (e.g., 128-word pieces for BlueBERT), we split notes
into shorter segments to fit model input lengths; however,
splitting may cut off the context of the measurements,
potentially resulting in reduction in performance for OS vi-
sual acuities, typically stated in the text further away from the
beginning of the VA section. An alternative approach may
involve a long document version of BERT, such as using
CogLTX,21 but this would lose the advantage of pretraining
on biomedical corpora and increase the computational
resources required. Finally, unlike rule-based algorithms, in
which model function is explicitly coded, deep learning
models, such as the BERT models, in this study, suffer from
diminished interpretability (understanding how the models
produced their outputs). To overcome this limitation and
examine model outputs, we used the Prodigy tool to evaluate
and highlight common errors.

In conclusion, we were able to fine-tune pretrained
BERT-based deep learning models to recognize different
types of VA from free-text ophthalmology clinical notes
using weakly supervised labels. The model based on Blue-
BERT outperformed those based on BioBERT, Clin-
icalBERT, DistilBERT, and a rule-based model. Future
work is needed to improve the quality of the training labels
to further improve the model performance, evaluate model
performance on external data sets from multiple institutions,
and apply the model to clinical research studies.
Footnotes and Disclosures
Originally received: April 24, 2023.
Final revision: June 20, 2023.
Accepted: July 13, 2023.
Available online: July 19, 2023. Manuscript no. XOPS-D-23-00081R1.
1 Department of Ophthalmology, Byers Eye Institute, Stanford University,
Palo Alto, California.
2 Department of Ophthalmology, Weill Cornell Medicine, New York, New
York.

Presented as a Poster at Future Vision Forum in Los Angeles, California on
October 31, 2022, and ARVO Annual Meeting in New Orleans, Louisiana
on April 27, 2023.

Disclosure(s):

All authors have completed and submitted the ICMJE disclosures form.

The authors have made the following disclosures: I.B.: Travel expenses e
Association for Research in Vision and Ophthalmology (Knights Templar
Eye Foundation Travel Grant).

Supported by the National Eye Institute (grant no.: 1K23EY03263501 [to
S.Y.W.]); Career Development Award from Research to Prevent Blindness
(to S.Y.W.); unrestricted departmental grant from Research to Prevent
Blindness (all authors); departmental grant National Eye Institute P30-
EY026877 (all authors). The sponsors or funding organizations had no
role in the design or conduct of this research.

HUMAN SUBJECTS: No human subjects were included in this study. This
study was approved by the Stanford University institutional review board.
The institutional review board granted a waiver of informed consent given
the scale of the data and observational nature of the data set. The study
adhered to the tenets of the declaration of Helsinki.

No animal subjects were used in this study.

Author Contributions:

Conception and design: Bernstein, Koornwinder, Hwang, Wang

Data collection: Bernstein, Koornwinder, Hwang, Wang

Analysis and interpretation: Bernstein, Koornwinder, Hwang, Wang

Obtained funding: Wang

Overall responsibility: Bernstein, Koornwinder, Hwang, Wang.

Abbreviations and Acronyms:
BERT ¼ Bidirectional Encoder Representations from Transformers;
EHR ¼ electronic health record; NER ¼ named entity recognition;
OD ¼ right eye; OS ¼ left eye; TOVA ¼ Total VA Extraction Algorithm;
VA ¼ visual acuity.

Keywords:
Deep learning, Electronic health records, Natural language processing,
Ophthalmology, Visual acuity.

Correspondence:
Sophia Y. Wang, 2370 Watson Ct, Palo Alto, CA 94030. E-mail: sywang@
stanford.edu.
References
1. Daiber HF, Gnugnoli DM. Visual acuity. In: StatPearls.
StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/
books/NBK563298/. Accessed November 26, 2022.

2. Devlin J, ChangMW, LeeK, ToutanovaK.BERT: pretraining of
deep bidirectional transformers for language understanding.
Published online May 24, 2019. https://doi.org/10.48550/arXiv.
1810.04805
3. Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained
biomedical language representation model for biomedical
text mining. Bioinformatics. 2020;36:1234e1240. https://doi.
org/10.1093/bioinformatics/btz682.

4. Huang K, Altosaar J, Ranganath R. ClinicalBERT: modeling
clinical notes andpredicting hospital readmission. Published online
November 28, 2020. https://doi.org/10.48550/arXiv.1904.05342
7

mailto:sywang@stanford.edu
mailto:sywang@stanford.edu
http://www.ncbi.nlm.nih.gov/books/NBK563298/
http://www.ncbi.nlm.nih.gov/books/NBK563298/
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.48550/arXiv.1904.05342


Ophthalmology Science Volume 4, Number 2, April 2024
5. Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural
language processing: an evaluation of BERT and ELMo on ten
benchmarking datasets. Published online June 18, 2019.
https://doi.org/10.48550/arXiv.1906.05474

6. Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter.
Published online February 29, 2020. https://doi.org/10.48550/
arXiv.1910.01108

7. Abadeer M. Assessment of DistilBERT performance on
named entity recognition task for the detection of protected
health information and medical concepts. In: Proceedings of
the 3rd Clinical Natural Language Processing Workshop.
Association for Computational Linguistics; 2020:158e167.
https://doi.org/10.18653/v1/2020.clinicalnlp-1.18.

8. Wang SY, Huang J, Hwang H, et al. Leveraging weak su-
pervision to perform named entity recognition in electronic
health records progress notes to identify the ophthalmology
exam. Int J Med Inform. 2022;167:104864. https://doi.org/10.
1016/j.ijmedinf.2022.104864.

9. Wolf T, Debut L, Sanh V, et al. HuggingFace’s trans-
formers: state-of-the-art natural language processing. Pub-
lished online July 13, 2020. https://doi.org/10.48550/arXiv.
1910.03771

10. Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE e
an integrated standards-based translational research infor-
matics platform. AMIA Annu Symp Proc. 2009;2009:391e395.

11. Bird S, Klein E, Loper E. Natural language processing with Py-
thon: analyzing text with the natural language toolkit. Published
online 2009 https://github.com/nltk/nltk. Accessed November
14, 2022.

12. Ramshaw LA, Marcus MP. Text chunking using
transformation-based learning. Published online May 23,
1995. https://doi.org/10.48550/arXiv.cmp-lg/9505040
8

13. Song X, Salcianu A, Song Y, et al. Fast WordPiece tokeni-
zation. Published online October 5, 2021. https://doi.org/10.
48550/arXiv.2012.15524

14. Prodigy 101 e everything you need to know. Prodigy. https://
prodi.gy/docs. Accessed November 26, 2022.

15. Akiba T, Sano S, Yanase T, et al. Optuna: a next-generation
hyperparameter optimization framework. Published online
July 25, 2019. https://doi.org/10.48550/arXiv.1907.10902

16. Nakayama H. seqeval. Published online November 24, 2022
https://github.com/chakki-works/seqeval. Accessed November
27, 2022.

17. Bernstein IA, Koornwinder A, Wang SY. eyelovedata/oph-
notes-ner-va: v1.0.0. Published online March 27, 2023.
https://doi.org/10.5281/zenodo.7776114

18. Mbagwu M, French DD, Gill M, et al. Creation of an ac-
curate algorithm to detect Snellen best documented visual
acuity from ophthalmology electronic health record notes.
JMIR Med Inform. 2016;4:e14. https://doi.org/10.2196/
medinform.4732.

19. Baughman DM, Su GL, Tsui I, Lee CS, Lee AY. Validation of
the total visual acuity extraction algorithm (TOVA) for auto-
mated extraction of visual acuity data from free text, un-
structured clinical records. Transl Vis Sci Technol. 2017;6:2.
https://doi.org/10.1167/tvst.6.2.2.

20. Chen JS, Baxter SL. Applications of natural language pro-
cessing in ophthalmology: present and future. Front Med
(Lausanne). 2022;9:906554.

21. Ding M, Zhou C, Yang H, Tang J. CogLTX: applying BERT
to long texts. In: Advances in Neural Information Processing
Systems. Vol 33. Curran Associates, Inc.; 2020:12792e12804.
https://proceedings.neurips.cc/paper/2020/hash/96671501524948
bc3937b4b30d0e57b9-Abstract.html. Accessed January 20,
2023.

https://doi.org/10.48550/arXiv.1906.05474
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.18653/v1/2020.clinicalnlp-1.18
https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/10.1016/j.ijmedinf.2022.104864
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref10
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref10
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref10
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref10
https://github.com/nltk/nltk
https://doi.org/10.48550/arXiv.cmp-lg/9505040
https://doi.org/10.48550/arXiv.2012.15524
https://doi.org/10.48550/arXiv.2012.15524
https://prodi.gy/docs
https://prodi.gy/docs
https://doi.org/10.48550/arXiv.1907.10902
https://github.com/chakki-works/seqeval
https://doi.org/10.5281/zenodo.7776114
https://doi.org/10.2196/medinform.4732
https://doi.org/10.2196/medinform.4732
https://doi.org/10.1167/tvst.6.2.2
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref20
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref20
http://refhub.elsevier.com/S2666-9145(23)00103-3/sref20
https://proceedings.neurips.cc/paper/2020/hash/96671501524948bc3937b4b30d0e57b9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/96671501524948bc3937b4b30d0e57b9-Abstract.html

	Automated Recognition of Visual Acuity Measurements in Ophthalmology Clinical Notes Using Deep Learning
	Methods
	Overview
	Data Source
	Preprocessing Labels
	Evaluation on Human-Annotated Ground Truth Set
	Modeling and Experimental Details
	Baseline Model
	Evaluation Metrics
	Code Availability

	Results
	Common Sources of Training Label Errors
	Model Performance Against Training Labels
	Model Performance Against Human-Annotated Ground Truth

	Discussion
	References


