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Abstract: The functionalization of the arsenic transfer reagent [Cp”2Zr(η1:1-As4)] (1) focuses on
modifying its properties and enabling a broader scope of reactivity. The coordination behavior of 1
towards different Lewis-acidic transition metal complexes and main group compounds is investigated
by experimental and computational studies. Depending on the steric requirements of the Lewis
acids and the reaction temperature, a variety of new complexes with different coordination modes
and coordination numbers could be synthesized. Depending on the Lewis acid (LA) used, a mono-
substitution in [Cp”2Zr(µ,η1:1:1:1-As4)(LA)] (LA = Fe(CO)4 (4); B(C6F5)3 (7)) and [Cp”2Zr(µ,η3:1:1-
As4)(Fe(CO)3)] (5) or a di-substitution [Cp”2Zr(µ3,η1:1:1:1-As4)(LA)2] (LA = W(CO)5 (2); CpMn(CO)2

(3); AlR3 (6, R = Me, Et, iBu)) are monitored. In contrast to other coordination products, 5 shows an
η3 coordination in which the butterfly As4 ligand is rearranged to a cyclo-As4 ligand. The reported
complexes are rationalized in terms of inverse coordination.

Keywords: arsenic; coordination chemistry; DFT calculations; Lewis acids; zirconium

1. Introduction

The interest in the activation of small molecules, such as H2, N2, NH3, etc., has
increased notably in recent years [1–8]. A special focus lies on the activation of cage
compounds such as white phosphorus and yellow arsenic by transition metals and main
group compounds [9–12]. While the synthesis and isolation of polyphosphorus complexes
have been intensively investigated [9–11], polyarsenic complexes are much less known,
and hence the number of comparable polyarsenic complexes is quite limited [12]. This
can be attributed to the very challenging handling of As4 due to its pronounced air- and
light-sensitivity, time-consuming preparation, and to the lack of knowledge regarding its
toxicitiy. Nevertheless, by now, several examples of Asn-containing main group compounds
and transition metal complexes are known [12]. Selected representatives are depicted in
Scheme 1. A remarkable example is the reaction of yellow arsenic towards the CpPEt radical
(CpPEt = C5(4-EtC6H4)5), which leads to the formation of the first organo-substituted
As4 butterfly compound [CpPet

2As4] (I, Scheme 1) [13]. Furthermore, the reaction of
the silylene [PhC(NtBu)2SiN(SiMe3)2] with yellow arsenic results in the aggregation of
the As4 tetrahedron and compound II that contains a heptaarsa-nortricyclane unit can
be isolated [14]. Surprisingly, by using the disilene [Cp*(Me3Si)2NSi = SiN(Me3Si)2Cp*]
(Cp* = C5Me5), the butterfly-like compound [Cp*{(SiMe3)2N}SiAs]2 (III, Scheme 1) is
formed [14].

Compared to the As-containing main group compounds, Asn ligand complexes of
transition metals have been investigated in more detail and show a more extensive chem-
istry. Dahl et. al. described the first Asn ligand complex [(CO)3Co(η3-As3)] (IV, Scheme 1)
in the late 1960s obtained by the reaction of [Co2(CO)8] with [AsCH3]5 [15]. Many of the
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described syntheses use in situ prepared yellow arsenic and transition metal compounds
with labile ligands [12]. For instance, the photolysis of [Cp*Nb(CO)4] in the presence of
yellow arsenic leads to the formation of V, containing a tetraarsacyclobutadiene ligand [16].
Another remarkable example is the pentaarsaferrocene [Cp*Fe(η5-As5)] (VI, Scheme 1) [17].
After its discovery by Scherer et al. in 1990, a versatile chemistry emerged [18–23], in-
cluding, inter alia, redox- [19,20] and coordination chemistry [21–23]. Recently, our group
reported the synthesis of [Cp”2Zr(η1:1-As4)] (1, Scheme 1) by the thermolysis of As4 with
[Cp”2Zr(CO)2] (Cp” = 1,3-di-tertbutyl-cyclopentadienyl) [24]. Further investigations il-
lustrate the high potential of 1 as an arsenic transfer reagent [24–26]. Additionally, the
phosphorus congener of 1, i.e., [Cp”2Zr(η1:1-P4)], shows diverse reactivity patterns towards
Lewis acids [27]. These results led us to investigate the reaction behavior of 1 towards the
same Lewis acids to possibly functionalize the As4 core in 1. That way, compounds with
a higher molecular mass should be accessible, resulting, in the case of a transfer of the
functionalized As4 ligand, in a better solubility of the products.
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Scheme 1. Selected examples of Asn-containing compounds.

Herein, we report the coordination behavior of 1 towards different Lewis-acidic
transition metal complexes and main group compounds, leading among others to hetero
bi- and trimetallic complexes. The structure of these complexes can be rationalized also by
means of the concept of inverse coordination [28–33]. Within this concept, the structure
of complexes is rationalized in the sense that the ligand represents the central entity to
which the metal centers are connected. In this type of complex, the distribution of donor
and acceptor sites is opposed to the conventional complexes.

2. Results and Discussion
2.1. General Consideration

To obtain a better insight into the electronic structure and to determine the favored
coordination site of 1 to Lewis acids, DFT calculations were carried out. The frontier
molecular orbitals of 1 at the B3LYP/def2TZVP level of theory are depicted in Figure 1 (see
also Supplementary Materials). The highest occupied molecular orbital (HOMO) represents
the Zr-As bonding, while the lone pairs of electrons of the bridgehead and wingtip arsenic
atoms (arsenic atoms bonded to Zr) are the HOMO-1 and HOMO-2, respectively. Both are
energetically close to each other, but the HOMO-2 has a considerably higher arsenic atomic
orbital contribution from the wingtip arsenic atoms (64%) compared to the HOMO-1 orbital
(26% for the wing tip and 34% from the bridgehead As atoms). This would favor a more
effective orbital overlap of the wingtip atoms with a potential acceptor orbital of a Lewis
acid. Furthermore, the natural charge distribution shows a negative charge concentration
on the wingtip arsenic atoms (nat. charge: −0.218) compared to the bridgehead arsenic
atoms (nat. charge: +0.016; Figure 2). The electrostatic potential (Figure 2, right) presents
a similar picture, showing that the wingtip As atoms have the highest negative potential.
This indicates that a coordination of the electron-rich arsenic atoms directly bound to the
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zirconium atom should be favored. In contrast, due to the possible steric repulsion of the
Cp” ligand, a coordination of the bridgehead arsenic atoms could still be possible.
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Recently, we investigated the coordination behavior of [Cp”2Zr(η1:1-P4)] towards
Lewis-acidic metal fragments [27]. The results show that a coordination to Lewis acids via
both the wing tip and bridgehead phosphorus atoms is possible, with the coordination
via the wing tip P atoms being favored electronically but disfavored sterically. Since the
single bond covalent radius of As is larger than that of P (1.21 Å vs. 1.11 Å for As and P,
respectively) [34] and inherently the Zr-As bond (2.6619(4) Å to 2.6656(3) Å) [24] is longer
compared to the Zr-P bond (2.5596(7) Å to 2.5620(6) Å) [27], one would expect that, for 1,
the electronic effects should predominate and a coordination via wingtip arsenic atoms
be preferred.

2.2. Coordination of 1 to Transition Metal Complexes

The reaction of 1 with Lewis-acidic transition metal compounds leads to single or dou-
ble coordination of 1. Scheme 2 gives an overview of the reactivity of 1 towards transition
metal compounds. All products were comprehensively characterized by mass spectrometry,
NMR spectroscopy, IR spectroscopy, and single crystal X-ray structure analysis.
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metal compounds.

The reaction of 1 with [W(CO)5thf] and [CpMn(CO)2thf] (Cp = cyclopentadienyl) in
thf leads to the formation of the hetero trinuclear complexes [Cp”2Zr(µ3,η1:1:1:1-As4)(LA)2]
(LA = W(CO)5 (2); CpMn(CO)2 (3)], respectively (Scheme 2). The stoichiometry used
has neither an influence on the reaction outcome nor, as a result, on the coordination
mode. In contrast, the reaction with [Fe2(CO)9] in n-hexane leads to the formation
of the mono-substituted compound [Cp”2Zr(µ,η1:1:1:1-As4)(Fe(CO)4)] (4), also irrespec-
tive of the stoichiometry used. In an attempt to synthesize the di-substituted complex
[Cp”2Zr(µ,η1:1:1:1-As4){Fe(CO)4}2], the reaction of 1 with [Fe2(CO)9] was performed at
different temperatures. Surprisingly, the reaction in refluxing n-hexane leads to the forma-
tion of [Cp”2Zr(µ,η3:1:1-As4){Fe(CO)3}] (5). By these reaction conditions, 4 is formed first,
followed by CO elimination and the subsequent insertion of the Fe(CO)3 fragment into the
As-As bond of the bridgehead As atoms (Scheme 2). The same reaction outcome, namely
the formation of 5, can be observed when isolated 4 is heated to 70 ◦C in n-hexane for 2 h.
This strongly indicates that 5 is formed from 4. A similar rearrangement of a P4-butterfly
core has been reported for the reaction of [(Cp*Cr(CO)3}2(µ,η1:1-P4)] with [(Cr(CO)4(nbd)]
(nbd = norbornadiene) [35]. In 2, 3 and 4, the As4 ligand in 1 serves as a four-valence
electron donor, while, in 5, it serves as a six-electron donor.

DFT calculations at the B3LYP/def2-SVP level show that the coordination via the
wingtip arsenic atoms is favored compared to the bridgehead arsenic atoms
(Supplementary Materials). The coordination of one wing tip arsenic atom to one Lewis
acid is exothermic with −58, −61 and −105 kJ·mol−1 for W(CO)5, CpMn(CO)2 and Fe(CO)4
fragments, respectively, while the coordination of a second fragment is similarly exothermic
with −59, −68 and −100 kJ·mol−1, respectively (Supplementary Table S5). These are in
agreement with the experimental results, where in the reaction solution the formation of
both mono and disubstituted species has been observed. In the case of 4 however, only
the mono-substituted complex could be isolated, probably due to the lower solubility of 4
compared to the di-substituted derivative as well as the presence of a complex equilibrium
in solution (vide infra).

Single crystals suitable for X-ray diffractions were obtained by storing a concentrated
n-hexane (2) or n-pentane (3, 4, 5) solution at −78 ◦C. It should be mentioned that 5 always
co-crystallizes with a certain amount of 4 in a ratio of approximately 10:1. The molecular
structures in the solid state are depicted in Figure 3. In the compounds 2, 3 and 4, one or
two arsenic atoms of the As4-butterfly moiety of 1 coordinate to the Lewis-acidic metal
fragments. Due to the steric repulsion, the As4 unit is slightly distorted. The As-As
distances are still intact and in the range of a single bond (2: 2.4363(6) Å to 2.4649(6)Å;
3: 2.4394(4) Å to 2.4710(4) Å; 4: 2.4321(6) Å to 2.4791(4) Å) [13,16,19,24]. Furthermore, the
Zr-As distances are slightly elongated compared to 1 [24]. In the case of 2 and 4, the As-W
distances of 2.6560(4) Å and 2.6595(4) Å and the As-Fe distance of 2.4213(7) Å are slightly
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elongated compared to the sum of the single bond covalent radii (As-W: 2.58 Å; As-Fe:
2.37 Å) [34]. This indicates an elongated single bond between the coordinating As atoms
and the metal center of the Lewis acids. In contrast, in 3, the As-Mn distances (2.3605(4) Å
and 2.3732(5) Å) are slightly below the calculated value of 2.40 Å, which implies a single
bond [34]. In 5, the As-As distance between the former bridgehead arsenic atoms is 3.032(3)
Å, which clearly shows the cleavage of this bond. The other As-As bonds are still in the
range of a single bond (2.4657(14) Å and 2.4721(13) Å) [13,16,19], and the As-Fe distances
of 2.4151(16) Å to 2.4265(15) Å are in the same range as observed for 4.
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Figure 3. Molecular structures of 2, 3, 4 and 5 in the solid state with thermal ellipsoids at 50% probability level. Hydrogen
atoms are omitted and the Cp” ligands are drawn in the tube model for clarity.

The complexes 2–5 were characterized by IR and 1H NMR spectroscopy as well as by
mass spectrometry. While the expected carbonyl stretches were observed in the IR spectra
of 2, 3, 4 and 5, marked differences are present in their 1H NMR spectra. The 1H NMR
spectrum of 2 shows one set of signals for the Cp” ligands (one singlet for the tBu groups
at 1.26 ppm and a triplet and a doublet at 5.31 ppm and 5.48 ppm, respectively, for the
Cp ring-bound hydrogen atoms), while, in LIFDI-MS, a peak corresponding to [M+ −
W(CO)5] (corresponds to the mono-substituted complex) can be observed (Supplementary
Materials). In the 1H NMR spectrum of crystalline 3 dissolved in C6D6, three sets of signals
corresponding to Cp” ligands can be detected. In two of them, the adjacent CH groups are
equivalent, indicating that the Cp” ligands are in a symmetric environment, while, in the
third set, they are not equivalent, pointing to an asymmetric compound (Figure 4). One
set of signals corresponding to a symmetric Cp” ligand can be assigned to the starting
material 1, the second set of signals for the symmetric Cp” ligand is assigned to 3, based
on the comparison with the 1H NMR data of 2 which also shows a symmetric Cp” ligand.
The set of signals for the Cp” ligands in an asymmetric environment can be attributed
to [Cp”2Zr(µ,η1:1:1-As4){CpMn(CO)2}] (3′), based on the comparison with the 1H NMR
data for 4 (Figure 4; vide infra). These data show that, in solution, 3 partly dissociates
to 3′ and to 1 by elimination of one as well as both CpMn(CO)2 fragments. Attempts
to freeze this dynamic process by lowering the temperature leads only to a temperature-
dependent shift of the resonance signals as well as to a change of their relative intensity.
By lowering the temperature, the intensity of the resonance signals corresponding to 3
increases and 3 crystallizes from the solution. These results are in stark contrast to the
results reported for the related reaction of [Cp”2Zr(µ,η1:1-P4)] with [CpMn(CO)2thf], where
the phosphorus analog of the mono-substituted 3′ and the coordination of one or both
bridgehead phosphorus atoms to the manganese fragment were reported (see Figure S10
in Supplementary Materials) [27].
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The 1H NMR spectrum of isolated 4, dissolved in C6D6, shows one set of signals
corresponding to Cp” ligands in an asymmetric environment, two singlets at 1.15 ppm
and 1.28 ppm for the tBu groups and three triplets at 5.11 ppm, 5.22 ppm and 5.44 ppm
for the CH groups. Therefore, no dynamic behavior in solution similar to that observed
for 3 can be detected. In the reaction solution, however, among signals of 4, also signals
corresponding to the di-substituted complex [Cp”2Zr(µ3,η1:1:1:1-As4){Fe(CO)4}2] (4′) and 1
can be detected by 1H NMR spectroscopy (Supplementary Materials), but only 4 crystallizes
from the solution. In the remaining solution, after crystallization of 4, three sets of signals
can still be detected, even though the intensity of the signals of 4 is drastically decreased.
Surprisingly, the 1H NMR spectrum of 5 shows three signals (δ [ppm] = 1.32 (s), 5.84 (d),
5.95 (t)) for the Cp” substituents indicating a symmetric environment on the NMR timescale
(see Figure S14 in Supplementary Materials).

2.3. Coordination towards Main Group Compounds

In order to investigate whether the nature of the Lewis acid plays a crucial role
in the coordination behavior of 1, the reactivity of 1 towards Lewis-acidic main group
compounds was investigated (Scheme 3). Thus, the reaction with AlR3 (R = Me, Et, iBu) in
toluene was performed, leading to [Cp”2Zr(µ3,η1:1:1:1-As4)(AlR3)2] (6a: R = Me; 6b: R = Et;
6c: R = iBu), showing twofold coordination of 1 to the AlR3 units. The reaction outcome is
independent of the stoichiometry used, although the yield can be increased by using an
excess of the Lewis acid. In contrast, the reaction with [B(C6F5)3] leads to the formation of
[Cp”2Zr(µ3,η1:1:1:1-As4){B(C6F5)3}] (7). Probably due to the pronounced steric requirement
of [B(C6F5)3], only the formation of the mono-substituted compound 7 seems to be possible,
interestingly also at a wingtip arsenic atom. The less Lewis acidic Et3B do not reacts with 1.

DFT calculations support the reaction outcome (B3LYP/def2-SVP level of theory;
for further information, see Supplementary Materials). In the case of the compounds 6
and 7, the coordination of the arsenic atoms directly bound to the zirconium is favored
(−24 kJ·mol−1 (6a), −33 kJ·mol−1 (6b), −7 kJ·mol−1 (6c)) (see Supplementary Materials)
as compared to the coordination of the bridgehead arsenic atoms. Furthermore, the for-
mation of the di-substituted compounds 6a, 6b, and 6c is energetically clearly favored
(6a: −28 kJ·mol−1; 6b: −24 kJ·mol−1; 6c: −7 kJ·mol−1) over the mono-substituted com-
pounds. These results unambiguously underline the experimental results.
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Scheme 3. Overview of the reactions of [Cp”2Zr(η1:1-As4)] (1) with Lewis-acidic main
group compounds.

Single crystals suitable for X-ray diffractions can be obtained by storing a concen-
trated n-pentane (6a, 6b, 6c) or n-hexane (7) solution at −78 ◦C. The molecular struc-
tures of 6a and 7 are exemplified in Figure 5. In the case of the compounds 6, a di-
coordination of 1 is observed, while, in 7, only the mono-coordination of 1 to boron
occurs. The geometric parameters of 6a, 6b, and 6c are very similar, therefore, only 6a
will be discussed further (for 6b, 6c see Supplementary Materials) herein. In 6a and 7,
the As4-butterfly unit is only slightly distorted, which can be attributed to the steric re-
pulsions. The As-As distances in 6a of 2.4272(4) Å to 2.4583(3) Å and 7 of 2.436(3) Å to
2.457(4) Å do not differ considerably from that reported for 1 [24]. However, the Zr-As
distances are slightly elongated (6a: 2.6810(2) Å; 7: 2.732(3) Å) [24]. As in 2–4, the As-Al
(6a: 2.6743(5) Å) and As-B (7: 2.177(6) Å) distances in 6a and 7 are slightly longer than the
sum of the covalent radii (As-Al: 2.47 Å and As-B: 2.06 Å) [34].
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Figure 5. Molecular structures of 6a and 7 in the solid state with thermal ellipsoids at 50% probability
level. Hydrogen atoms are omitted, the Cp” ligands and the [B(C6F5)3] ligand are drawn in the tube
model for clarity.

The 1H NMR spectra of 6a, 6b, 6c, and 7 show the expected signals for the Cp” ligands
as well as the signals of the alkyl groups bonded to aluminum in compound 6. A doublet
and a triplet corresponding to the hydrogen atoms directly bonded to the cyclopentadienyl
ligands resonate between δ = 5.0 ppm to 5.78 ppm for 6. The corresponding signals for
7 are slightly more deshielded and resonate at 5.88 ppm and 6.06 ppm. Furthermore, a
sharp singlet for the tBu groups is observed (δ = 1.27 ppm (6a); 1.26 ppm (6b, 7); 1.29 ppm
(6c)). Additionally, the expected signals for the alkyl groups of the aluminum Lewis acids
appear, for 6a a singlet at −0.29 ppm (Supplementary Materials for 6b and 6c).

3. Materials and Methods
3.1. General Informations

All experiments were performed under an atmosphere of dry nitrogen or argon using
Schlenk and glovebox techniques. Solvents were purified, dried and degassed prior to
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use. 1H, 13C{1H} NMR spectra were recorded at room temperature on a Bruker Avance
400 spectrometer (1H: 400,13 MHz, 13C: 100.61 MHz). 1H, 13C NMR chemical shifts are
reported in parts per million (ppm) relative to the external standard Me4Si. The elemental
analysis was determined with a Vario micro cube apparatus. For mass spectrometry, a
Finnigan MAT 95 (LIFDI MS, FD MS) or a Finnigan MAT SSQ 710 A (EI MS) device and a
Joel AccuTOF GCX spectrometer were used. [Fe2(CO)9] [36,37] and [Cp”2Zr(η1:1-As4)] [24]
were prepared according to literature procedures.

3.2. Synthesis and Characterization of the Compounds 2–7

3.2.1. Synthesis and Characterization of [Cp”2Zr(µ3,η1:1:1:1-As4)(W(CO)5)2] (2)

W(CO)6 (43 mg, 0.13 mmol) is dissolved in 50 mL thf and irradiated with UV light for
1 h using a low-pressure mercury lamp (TQ 150). The pale-yellow solution is added to a
solution of [Cp”2Zr(η1:1-As4)] (1) (50 mg, 0.067 mmol) and stirred for 24 h. After removing
the solvent in vacuo, the brown residue is extracted with n-hexane. Red crystals of 2
suitable for single crystal X-ray structure analysis were obtained by storing a concentrated
solution at −78 ◦C. Crystalline yield: 19 mg (0.014 mmol, 21%).

1H NMR (C6D6, 298 K): δ [ppm] = 1.26 (s, 36 H, CCH3), 5.31 (t, br, 2 H, C5H3
tBu2),

5.48 (d, 4 H, C5H3
tBu2); IR (toluene): ν [cm−1] = 2064 (m), 1977 (vs), 1937 (s); elemental

analysis (%): calculated for [C36H42ZrAs4W2O10] (1391.77 g/mol): C, 31.03; H, 3.04; O,
11.48. No satisfying elemental analysis could be obtained, not even by using Sn capsules.
This is caused by the air sensitivity of compound 2; FD MS (toluene): m/z (%): 1393.8
(12) [M]+, 1070.2 (M+-[W(CO)5], 100); crystal data for C36H42As4O10W2Zr, triclinic, P-
1, a = 11.0989(3) Å, b = 12.5065(3) Å, c = 17.5582(5) Å, α = 101.764(2)◦, β = 95.394(2)◦,
γ = 113.207(2)◦, V = 2151.41(10) Å3.

3.2.2. Synthesis and Characterization of [Cp”2Zr(µ3,η1:1:1:1-As4)(CpMn(CO)2)2] (3)

A solution of [CpMn(CO)3] (56 mg, 0.27 mmol) is dissolved in 50 mL thf and irradiated
with UV light for 1 h using a low-pressure mercury lamp (TQ 150). The pale-rose solution
is added to solid [Cp”2Zr(η1:1-As4)] (1) (100 mg, 0.13 mmol). After stirring for 16 h at
room temperature, the solvent of the red-brown reaction mixture is removed in vacuo,
extracted with 10 mL n-pentane and filtered via cannula. A red solution is obtained. Violet
crystals of 3 suitable for single crystal X-ray structure analysis were obtained by storing a
concentrated solution at −78 ◦C. Crystalline yield: 15 mg (0.014 mmol, 11%).

1H NMR (C6D6, 298 K): δ [ppm] = 1.25 (s, 18 H, CCH3), 1.36 (s, 36 H, CCH3), 4.99 (t,
2 H, C5H3

tBu2), 5.26 (t, 2 H, C5H3
tBu2), 5.42 (t, 2 H, C5H3

tBu2); elemental analysis (%):
calculated for [C40H52ZrAs4Mn2O4] (1097.62 g·mol−1): C, 43.77; H, 4.78; found: C, 42.68;
H, 5.13; IR (toluene): ν[cm−1] = 1928 (s), 1873 (s); LIFDI MS (toluene): m/z (%): 1095.9
(M+, 42), 919.9 (M+-[CpMn(CO)2], 100); crystal data for C40H52As4Mn2O4Zr, triclinic, P 1
P-1, a = 11.4684(3) Å, b = 12.1340(4) Å, c = 16.8248(4) Å, α = 80.103(2)◦, β = 89.979(2)◦,
γ = 63.838(2)◦, V = 2080.60(11) Å3.

3.2.3. Synthesis and Characterization of [Cp”2Zr(µ,η1:1:1-As4)(Fe(CO)4)] (4)

A solution of [Cp”2Zr(η1:1-As4)] (1) (60 mg, 0.081 mmol) in 10 mL n-hexane is added
to a suspension of [Fe2(CO)9] (58 mg, 0.16 mmol) in 10 mL n-hexane. The reaction mixture
is stirred at room temperature for 24 h. From the brown reaction mixture, the solvent
was removed in vacuo. The brown residue was dissolved in 5 mL n-pentane and fil-
tered via cannula. Orange crystals of 4 suitable for single crystal X-ray structure analysis
were obtained by storing a concentrated solution at −78 ◦C. Crystalline yield: 11 mg
(0.016 mmol, 20%).

1H NMR (C6D6, 298 K): δ [ppm] = 1.15 (s, 18 H, CCH3), 1.28 (s, 18 H, CCH3), 5.11
(t, 2 H, C5H3

tBu2), 5.22 (t, 2 H, C5H3
tBu2), 5.44 (t, 2 H, C5H3

tBu2); elemental analysis
(%): calculated for [C30H42ZrAs4FeO4] (911.83 g/mol): C, 39.45; H, 4.63. No satisfying
elemental analysis could be obtained, not even by using Sn capsules. This is caused by the
air sensitivity of compound 4; ATR-IR (diamond crystal): ν[cm−1] = 2021 (m), 1949 (m),
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1918 (s); LIFDI MS (toluene): m/z (%): 911.8 (M+, 100); crystal data for C30H42As4FeO4Zr,
monoclinic, P21/m, a = 9.1335(2) Å, b = 17.1283(3) Å, c = 11.3330(2) Å, β = 104.114(2)◦,
α = γ = 90◦, V = 1719.43(6) Å3.

3.2.4. Synthesis and Characterization of [Cp”2Zr(µ,η3:1:1-As4)(Fe(CO)3)] (5)

A solution of [Cp”2Zr(η1:1-As4)] (1) (60 mg, 0.081 mmol) in 10 mL n-hexane is added
to a suspension of [Fe2(CO)9] (58 mg, 0.24 mmol) in 10 mL n-hexane. The reaction mixture
is refluxed for 3 h. All volatiles of the brown mixture are removed in vacuo, extracted
with 10 mL of n-pentane and filtered via cannula. Violet crystals of 5 suitable for single
crystal X-ray structure analysis were obtained by storing a concentrated solution at −78 ◦C.
Crystalline yield: 9 mg (0.01 mmol, 13%).

1H NMR (C6D6, 298 K): δ [ppm] = 1.32 (s, 36 H, CCH3), 5.84 (d, 4 H, C5H3
tBu2),

5.95 (t, 2 H, C5H3
tBu2); elemental analysis (%): calculated for

[C26H42ZrAs4(Fe(CO)4)]0.1[C26H42ZrAs4(Fe(CO)3)]0.9 + 0.45·[C5H12] (as found in the X-
ray structure, cf. Supplementary Materials): C, 40.90; H, 5.19; found: C, 40.71; H, 4.77; ATR-
IR (diamond crystal): ν[cm−1] = 1919 (m), 2016 (m); LIFDI MS (toluene): m/z (%): 883.8
(M+, 100); crystal data for C33.2H52.8As4FeO2.7Zr, orthorhombic, Pnma, a = 12.0528(5) Å,
b = 12.2716(7) Å, c = 18.8597(6) Å, α = β = γ = 90◦, V = 3926.0(3) Å3.

3.2.5. Synthesis and Characterization of [Cp”2Zr(µ3,η1:1:1:1-As4){AlR3}2] (R = Me (6a),
Et (6b), iBu (6c))

A solution of AlR3 (6a: 0.17 mL, c = 2.0 mol/L, 0.34 mmol; 6b: 0.34 mL, c = 1.0 mol/L,
0.34 mmol; 6c: 0.21 mL, c = 1 mol/L, 0.21 mmol) is added via a syringe to a solution of
[Cp”2Zr(η1:1-As4)] (1) (50 mg, 0.067 mmol) in 10 mL toluene. The reaction mixture is stirred
for 3 h at room temperature. After removing the solvent in vacuo, the orange-red residue
is dissolved in n-pentane and filtered via cannula. Orange crystals of 6a/6b/6c suitable for
single crystal X-ray structure analysis were obtained by storing a concentrated solution
at −78 ◦C. Crystalline yield: 6a: 25 mg (0.028 mmol, 42%); 6b: 42 mg (0.043 mmol, 64%);
6c: 32 mg (0.028 mmol, 42%).

6a: 1H NMR (C6D6, 298 K): δ [ppm] = −0.29 (s, 18 H, AlCH3), 1.27 (s, 36 H, CCH3), 5.06
(t, 2 H, C5H3

tBu2), 5.30 (d, 4 H, C5H3
tBu2); 13C{1H} NMR (C6D6, 298 K): δ [ppm] = −6.5

(s, Al(CH3)3), 32.6 (s, C(CH3)3), 34.1 (s, CH3), 101.5 (s, C5H3
tBu2), 107.4 (s, C5H3

tBu2),
137.1 (s, C5H3

tBu2); elemental analysis (%): calculated for [C32H60ZrAs4Al2] (888.02
g·mol−1): C, 43.20; H, 6.80; found: C, 43.66; H, 6.66; LIFDI MS (toluene): No peaks
detected, due to the high volatility of 6a; Crystal Data for 0.5·(C32H60Al2As4Zr), mono-
clinic, I2/a, a = 17.6419(3) Å, b = 9.9522(2) Å, c = 23.1811(4) Å, β = 109.190(2)◦, α = γ = 90◦,
V = 3843.88(13) Å3.

6b: 1H NMR (toluene-d8, 298 K): δ [ppm] = 0.27 (q, 12 H, Al(CH2CH3), 1.26 (s, 36 H,
CCH3), 1.29 (m, 18 H, Al(CH2CH3), 5.00 (t, 2 H, C5H3

tBu2), 5.27 (d, 4 H, C5H3
tBu2); 13C{1H}

NMR (C6D6, 298 K): δ [ppm] = 32.5 (s, C(CH3)3), 34.1 (s, CH3), 101.3 (s, C5H3
tBu2), 107.1 (s,

C5H3
tBu2), 136.6 (s, C5H3

tBu2); elemental analysis (%): calculated for [C38H72ZrAs4Al2]
(972.12 g·mol−1): C, 46.87; H, 7.45; found: C, 46.85; H, 7.11; LIFDI MS (toluene): No peaks
detected, due to the high volatility of 6b; crystal data for 0.5·(C38H72Al2As4Zr), monoclinic,
C2/c, a = 25.1728(4) Å, b = 10.3746(2) Å, c = 18.0895(3) Å, β = 110.797(2)◦, α = γ = 90◦,
V = 4416.40(14) Å3.

6c: 1H NMR (thf-d8, 298 K): δ [ppm] = −0.08 (d, 12 H, Al(CH2CH{CH3}2), 0.91 (d,
36 H, Al(CH2CH{CH3}2), 1.29 (s, 36 H, CCH3), 1.81 (m, 6 H, Al(CH2CH{CH3}2), 5.08 (t,
2 H, C5H3

tBu2), 5.76 (d, 4 H, C5H3
tBu2); 13C{1H} NMR (C6D6, 298 K): δ [ppm] = 24.8

(s, Al(iBu)3), 26.7 (s, Al(iBu)3), 28.5 (s, Al(iBu)3), 32.6 (s, C(CH3)3), 34.1 (s, CH3), 101.2
(s, C5H3

tBu2), 107.0 (s, C5H3
tBu2), 136.3 (s, C5H3

tBu2); elemental analysis (%): calcu-
lated for [C50H96ZrAs4Al2] (888.02 g·mol−1): C, 52.58; H, 8.45; found: C, 52.62; H, 8.15.
LIFDI MS (toluene): No peaks detected, due to the high volatility of 6c; crystal data for
0.5·(C50H96Al2As4Zr), monoclinic, C2/c, a = 18.5668(4) Å, b = 11.9157(2) Å, c = 27.2938(5) Å,
β = 110.737(2)◦, α = γ = 90◦, V = 5647.2(2) Å3.
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3.2.6. Synthesis and Characterization of [Cp”2Zr(µ,η1:1:1-As4)(B(C6F5)3)] (7)

A solution of [Cp”2Zr(η1:1-As4)] (1) (60 mg, 0.081 mmol) in 10 mL n-hexane is added
to a solution of [B(C6F5)3] (81 mg, 0.16 mmol) in 10 mL n-hexane at −60 ◦C. The color
changes immediately to brown and a brown solid is formed. After stirring for 2 h at −60 ◦C
and further 2 h at room temperature, the solvent is removed in vacuo. The brown residue
is extracted with 5 mL of n-hexane and filtered via a cannula. Orange crystals of 7 suitable
for single crystal X-ray structure analysis were obtained by storing the solution at −78 ◦C.
Crystalline yield: 44 mg (0.034 mmol, 43%).

1H NMR (thf-d8, 298 K): δ [ppm] = 1.26 (s, 36 H, CCH3), 5.88 (d, 4 H, C5H3
tBu2),

6.06 (t, 2 H, C5H3
tBu2). 19F{1H} NMR (thf-d8, 298 K): δ [ppm] = −162.28 (m, B(C6F5)3,

meta), −155.46 (m, B(C6F5)3, para), −130.84 (m, B(C6F5)3, ortho). 19F NMR (thf-d8, 298
K): δ [ppm] = −162.28 (m, B(C6F5)3, meta), −155.46 (m, B(C6F5)3, para), −130.84 (m,
B(C6F5)3, ortho); elemental analysis (%): calculated for [C44H42ZrAs4BF15] (1255.91 g/mol):
C, 42.03; H, 3.37. No satisfying elemental analysis could be obtained, not even by using
Sn capsules. This is caused by the air sensitivity of compound 7; LIFDI MS (toluene):
Due to the instability of 7, only fragments could be detected. Inter alia: m/z (%): 966.75
([Cp”2Zr(B2(C6F5)3]), 742.5 (M+ − B(C6F5)3); crystal data for C44H42As4BF15Zr, triclinic,
P-1, a = 11.2797(4) Å, b = 12.7421(5) Å, c = 18.5702(6) Å, α = 71.815(3)◦, β = 87.410(3)◦,
γ = 65.217(4)◦, V = 2290.82(16) Å3.

4. Conclusions

In summary, herein, we reported the synthesis and characterization of a variety of
coordination compounds based on [Cp”2Zr(η1:1-As4)] (1). Computational studies show
the preferred coordination of the wingtip arsenic atoms for coordination as well as the
preference for the formation of the di-substituted compounds. Experimentally, the co-
ordination of the two wingtip arsenic atoms is observed for the transition metal com-
plexes [Cp”2Zr(µ3,η1:1:1:1-As4)(W(CO)5)2] (2) and [Cp”2Zr(µ3,η1:1:1:1-As4)(CpMn(CO)2)2]
(3). In contrast, the reaction of 1 with [Fe2(CO)9] leads to the mono-substituted complex
[Cp”2Zr(µ,η1:1:1-As4)(Fe(CO)4)] (4). NMR investigations show the formation of both the
mono-substituted (4) and the di-substituted [Cp”2Zr(µ3,η1:1:1-As4){Fe(CO)4}2] compounds,
however, only 4 can be isolated. Elimination of CO from 4 leads to the formation of
[Cp”2Zr(µ,η3:1:1-As4)(Fe(CO)3)] (5) in which the As4-butterfly core is rearranged to a cy-
clo-As4 ligand. In solutions, isolated 3 shows an interesting equilibrium between 3, the
mono-substituted complex [Cp”2Zr(µ,η1:1:1:1-As4){CpMn(CO)2}] and 1, while 4 does not
dissociate in solution.

The comparison of the reactivity of 1 and the phosphorus congener [Cp”2Zr(µ,η1:1-
P4)] towards transition metal-based Lewis acids reveals pronounced differences. While
[Cp”2Zr(µ,η1:1-P4)] can coordinate to LAs via both wingtip and bridgehead phosphorus
atoms and can form mono-, di- and tri-substituted complexes, 1 coordinates solely through
the wingtip arsenic atoms and forms only mono- or di-substituted complexes, with the
latter prevailing.

Moreover, 1 reacts with Lewis-acidic main group compounds in a similar way as
with transition metal-based LAs. Here, also a twofold coordination is observed for
the compounds [Cp”2Zr(µ3,η1:1:1:1-As4){AlR3}2] (R = Me (6a), Et (6b), iBu (6c)). In con-
trast, the mono-substituted compound 7 is formed in the reaction with [B(C6F5)3] due to
sterical reasons.

Supplementary Materials: The following ones are available online. Crystallographic Data, 1H NMR
spectra and computational details for the mentioned compounds.
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