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ABSTRACT

We present an easy-to-use webserver that makes it
possible to simultaneously use a number of state of
the art methods for performing multiple alignment
and secondary structure prediction for noncoding
RNA sequences. This makes it possible to use the
programs without having to download the code and
get the programs to run. The results of all the
programs are presented on a webpage and can
easily be downloaded for further analysis. Additional
measures are calculated for each program to make
it easier to judge the individual predictions, and a
consensus prediction taking all the programs into
account is also calculated. This website is free and
open to all users and there is no login requirement.
The webserver can be found at: http://genome.
ku.dk/resources/war.

INTRODUCTION

Over the past few years, different studies have shown how
noncoding RNAs (ncRNA) are involved in gene expres-
sion, cell specialization, multi-drug resistance, splicing etc.
in all living cells (1,2). For instance, only a small part of
mammalian genomes encodes protein coding genes, but
experiments have shown that a large fraction of the
genomes is transcribed (3). Thus, there is potential for a
large number of ncRNA transcripts, and there is
computational evidence for thousands of structured
RNAs in several vertebrate genomes (4–6).

This has given rise to an increased interest in ncRNAs,
and since the structure of these molecules is tightly linked
to their function, structure prediction methods have
received much attention. Many different methods have
been developed and they vary greatly in their approaches
to the problem. Previously, methods for folding a single
sequence by predicting the minimum free energy con-
formation were pursued [mfold (7), RNAfold (8)]. Today,
comparative methods are the norm where a multiple

alignment of a set of related RNA sequences is a part of
the approach. Either the alignment is predicted alongside
the consensus structure [i.e. the Sankoff-approach (9)] or
an alignment is part of the input to the structure
prediction [e.g. RNAalifold (10)].
The benefit of using comparative methods is that more

information is available than for single sequence
approaches. Many programs have been published over
the past few years, and it can be difficult for a user to
determine which one to use, to judge the different
predictions, and sometimes even to run the programs.
Since the performance of the different programs depend
on many factors such as sequence length and identity, a
specific program will not always perform best. Using an
ensemble of programs therefore makes it easier to get a
good idea of the correct result.
Here, we present an easy way to run a selection of

methods and get a combined view of the predictions. The
user simply inputs the sequences to be analyzed, and a
selection of programs is automatically run on the dataset.
The predictions are analyzed in various ways to make the
output more informative for the user. The results are
presented on a webpage, where one can easily download
the different predictions and compare the relative perfor-
mance of the individual programs. We also present a
combined consensus prediction based on the results.

MATERIALS AND METHODS

The webserver for aligning structural RNAs (WAR)
performs multiple alignment and secondary structure
prediction on a dataset using a number of programs.
The input to the server is the RNA sequences to be
analyzed in Fasta format. The sequences can either be
uploaded as a file or copy–pasted to a field on the
webpage. The methods chosen are (in alphabetical order):

CMfinder (11): an algorithm based on expectation
maximization using covariance models. Searches for
RNA motifs combined with structure prediction based
on both folding energy and covariation.
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FoldalignM (12): based on the Sankoff approach,
where the partition function (13) is used to calculate
basepair probability matrices for each sequence. These
matrices are then aligned using progressive alignment
to produce a multiple alignment and predicted
consensus structure. The approach is similar to
PMcomp/PMmulti (14).
LaRA (15): a mathematical approach using
Lagrangian transformed relaxation. The problem of
optimizing alignment and structure is formulated as
an integer programming problem, and a numerical
optimization approach is used.
MASTR (16): a sampling approach using Markov
chain Monte Carlo in a simulated annealing frame-
work, where both structure and alignment is optimized
by making small local changes. The score combines
the log-likelihood of the alignment, a covariation term
and the basepair probabilities.
RNAalifold (10)+ClustalW (17): ClustalW is one of
the most widely used alignment programs. It performs
progressive alignment using a simple guide tree.
RNAalifold predicts the structure given in an align-
ment using both the free energy and a covariation
measure to evaluate the basepairing regions.
RNAforester (18)+RNAcast (19): RNAforester per-
forms multiple alignment based on an input set of
sequences with secondary structures. The output is
thus based on structural similarities. The input set is
generated using RNAcast that predicts the common
shape for all sequences and the energetically best
structure for each sequence.
RNASampler (20): Possible stems are found for each
sequence and the stems are then aligned by comparing
all pairs of sequences. A conservation score consider-
ing both structure and sequence alignment measures
the quality, and a structural alignment is built.
Unpaired regions are aligned using ClustalW.

All the programs perform only global alignment, except
for CMfinder which is capable of performing local
multiple alignment. Optionally, one can use the webserver
to perform local alignment. This is done by extracting the
best scoring local motif predicted by CMfinder. Then all
the selected programs in the webserver are run globally, as
usual, on the local region selected by CMfinder.
All the programs are run using their default settings.

If the user wants to try other parameter settings, we
encourage the use of the webservers and/or source code of
the individual programs. There are a few limitations on the
use of WAR: the user must submit at least two sequences
(note that CMfinder does not work with less than three
sequences), no more than 50 sequences can be submitted in
one job and a sequence can be nomore than 250 nucleotides
in length unless the local alignment box is checked; in that
case, there is no length limit.

Postprocessing of the results

For each method, the result is presented and can be
easily downloaded for further use. The multiple alignment
is colored using the coloraln-script from the Vienna
package (8) and is shown with a barplot visualizing the

conservation for each column. The consensus structure is
written on top of the alignment, and the predicted
basepairs are color coded to highlight canonical basepairs
(i.e. Watson–Crick interactions and GU-basepairs) and
compensatory mutations.

The consensus sequence is shown along with the
consensus structure as predicted by the program (both
as dot-bracket and a Postscript-file). The consensus
sequence is defined using the whole range of IUPAC
ambiguity characters (21) and is similar to the most
informative sequence (22).

To quantify the quality of the alignment, the average
pairwise identity is calculated. When a reference alignment
is not known, it is not a trivial task to measure the
correctness of an alignment. This is one of the reasons why
so many different alignment algorithms exist. The identity
measure used in theWAR server is not as such ameasure of
correctness, but instead a measure of the quality of the
alignment. For instance, the correct alignment of highly
diverged sequences will by necessity have a lower overall
identity than the correct alignment of closely related
sequences. However, in the current setting, a number of
different methods have all been used on the same dataset
and one can get an idea of the quality by comparing the
pairwise identity of the alignments. If one program obtains
a comparatively low pairwise identity, the alignment is
probably worse. The average pairwise identity is calculated
by making all the pairwise comparisons between sequences
in the multiple alignment and counting the number of
aligned positions that are identical. The average fraction of
identities is then reported for the whole alignment.

To estimate the thermodynamical stability of the
predicted structure, the average free energy is used. The
average free energy in itself cannot be used directly as a
quality measure, but by comparing the average of the
different predictions the relative performance of each can
be assessed. For a given prediction, we map the consensus
structure to each sequence in the alignment after removing
the gaps. The sequence is then folded into this specified
structure and the free energy calculated using RNAeval (8).
The average free energy for the entire alignment given the
predicted consensus structure is then reported.

To evaluate how well the sequence alignment supports
the predicted structure, we calculate a covariation score for
each basepair, given the alignment. The proposed structure
will pair up columns in the alignment, and covariation
measures the amount of evidence for a basepair. This is
done by calculating how often a variation in one column
leads to a variation in the other. We use the measure that
proved to be best in a recent study comparing different
covariation measures (23) and report the average covaria-
tion score for all basepairs. Note that this measure can be
negative (due to a penalty term) and greater than 1.

The quality of the predicted structure is also measured
as the average basepair probability. For each sequence, we
calculate the basepair probability matrix using RNAfold
(8,13). For a single sequence, we can then find the
probability of each proposed basepair by simply looking
in the matrix. For two pairing columns in the alignment,
the probability of a basepair is then found as the average
probability for that particular basepair in each sequence.
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The average probability for the whole structure is then
reported.

All these results are reported on a single webpage that
makes it easy to compare the different methods for both
similarities and differences. Alignments and structures are
easily downloaded in different formats.

A consensus prediction is made based on all the
programs in the following way: T-Coffee (24) is a program
that performs multiple alignment using a library of all
both local and global pairwise alignments in the set. The
library is extended by realigning to a third sequence and
weights are calculated based on consistencies within the
library. The multiple alignment is then performed pro-
gressively based on these weights.

This method can also predict a consensus multiple
alignment by building the library from a number of
multiple alignments instead. A single consensus multiple
alignment is constructed by giving the alignments from all
the programs as input to T-Coffee. The consensus
structure is found by taking each ungapped sequence
and mapping the predicted structure from each program
onto it. If a basepair is predicted by at least 50% of the
programs, it becomes a part of the consensus structure for
that sequence. This gives us a consensus structure based
on all the programs for each sequence in the alignment.
Each sequence is then aligned to the T-Coffee alignment,
making it possible to compare the consensus structure for
each sequence, and the basepairs that are present in at
least 50% of the sequences become part of the consensus
structure for the whole alignment.

WEBSERVER

We illustrate the use of WAR in the following and
especially show how the consensus prediction can be
useful. For this purpose, we use a tRNA dataset consisting
of 10 randomly chosen sequences, but the procedure is the
same for any dataset.

If it is known, a reference alignment and structure can
be uploaded along with the unaligned sequences. This
makes it possible to compare the predictions to the
correct answer and thus rank the methods. We use the

following scores: the predicted alignment is compared to
the reference alignment using the sum of pairs score (SPS),
which is a sensitivity-like measure (25). It is based on the
fraction of nucleotide pairs aligned in the prediction that
are also present in the reference and yields a number
between 0 and 1, where 1 is perfect prediction. The
predicted structure is compared to the reference using
Matthew’s correlation coefficient (MCC), which shows the
balance between sensitivity (SEN, i.e. the fraction of
correct basepairs that are recovered by the method) and
positive predictive value (PPV, i.e. the fraction of
predicted basepairs that are also in the reference). MCC
lies between �1 and 1, where 1 is perfect prediction.
Using WAR is simple: on the input form, you have to

specify the input sequences either in the box or as a file.
You also have to input a valid email address to receive
notification when the job is complete (note that the email
is used only for this notification). There are also some
optional settings: you can choose to perform local align-
ment, you can specify a reference alignment file if
available, you can name the submission and you can
choose only to run a selection of the programs.
When the programs have finished, a table is shown that

summarizes the predictions (Figure 1). If a reference
alignment was given, the four rightmost columns sum-
marize the performance (SPS, SEN, PPV and MCC).
Otherwise, only the first six columns are shown (program,
CPU time, average sequence identity, average free energy,
covariation and average basepair probability). These
measures are calculated as described earlier.
In the current example, LaRA and RNASampler gave

the most correct structure predictions with MCC ¼ 0:95.
This corresponds with the two programs having the two
lowest average free energies (�17:94 and �18:75, respec-
tively) and the two highest average covariations (0.97 and
1.06, respectively). The average basepair probabilities are
also high in both cases (0.55 and 0.58, respectively). The
most correct alignment was also predicted by LaRA with
SPS ¼ 0:88. The measure of pairwise identity in the
prediction is in this case 0.40, which is only the second
largest. Notice, however, that the program with the highest
pairwise identity also shows a very good SPS of 0.86.

Figure 1. The table showing the results from the different programs.
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When looking at the consensus prediction, it is evident
that combining the structure predictions from all seven
programs yields an improvement in both SEN, PPV and
MCC to 1.0, which is better than the previous best
prediction with MCC ¼ 0:95. Also, the alignment is
improved to SPS ¼ 0:94, which is better than the single
best prediction with SPS ¼ 0:88. Looking at the other
measures, the average free energy (�19:34) and covaria-
tion (1.06) are also best for the consensus, with the
pairwise sequence identity (0.41) and basepair probability
(0.57) being second best. In this case, using the consensus
prediction based on the seven programs is clearly an
improvement to using any single program.
Of course, that is not always the case, especially when

only a few of the programs make reasonable predictions.
Therefore, it is possible to update the consensus (see below)
using only selected programs and not, as per default, all of
them. For example, if some of the programs predict a very
unstable consensus structure with a high free energy, it
might be a good idea to update the consensus by removing
those programs that perform poorly.
Clicking on any of the links in the first column shows a

detailed description of the prediction from the chosen
program. These pages are similar for all programs, only
the consensus link differs. On the consensus page, the
alignment is shown as a heat map at the top illustrating
the confidence of the different parts of the alignment (from
blue being low to red being high, see Figure 2). If
necessary, one can choose which program to include in the
consensus and update the alignment and structure. If some
of the predictions are very different from the rest, the

consensus might be improved by excluding these from the
calculation.

Further down the page is additional information, which
is calculated for each program (Figure 3). The measures
such as average pairwise identity and—if a reference was
uploaded—MCC etc. are shown. Furthermore, the pre-
dicted consensus structure is shown with the calculated
consensus sequence. By pointing with the mouse at the
small image-icon, the structure is shown in a small pop-up
window and by clicking it is downloaded as a Postscript-
file. Below the structure a color-coded image of the
alignment is shown, which can be downloaded as a gif-file
or a Postscript-file. The raw output data from the program
can be downloaded in various formats (Fasta, Clustal,
Stockholm and col) in the top right corner of the page.

The consensus prediction is particularly useful when
studying unknown structural RNAs. With no prior
knowledge, it is hard to judge if getting a good prediction
from a single program is reliable. But if all or several of
the programs agree, and the heatmap shows a reliable
consensus alignment and structure, you can have higher
confidence in the results.

CONCLUSION

The WAR webserver makes it easy to use a number of
methods for aligning and predicting the secondary
structure for a set of structural RNAs. With all the
focus on ncRNAs, this is a very useful tool for any
researcher who wants to analyze sequences, but does not

Figure 2. The top of the consensus result webpage showing the alignment as a heatmap.
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want to get the different programs to run him/herself.
In time, WAR will be extended with new methods that
perform well, and other combinations of alignment tools
and structure prediction tools might be pursued.

What makes WAR especially useful is the postpro-
cessing. The different measures calculated as part of the
pipeline make it easier for the user to judge the quality of
both the alignment and predicted structure, as well as
compare the different methods. The calculated consensus
alignment and structure is a valuable indicator of the
quality of the predictions, especially for new, unknown
sequences, where the user can get a good idea of how
trustworthy the predictions are. Finally, WAR makes it
easy to download the alignments and structures, both for
the individual programs and the consensus, for further
analysis.

It should be stressed again that the performance of the
individual methods depend strongly on the actual dataset:
the RNA family, the sequence length, the overall
identity—all of this will affect the performance. The
strength of the WAR server is the ease with which the
different methods can be compared on different RNA
datasets. In the example above, the tRNA dataset is fairly
divergent and will thus be hard for methods that rely on

a good, purely sequence-based alignment. A set of more
closely related sequences will on the other hand be a
challenge to programs that need a strong evolutionary
signal from covariation. The goal of the above example is
not to compare the individual methods but to show how
the server works. On the website, the result of a different,
less divergent dataset is available as an example.
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