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Osteopontin is a key player for local adipose
tissue macrophage proliferation in obesity
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Günther Staffler 3, Maximilian Zeyda 1,4, Thomas M. Stulnig 1,*
ABSTRACT

Objective: Recent findings point towards an important role of local macrophage proliferation also in obesity-induced adipose tissue inflammation
that underlies insulin resistance and type 2 diabetes. Osteopontin (OPN) is an inflammatory cytokine highly upregulated in adipose tissue (AT) of
obese and has repeatedly been shown to be functionally involved in adipose-tissue inflammation and metabolic sequelae. In the present work, we
aimed at unveiling both the role of OPN in human monocyte and macrophage proliferation as well as the impact of OPN deficiency on local
macrophage proliferation in a mouse model for diet-induced obesity.
Methods: The impact of recombinant OPN on viability, apoptosis, and proliferation was analyzed in human peripheral blood monocytes and
derived macrophages. Wild type (WT) and OPN knockout mice (SPP1KO) were compared with respect to in vivo adipose tissue macrophage and
in vitro bone marrow-derived macrophage (BMDM) proliferation.
Results: OPN not only enhanced survival and decreased apoptosis of human monocytes but also induced proliferation similar to macrophage
colony stimulating factor (M-CSF). Even in fully differentiated monocyte-derived macrophages, OPN induced a proliferative response. Moreover,
proliferation of adipose tissue macrophages in obese mice was detectable in WT but virtually absent in SPP1KO. In BMDM, OPN also induced
proliferation while OPN as well as M-CSF-induced proliferation was similar in WT and SPP1KO.
Conclusions: These data confirm that monocytes and macrophages not only are responsive to OPN and migrate to sites of inflammation but also
they survive and proliferate more in the presence of OPN, a mechanism also strongly confirmed in vivo. Therefore, secreted OPN appears to be an
essential player in AT inflammation, not only by driving monocyte chemotaxis and macrophage differentiation but also by facilitating local
proliferation of macrophages.

� 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Macrophage infiltration of the adipose tissue (AT) is a hallmark of the
so-called obesity-associated low-grade inflammation that occurs in
obesity and drives insulin resistance and development of type 2 dia-
betes. In situ proliferation of adipose tissue macrophages (ATMs) has
been shown to take place at early stages of obesity and is associated
with different cytokines [1,2]. This topic has become in vogue in recent
years as an increasing number of studies described ATMs accumu-
lation as the main driver of obesity-associated inflammation. Macro-
phages were shown to proliferate in atherosclerotic plaques [3],
another inflammation-driven disorder. They also manifest increased
proliferation in AT in response to cytokines such as monocyte che-
moattractant protein-1 (MCP-1) and interleukin 4 (IL-4) [1,4]. However,
prerequisite mediators for AT macrophage proliferation in obesity have
not yet been found.
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Osteopontin (OPN) is a secreted glycoprotein involved in a wide variety
of physiological and pathological conditions, including inflammatory
processes [5e7]. OPN was found to be expressed in different cell types
such as activated macrophages and T-cells, epithelial cells, and oste-
oclasts [8,9]. It contributes to mineralization of bones and kidney, tumor
development and metastasis, and atherosclerosis [10]. OPN is actively
expressed and secreted in macrophages at sites of inflammation,
playing an important role in cell-mediated immunity [11,12]. An intra-
cellular variant has also been described in cytoplasm and nucleus, with
biological functions different from the secreted form and involved in
signaling transduction pathways and cytoskeletal rearrangements
[13,14]. OPN is also described as a migratory cytokine for monocytes
and macrophages [15] and has also been shown to act as a survival
factor for monocytes [16], while neutralizing of OPN resulted in
increased macrophage apoptosis in AT and liver of obese animals [17].
A link between OPN and inflammation, obesity, and insulin resistance
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became well described during recent years [18,19]; however a putative
involvement of OPN in macrophage proliferation remains unexplored.
In the present work, we aimed at identifying the effects of OPN on
monocyte and macrophage proliferation and their relevance in the
context of obesity-driven AT inflammation. We focused at the begin-
ning on proliferation and survival in human monocytes, discovering
that OPN-treated cells outnumbered controls while diminishing
apoptosis in the same experimental set up. Furthermore, OPN
enhanced proliferation rates not only in human peripheral blood
monocytes but also in in vitro differentiated macrophages. Notably,
macrophages expressing proliferation marker Ki67 were virtually ab-
sent in genetically OPN-deficient (SP1KO) obese mice. Hence, local
macrophage proliferation in obese AT is facilitated by OPN, thereby
pointing to a novel mechanism that might trigger and maintain low-
grade inflammation in obesity.

2. MATERIALS AND METHODS

2.1. Isolation and culture of human monocyte and macrophages
Monocytes were obtained from peripheral blood of healthy individuals
by using a density gradient centrifugation (GE Healthcare, Little Chal-
font, United Kingdom) and separated with a CD14-positive magnetic
activated cell sorting e MACS (Miltenyi Biotech, Bergisch Gladbach,
Germany) according to manufacturer’s protocol. Human monocytes
were differentiated to macrophages for 6 days in presence of 50 ng/ml
M-CSF [20,21] (Peprotech, Rocky Hill, NJ, USA). The study was
approved by the local ethics committee (EK 1241/2015).

2.2. Viability and apoptosis assays
Survival of monocytes was determined by using Cell Titer-Glo Lumi-
nescent Cell Viability Assay (Promega, Wisconsin, USA). Briefly,
1 � 105 cells were seeded in a 96-well plate, incubated with either
OPN (1 mg/ml) or 50 ng/ml M-CSF as viability control or left untreated
for 48 h. A total of 50 ml buffers were added, according to manu-
facturer’s instructions. The plate was then shaken for 2 min and
luminescence was detected by a plate reader (EnSpire, Perkin Elmer).
To test for apoptosis, freshly isolated monocytes were seeded in a
concentration of 1� 106/well into 24-well plates. Cells were incubated
with either 1 mg/ml OPN, 50 ng/ml M-CSF or left untreated for 24e
48 h. Apoptosis was determined by TUNEL (Terminal deoxynucleotidyl
transferase deoxyuracil triphosphate nick end labeling) assay using the
In Situ Cell Death Detection Kit, Fluorescein (Roche, Basel,
Switzerland). Cell suspensions were analyzed in flow cytometry
quantifying integrated Fluorescein-dUTPs.

2.3. Proliferation assay
Monocytes were seeded in 24-well cell plates with normal RPMI 1640
medium (Thermo Fisher Scientific, Waltham, MA, USA) for 24 h; the
following day, they were stimulated with 1 mg/ml of recombinant full
length OPN (PeproTech). After 24 and 48 h stimulation, cells were
harvested and prepared for CSFE Cell trace proliferation kit (Thermo
Fisher Scientific). Briefly, cells were centrifuged, washed twice with
cold PBS, resuspended in PBS with a final concentration of CSFE cell
trace of 1 mM, and incubated for 1 h at 37 �C. Afterwards, cells were
washed twice with cold PBS and resuspended in warm DMEM (Thermo
Fisher Scientific) for 10 min at RT in the dark and washed and
resuspended again in cold PBS and proceeded to flow cytometric
analysis. Flow cytometry was performed with BD FACSCanto� II and
BD FACSDiva� software (Becton Dickinson New Jersey, USA).
For human macrophages, proliferation was followed up to 48 h with a
live cell movie analyzer (Juli Br, NanoEnTeck Inc., Seoul, Korea), which
1132 MOLECULAR METABOLISM 5 (2016) 1131e1137 � 2016 TheAuthor(s). Published by Elsevier GmbH
took pictures of the indicated area every 5 min, generating a video and
quantitative output. Control, untreated wells were compared and
recorded at the same time with the OPN stimulated ones (1 mg/ml).

2.4. Diet induced obesity mouse study
Eight male WT (C57BL/6J) and eight male OPN-knockout mice
(SPP1KO; B6.Cg-Spp1tm1Blh/J) were purchased by Charles River
(Sulzfeld, Germany) and fed a high-fat diet (HFD, 60 kcal %, D12492;
Research Diets, New Brunswick, NJ, USA) for 8 or 12 weeks. After the
indicated time, mice were sacrificed and gonadal white adipose tissue
(GWAT) was collected. The protocol was approved by the local ethics
committee for animal studies.

2.5. Immunohistochemistry
Formalin-fixed GWAT was sectioned, de-paraffinized, and blocked for
60 min in blocking buffer (PBS, 5% normal goat serum, 0.3% Triton�
X-100). Blocking buffer was aspirated and sections were incubated
overnight at 4 �C with 1:200 dilution of the monoclonal rat anti-mouse
MAC-2 antibody (Cedarlane labs, Burlington, Canada) in PBS with 5%
normal goat serum (Dako, Glostrup Municipality, Denmark). Slides
were washed three times in PBS and incubated for 1 h at RT with
1:500 dilution of the monoclonal rabbit anti-mouse Ki67 antibody
(Abcam, Cambridge, United Kingdom) in PBS with 5% normal goat
serum (Dako). Slides were then washed three times in PBS and
incubated for 1 h at RT in the darkness with 1:500 dilution of the Alexa
Fluor 488 goat anti rat IgG for MAC-2 (Thermo scientific). The process
was repeated with Alexa Fluor 594 goat anti rabbit IgG for Ki67
(Thermo scientific). Nuclei were counterstained with DAPI (1 mg/ml in
ddH2O) for 10 min, washed three times in PBS, and mounted
(VECTASHIELD� Mounting Medium for fluorescence, Vector Labora-
tories, Burlingame, CA USA) for microscope analysis (EVOS� FLoid�

Cell Imaging Station) [22].

2.6. Bone marrow derived macrophages isolation
In order to isolate bone marrow derived macrophages (BMDMs), 6 WT
and 6 SPP1KO mice were sacrificed, disinfected; femurs were extracted
and cleaned with bone cleansing solution (PBS, 1% BSA, 100 mg/ml
streptomycin, 100 U/ml penicillin, 100 mg/ml Amphotericin B) and
seeded in a 12 well plate at a concentration of 10 � 104 cells per well
for 6 days with M4 diff. medium (DMEM, 10% FBS, L929 conditioned
medium, 100 mg/ml streptomycin, 100 U/ml penicillin, 2 mM L-gluta-
mine, 50 mM b-mercaptoethanol). On day 6, medium was changed to
normal medium with either 50 ng/ml murine M-CSF (Peprotech) or
murine OPN 1 mg/ml (SigmaeAldrich, St. Louis, Missouri, USA). The
following day, cells were harvested and prepared for CSFE Cell trace
proliferation kit as previously described (Thermo Fisher Scientific).

2.7. Statistics
Data are presented as mean values � standard error of the mean
(SEM), and significance was assessed by Student’s t-test. Dunnett-T
post-hoc testing was employed to compare 2 different treatments to
the same control. A p-value <0.05 was considered statistically sig-
nificant. All statistics were calculated using SPSS 22.0 software
(Chicago, IL, USA).

3. RESULTS

3.1. Human primary monocytes proliferate in presence of OPN
Monocytes are recruited to inflamed tissues such as obese AT and
differentiate into macrophages in response to several stimuli [23]. OPN
was previously described to be an anti-apoptotic factor for human
. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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monocytes [16]. To further evaluate the effects of OPN on monocyte
fate, we cultivated human peripheral monocytes in presence of OPN.
The number of viable cells, as determined by the amount of adenosine
triphosphate (ATP), was significantly increased by OPN in a dose-
dependent manner as shown in Figure 1A. Simultaneously, the per-
centage of apoptotic cells was reduced by OPN and M-CSF with similar
efficiency (Figure 1B and C). Since not only apoptosis but also prolif-
eration could contribute to the increased macrophage number, we
performed a proliferation assay, which clearly demonstrated that hu-
man monocytes proliferated in response to OPN after 24 and 48 h,
similar to induction by M-CSF (Figure 2A).

3.2. OPN induces proliferation in mature human macrophages
Since previous data [24] indicated that OPN acts locally in AT rather
than systematically and because monocytes recruited to the tissue
differentiate to macrophages, we addressed the question whether OPN
also has a proliferative effect on mature macrophages. After differ-
entiating peripheral blood monocytes into macrophages, we stimulated
the cells with OPN and followed cell numbers with a motion camera. In
the presence of OPN, monocyte-derived human macrophages
increased cell motility and, strikingly, the cell number was increased
indicating cell proliferation (Figure 2B).
Figure 1: OPN increases human monocyte survival and strongly diminishes apoptosis. (A)
Cell Viability Assay. Cells were treated with 0.25/0.5/1 mg/ml OPN, 50 ng/ml M-CSF or left u
for either (B) 24 h or (C) 48 h with 1 mg/mg OPN, 50 ng/ml M-CSF or left untreated (ctrl), ap
as mean of 4 independent experiments performed in duplicates � SEM. **, p < 0.01.
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3.3. ATMs proliferation is increased in WT compared to SPP1KO
after 12 weeks of HFD
In order to confirm whether our results on human cells in vitro also
apply in vivo, we performed a diet-induced obesity experiment using
WT and SPP1KO mice. The average weight of mice was 47.2 � 2.2 g
and 47.9 � 1.7 g for WT and SPP1KO, respectively, after eight weeks
on HFD; and 51.5 � 1.9 g and 50.7 � 2.6 g, respectively, after 12
weeks, without significant differences between genotypes. We found
proliferating macrophages in WT mice residing mainly in crown-like
structures formed around adipocytes (Figure 3). Notably, significantly
less proliferating macrophages were detected in obese SPP1KO
compared to WT mice, particularly after 12 weeks HFD, whereas
almost no proliferation at all could be observed in SPP1KO (Figure 3E
and F).

3.4. OPN augments proliferation in murine bone marrow derived
macrophages (BMDMs) independently of the genotype
In vitro, OPN increased BMDM proliferation after 24 h of treatment
(Figure 4). Interestingly, there was no difference between the WT and
SPP1KO genotypes, indicating that exogenous OPN is required for the
proliferative response while intracellular OPN is not required for
macrophage proliferation.
Peripheral blood monocyte viability was determined by using Cell Titer-Glo Luminescent
ntreated for 48 h. For the apoptosis assay, peripheral blood monocytes were stimulated
optosis was determined with TUNEL assay and flow cytometric analysis. Results shown
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Figure 2: Murine BMDMs and human macrophages proliferate in response to OPN. (A) BMDM proliferation was assayed with CSFE proliferation kit. After 6 days of differentiation,
macrophages were treated with 1 mg/mg OPN or 50 ng/ml MCSF for 24 h, followed by assessment of BMDM proliferation using a CSFE kit. Results are shown as mean � SEM of 6
independent experiments performed in duplicates. **, p < 0.01. (B) Human peripheral blood monocytes were differentiated to macrophages for 6 days with M-CSF. At the 6th day
of differentiation, medium was changed to fresh RPMI1640 with or without 1 mg/mg OPN. Proliferation rate was measured with live cell counting Juli Br (n ¼ 3). Results shown as
mean of 3 independent experiments � SD depicted as thinner lines above and below the means.
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4. DISCUSSION

OPN is highly upregulated in mice after HFD and activates the
inflammation cascade in monocytes and macrophages [25,26]. Acti-
vated macrophages produce OPN, which is also a strong chemotactic
stimulus for recruitment and differentiation of blood monocytes into
ATMs [17,25,27,28]. Here, we describe a novel aspect of OPN in
promoting AT inflammation, namely by facilitating local macrophage
proliferation in obesity.
Cell cycle progression involves upregulation of cyclins and down-
regulation of cyclin-dependent kinase (Cdk) inhibitors, which are in
turn regulated by two families of proteins, Inhibitors of CDK4 (INK4)
family of tumor suppressor genes (p15, p16, p18, p19) and Cip/Kip
family of Cdk inhibitor (p21, p27, p57) [29]. Some evidence sug-
gests that p21 and p57 are downregulated whereas cyclin D is
upregulated in adipose tissue macrophages in animals fed with high
fat diet [30,31]. Although this is not well understood, it might be a
molecular mechanism involved in OPN-induced proliferation of
ATMs.
Cytokines such as MCP-1 and IL-4 were recently shown by other
groups to be important in driving ATM proliferation [1e4]. The effect
of these cytokines was demonstrated to be independent of the
number of circulating monocytes and specific for AT, since other
1134 MOLECULAR METABOLISM 5 (2016) 1131e1137 � 2016 TheAuthor(s). Published by Elsevier GmbH
organs such as liver or spleen did not show an increase in macro-
phage numbers in obesity [1]. These data raised some questions on
the impact of monocyte recruitment to promote ATM accumulation in
obesity [2]. The majority of ATMs are bone marrow derived, as
elegantly shown by bone marrow transplantation and irradiation ex-
periments [26]. However, others highlighted the importance of
recruitment-independent mechanisms such as apoptosis, prolifera-
tion, and retention, which appear to be crucial factors in ATM-driven
inflammation as well [32].
In obese AT, a resident [24] population of anti-inflammatory macro-
phages taking part in AT homeostasis could shift into an inflammatory
macrophages in response to AT expansion, cytokine production, and
adipocyte apoptosis. The total number of macrophages was shown to
increase in mouse AT in response to diet-induced obesity [28]. This
was explained by an augmented accumulation of macrophages due to
an influx of bone marrow-derived precursors. However, these results
were challenged in a recent publication [2], showing that ATM prolif-
eration occurs independently of monocyte recruitment. According to
these data, proliferation of resident macrophages appears to precede
monocyte recruitment during obesity development. In mice, a het-
erogenic population of local ATMs and recruited monocyte-derived
macrophages have been shown to reside and proliferate locally in
AT [2].
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Figure 3: Murine AT macrophages proliferate more in obese WT compared to obese SPP1KO. WT and SPP1KO mice were fed a HFD for 8 and 12 weeks (8e12 WHFD) to induce
obesity. Paraffin-embedded GWAT sections from WT mice were stained with specific antibodies against Mac-2 (green; B, D) and Ki67 (red; C, D) and nuclei counterstained with
DAPI (blue; A, D), with merged stainings given in D and E (SPP1KO section shown as comparison) and higher magnification shown in the insets. (F) Quantification of Ki67þMac-2þ

double positive cells. Results shown as the mean percentage of Ki67þMac2þ cells of all Mac2þ macrophages � SEM, of 8 obese WT and 8 obese SPP1KO mice (5 fields per
slide). ***, p < 0.001.
Our studies reveal a crucial impact of extracellular OPN on local pro-
liferation of ATM as shown by a variety of methods including human
and murine experimental setups. On the one hand, human monocyte-
derived macrophages showed robust proliferation in response to
exogenous OPN treatment as assessed by ATP production. In addition,
proliferating mouse ATMs undergoing cell cycle progression were
detectable during diet-induced obesity (12 weeks). When OPN was
deprived in the knock out model (SPP1KO), ATMs completely lost their
proliferative behavior, highlighting the critical importance of OPN in
obesity-driven AT inflammation. Notably, the proliferative action of
exogenous OPN on murine macrophages was independent of endog-
enous OPN expression, indicating that intracellular OPN is not involved.
MOLECULAR METABOLISM 5 (2016) 1131e1137 � 2016 TheAuthor(s). Published by Elsevier GmbH. This is an
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5. CONCLUSIONS

In conclusion, our data indicate that local macrophage proliferation in
obese AT in situ is OPN dependent. Still to be explored is the relative
contribution of other cytokines such as MCP-1 and IL-4 in this sce-
nario. Nonetheless, we demonstrated that OPN is a substantial driver of
macrophage, and particularly ATM, proliferation and is one of the most
important cytokines in the onset and propagation of AT inflammation.
Targeting and neutralizing OPN may represent an effective therapeutic
option in the prevention and treatment of obesity-associated chronic
inflammation and its clinical sequelae, namely type 2 diabetes and
cardiovascular disease.
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Figure 4: Mouse BMDMs show increased proliferation in response to exogenous OPN
and M-CSF, regardless of endogenous OPN expression. BMDM proliferation was
assayed with CSFE proliferation kit. After 6 days of differentiation, macrophages were
treated with 1 mg/mg OPN or 50 ng/ml MCSF for 24 h, followed by assessment of
BMDM proliferation using a CSFE kit. Results are shown as mean � SEM of 6 inde-
pendent experiments performed in duplicates. **, p < 0.01.
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