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BACKGROUND ON GROUND TRUTH MAPS

Tryggo: Old Norse for Truth
Ground truth mapping has its origins in the computer 
science pattern recognition and machine vision fields and is 
a major activity associated with remote sensing (i.e. satellite 
images). Additionally, ground truth maps not infrequently 
find use in the following plurality of settings: motion video 
road detection and tracking, motion tasks, geoscience 
applications, sensor data and document analysis. Ground 
truth maps are needed to perform objective analysis and 
comparative evaluation of image analysis algorithms[1] 

and are “defined as a representation of the agreed correct 
result of the ideal layout analysis method (i.e., the result 
of the method that, if it existed, would put an end to the 
research problem).”[2] Operationally, such ground truth 
maps may be regarded as the “gold standard” by which 
results of other algorithms are compared.

Prior studies have discussed the issue of algorithm 
performance and can be grouped accordingly:[3]

Comparative
Here an algorithm may be compared with others that 
attempt to address the same image processing task or 
its performance may be compared to ‘ground truth,’ or 
perhaps to human performance.

Analytical
The theory behind the algorithm is examined to try to 

determine the limits to its operation. The computational 
complexity may be derived, or theoretical optimality may 
be determined under certain constraints. Frequently, the 
approach makes use of simplified input data to make the 
analysis feasible.

Performance
The manner in which the algorithm actually performs on 
test data is measured and execution times with different 
parameters may be reported.

Appropriateness to Task
The algorithm is shown in the context of a particular 
application, and the constraints of the task are used 
to justify the selection of the particular algorithm. 
The performance of the task as a whole is taken as the 
evaluation of the algorithm.[3]

The most agreed-upon performance evaluation is 
longevity and public acceptance.[3]
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Within the collective medical specialties, ground truth 
maps first enjoyed utility in radiology, with them being 
employed as a performance metric in computer aided 
diagnosis (CAD) algorithm development applications.[2,4-9]  
In radiology, ground truth maps are typically made 
by annotating digital images (MRI, CT, CR, etc.) to 
accurately represent the likelihood that pixels at each 
point correspond to a genuine abnormality or feature of 
interest. Additionally, ground truth maps can assist in 
generating difference estimates for boundary regions and 
in providing a central, spatially-based referential diagnostic 
map by which multiple annotations from different 
radiologists can be compared. By use of such comparisons, 
it becomes possible to realize a mechanistic approach 
that identifies interviewer variability and the associated 
possible subjectivity intrinsic to such annotated data.[10]

Recent advances in high-resolution optical scanning 
technology have made rapid digital reproduction of 
whole slide imaging (WSI) data sets from glass slides a 
reality, not only for archival purposes but also at speeds 
compatible with diagnostic workflow in pathology. These 
technologies not only open new avenues for consultation, 
quality control, and telepathology, but also beg for 
research and development of computer aided diagnostic 
(CAD) technologies[11-17] as adjunctive tests for surgical 
pathologists. Use of CAD has the potential to improve 
the practice of pathology in various ways[14,18] by allowing 
the pathologist to exploit the particular advantages of 
artificial intelligence, including standardization and 
quantitation, in a fashion that is complementary to 
expert human diagnostic ability.

Operationally, quantitative assessment and comparisons 
of CAD algorithm performance involves comparison of 
distributions of an algorithm’s predictions (in the form 
of scores) between ground truth positive (i.e., diagnosis 
present) areas of a WSI and ground truth negative areas 
(i.e., diagnosis not present). A nonparametric test statistic 
capable of quantifying the overall ability of such an 
algorithm to discriminate between ground truth positive 
and negative is the receiver operating characteristic 
(ROC), wherein performance is summarized by the 
area-under-the-curve (AUC).[16,19,20] For a more detailed 
explanation regarding the creation and application of 
ROC curves and AUCs, the reader is directed to the 
provided references.[21-23] These types of analyses require 
the use of ground truth maps. As described at the FDA 
Radiological Devices Panel meeting, March 2008 briefing 
package, “Ground truth determination includes whether 
or not disease is present within a patient as well as the 
precise location and local extent of disease” (www.FDA.
gov). More specifically, there are different types of ground 
truth constructs such as markup tags containing meta-
data on a per-image basis such as “high lymphocytic 
infiltration,” for diagnoses and grading such as prostatic 
adenocarcinoma Gleason Grade 3, and pixel-wise 

classification (which requires the “painting” or “circling” 
of the lesional feature, which is often used for pathology 
images and for prostate MRI images). An extensive body 
of references that demonstrates the application of such 
ground truths can be found at Dr. Madabhushi’s website 
(http://lcib.rutgers.edu/lcib/publications).

In our previous editorial, we highlighted the differences 
between radiological images and pathology images.[24]   
Here, we will discuss the importance and challenges 
in defining ground truth for developing and assessing 
pathology CAD algorithms compared to “circling” as 
performed by a radiologist. In addition, a ground truth 
map rendered from a region of a pathology image must 
correspond to the intended specific surface area of 
interest, as relevant to the intended role of the algorithm 
under consideration.

Pathology Ground Truth Use Cases
Radiological images differ from those of pathology subject 
matter, owing to the former’s limited spatial resolution 
for most diagnostic modalities, compared to WSI scans of 
digital slides. In the setting of such diminished resolution 
(which can be considered as being from the “meso-scale,” 
and not the micro-scale of histology), many disease 
processes appear similar or even indistinguishable.[24] 
Thus, as is standard practice in composition of radiologic 
reports, clinicians are provided with a context-dependent 
expert impression rather than a specific diagnosis.[24] 
Because of this low to intermediate image resolution 
(certainly relative to histology) and relative homogeneity 
throughout the lesion, ground truths are often defined by 
annotating (circling) the entire lesion.

WSI scanners result in digital slides that are of extremely 
high resolution and possessing of color information (with 
both attributes enabling subnuclear feature detection). 
This allows for high fidelity digital representation of 
the complex constellation of cellular and architectural 
features, as interpreted by the pathologist. Large or small 
lesions of clinical interest are reduced to the cellular and 
subcellular level, where differences not discernible on the 
macro- and meso- scales (physical exam or radiography), 
respectively, are used to generate differential and final 
diagnoses. Entities may range from homogenous, discrete 
masses to ill-defined, rare, or infiltrative cells that 
can be difficult to identify and may admix with non-
lesional tissue. In addition, they can consist of a multiple 
subjective features, that are not only difficult to identify 
but are highly variable and subjective, even among the 
world’s experts.[25] Currently, most pathology ground truth 
maps are made with digital slide viewers, which have an 
annotation “pen” that enables the circling of features of 
interest, akin to the methodology of radiologists.

One may intuit that one of the principal problems 
in constructing ground truth maps is that they are 
exceptionally tedious and time consuming. For example, 
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we recently made ground truth maps of three radical 
prostatectomy tissue sections, each containing prostate 
cancer, and manually painted only the malignant glands 
of the three digital slides (with this process taking nearly 
8 hours).[26] The possibility of incorporating pathologist-
supervised automated “painting” of ground truth maps 
might enable increased speed and efficiency in the process, 
but as is evident, such a strategy easily engenders the 
concern that CAD algorithm performance becomes a self-
fulfilling prophesy (it works optimally on the ground truth 
map it created!). We do note, however, that other fields, 
such as document analysis, have automated ground truth 
detection with the aid of algorithms, such as Aletheia.[27]

A second basic issue concerns inclusion criteria and the 
extent of a lesion to include in a ground truth map (i.e., 
an a typical focus which autonomously would have been 
insufficient to diagnose cancer, but may be recognized 
as such in context with intermixed unequivocal cancer) 
should be included as “positive” regions in a ground truth 
map? Or, because their features alone are insufficient 
for diagnosis of cancer, should they be included as 
“negative?” Should such regions of lesion be excluded 
from performance testing of a CAD algorithm? This 
conundrum becomes all the more salient as numerous 
pathologic entities are amenable to ancillary testing for 
pathognomonic molecular characteristics. What if the 
same (as above) a typical but non-diagnostic foci within 
a malignancy show a pattern of immunohistochemical 
(IHC) staining that strongly supports or refutes a diagnosis 
of cancer? Is it then appropriate for such ancillary testing, 
perforce invisible to the H and E-based algorithm, to be 
used in the construction of ground truth maps?

In the end, evaluation of the performance of CAD requires 
algorithms comparison of predictions made by algorithms 
to a gold standard; the ground truth as defined by 
pathologists. The above concerns illustrate central tradeoffs 
apparent in the cost of construction of ground truth maps 
and the interplay between sensitivity and specificity in 
the diagnostic threshold for including or excluding part 
of an image as ground truth positive or negative. Perhaps 
being most important, however, is the extent to which the 
specific characteristics of pathologic entities complicate 
the concept of ground truth and highlight the varying 
histologic contexts where maps of ground truth must be 
constructed.[2] Through the use of four use cases, we will 
highlight specific challenges of defining ground truth maps 
and show how ground truth varies, based on the length 
scale (magnification) and pathology of the disease.

USE CASES SHOWING A GROUND TRUTH 
MAP CONUNDRUM

Neoplasms Showing Mixed Morphologies
Figure 1 from Cheng and Hipp et al.[28] shows an H and E  

stained tissue section taken from a gastrointestinal 
stromal tumor (GIST) of the stomach as described by 
Cheng and Hipp et al. There we described, “two nodules 
of viable tumor set within a sparsely cellular myxohyaline 
matrix. Non-neoplastic gastric epithelium is present on 
the lower left side of the micrograph (see area near ‘*’) 
and there are two benign lymphoid aggregates (arrows).[28]  
Within the tumor nodules there is histological 
heterogeneity. For example, the smaller nodule (a) 
comprises epithelioid cells arranged in cord-like arrays 
and separated by myxohyaline matrix. The larger nodule 
comprises three rather distinctive histological patterns. 
The upper left part of the nodule (b) consists of closely-
spaced spindle cells, with oval nuclei and scant cytoplasm, 
with very little intervening matrix; while the lower right 
part (c) has a population of epithelioid and spindle cells, 
many exhibiting a vacuolated cytoplasm. Along the lower 
right edge of the large nodule (d), the histology is similar 
to that seen in the smaller nodule.”[28]

If one had a low power field of view containing just the 
smaller nodule to the right [Figure 1a], a pathologist could 
“circle” the entire nodule and define this as a ground 
truth tumor region. However, at higher magnifications 
Figure 1a, one can see how the tumor cells are generously 
spaced amongst each other with intermixed myxohyaline 
matrix. From this length scale, the ground truth would 
be defined as the individual tumor cells themselves. 
Thus, ground truth determination is dependent on the 
corresponding length scale (magnification).

At higher power, one can appreciate the morphologic 

Figure 1: An H and E stained tissue section of a gastrointestinal 
stromal tumor (GIST) of the stomach was scanned into a digital 
slide as previously described by Cheng and Hipp et al.[28] A low 
power view of the tissue section is show above with corresponding 
representative high power fields of view show in a-d. Reproduced 
with permission from Medknow Publications.

a

c

b

d
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heterogeneity of the larger nodule to the left [Figures 1b-1d].  
Thus, if an image analysis algorithm were designed to 
generally recognize generally all these variants, a single 
ground truth map would be created by “painting” all the 
tumor cells; in contrast, if the CAD algorithm were very 
specific, targeting each of the morphologic variants, a 
series of ground truths maps would need to be created for 
each variant, as we described in Cheng and Hipp et al.[28]

Malignancy with Admixed Precancer, Reactive 
Stroma, and Inflammation
Colonic adenocarcinomas often contain large 
proliferations of tumor cells, with them commonly 
admixed amongst stroma and inflammatory cells (and 
possibly nerves, vessels, muscle). Figure 2 of Cheng and 
Hipp et al.[28] shows an H and E stained tissue section of 
a moderately-differentiated colonic adenocarcinoma.[28]  
In this field of view, “the malignant glands are seen 
infiltrating through the benign stroma and into 
the muscularis propria, with focal areas of acute 
inflammation.”[28] Thus, if one circles the area 
containing the tumor, this region would contain these 
benign cells and the CAD algorithm would be penalized 
for not identifying these as containing malignant 
cells. In such a use case, the ideal ground truth map 
would “paint” only the malignant epithelium. This 
would be time consuming to perform due to the ill-
defined, infiltrative behavior of the tumor. Adding 
to the complexity of both algorithm development 
and performance testing, colorectal adenocarcinomas 
arise through an adenoma (premalignant, dysplasia)-
adenocarcinoma sequence. As appropriate to its 
intended task, a ground truth map might or might not 
include dysplastic epithelium as ground truth positive. 
Finally, dysplastic morphologic elements, themselves, 
can be further subdivided into grades of dysplasia, with 
this reality further compounding the issue of setting an 
appropriate threshold.

Prostate cancer, a disease commonly characterized by 
small malignant acini infiltrating between larger benign 
prostatic glands, illustrates these concerns but to an even 
greater extent. The cancerous glands can often proliferate 
to form a tumor nodule that is seen to extensively 
infiltrate stroma, benign glands, inflammatory cells, and 
potentially adjacent precursor lesions.  Such precursor 
lesions, such as high grade prostatic intraepithelial 
neoplasia (PIN), can show nuclear features of cancer and 
are often admixed within and nearby the periphery of the 
tumor nodule. Also, the glands of prostate cancer show 
luminal “white spaces” in proportion to tumor grade. 
Thus, circling the entire tumor nodule as ground truth 
“positive” would define everything within that nodule as 
cancer, resulting in the CAD algorithm being assessed for 
its ability to identify tumor regions in general, but not the 
specific tumor cells. The algorithm would be penalized for 

not identifying the benign glands, stroma, inflammatory 
cells, and the lumenal white spaces as cancer. In addition, 
as appropriate to its intended task, a ground truth map 
might or might not include high grade PIN (precursor 
lesions) as ground truth positive. In such a use case, the 
ideal ground truth map would include only malignant 
epithelium, to the exclusion of not only admixed non-
neoplastic components, but also white spaces.

We recently described in work by Hipp and Monaco et al. 
that circling such a tumor nodule would be appropriate 
for an algorithm such as Probabilistic Pairwise Markov 
Modeling (PPMM)[16] which analyzes luminal architecture 
and then scores the general area around these lumens as 
cancer.[26] However, if one is evaluating or using a CAD 
algorithm that assesses and scores each pixel rather 
than an algorithm that scores the general area around 
the tumor, circling the tumor area would penalize the 
prior algorithm owing to the fact that the circled area 
would include the pixels associated with the benignity 
(as described above). Thus, the ground truth map must 
correspond to the CAD algorithm-specific selectivity 
under consideration.

Micropapillaryurothelial Carcinoma
Urothelial carcinoma (UC), the most common form 
of bladder cancer in Western countries, exhibits a 
peculiar capacity for “divergent” or “mixed histology” 
differentiation, comprising several unusual histologic 
variants.[29] Recognition and documentation of these 
variants in the pathology report is critical as such findings 
have potential diagnostic, therapeutic and prognostic 
implications.[30]

The micropapillary variant (MPUC), a variant of UC with 
aggressive clinical behavior, demonstrates a wide spectrum 
of architectural and cytologic features presenting a complex 
diagnostic problem for expert observers.[31] A recent study 
sought to address the issue of interobserver reproducibility 
among 14 uropathologists, including the evaluation of 

Figure 2: An H and E stained tissue section of a moderately 
differentiated colonic adenocarcinomawas scanned into a digital 
slide as previously described by Cheng and Hipp, et al.[28] Reproduced 
with permission from Medknow Publications



J Pathol Inform 2012, 3:8	 http://www.jpathinformatics.org/content/3/1/8

13 different, complex morphologic features commonly 
used for the diagnosis of MPUC and additionally, the 
utility of these individual features in challenging cases.[25]  
This study showed significant interobserver diagnostic 
variability and a need to more precisely define MPUC.[25] 

Recent reports suggest that quantitation of the relative 
amount of aggressive micropapillary morphology versus 
conventional UC may be of prognostic utility.[32] Given 
these concerns, MPUC constitutes an entity uniquely in 
need of CAD, for which it is currently under investigation 
by our group.[33]

MPUC presents a unique challenge in regards to ground 
truth: no single cell or nest of invading cells can be 
definitively identified as “ground truth positive.” Rather, 
a field of tumor cells that multifocally demonstrates a 
constellation of architectural features (e.g., retraction 
artifact, multiple separate nests within the same 
space) that themselves are of varying sensitivity and 
specificity for MPUC may be diagnosed as such based 
on the pathologist’s diagnostic integration of the entire 
morphology. In such a use case, a ground truth map 
might require an overlay of several, feature-specific 
ground truth maps, against which a CAD targeting 
a number of features might be compared. For that 
matter, in such a case where even experts may not be 
able to delineate strict boundaries around subareas 
showing variant morphology (i.e., a ground truth map), 
AUCs based on ground truth maps may not even be an 
appropriate performance metric.

CONCLUSION AND FUTURE DIRECTIONS

The construction and uses of ground truth maps for 
performance evaluation of CAD tools for pathology 
are many and reflect the complexity of diagnostic 
histopathology. Certainly, with this focused effort, we 
do no claim to have arrived upon a generalized solution 
that could be equally leveraged in any CAD algorithm 
validation setting. Rather, our use of targeted use cases 
serves to underscore two fundamental underlying 
realities intrinsic to ground truth maps: the foreground 
subject matter inclusion criteria is necessarily algorithm 
dependent and additionally, in the setting of proper 
matching of foreground criteria to CAD algorithm-
specific selectivity, then (and only then) it becomes 
possible to realize sufficiently high ROC performance 
that is free from the artifact of over- or under-sampled 
“innocent-bystander” surface area (which in turn, can 
be seen as a cause of needlessly diminishing overall 
performance).  Attaining the “holy-grail” of entire 
ground truth libraries will undoubted take decades of 
continued effort, recognizing the variability of use cases 
intrinsic to varying organs, disease entity, disease grade 
and algorithm foreground specificity (which presumably 
will each will require a specifically-tailored map). 

Despite this challenge, the obtained results in this report 
demonstrates a pathway by which a workable solution 
for a plurality of prototypic use cases can be found. As a 
logical extrapolution, this model will very likely scale to 
ground truth map generation for the remainder of organs, 
diseases, grades and algorithm classes.

Recognizing that the science and art of ground truth 
map generation long precedes its use in digital histology, 
the digital pathology community can learn from the prior 
collective experiences of the computer science machine 
vision field (with specific examples being autonomous 
vehicle operation and active object tracking). In Hong 
et al., a large image data repository (nearly a terabyte; 
or 1 × 1012 bytes) served as a target upon which 
system users could validate candidate ground truth 
classification algorithms for video-based road detection 
and navigational tracking.[9] They also developed an 
application that “allows the ground truth to be extracted 
and stored in a database for later use.”[9]

In part analogous to such efforts from the machine vision 
fields, we have developed a digital slide repository at the 
University of Michigan[34,35] (www.WSIrepository.org) and 
have started to collect and deposit cohorts of ground 
truth imagery data on the repository site. Content 
submitted thus far includes original images and the 
associated manually generated ground truth maps from 
a number of our recent publications and submissions. 
For these and anticipated ground truth images, serving 
as reference datasets, we plan to include multiple 
ground truth annotations (circled areas, false-colored 
areas, etc.) and moreover, provide annotation tools, such 
that pathologists will be able to spatially document the 
context and implications of identified features, making 
such information immediately available to nonsubject-
matter experts, such as for computer programmers. In 
addition, we hope the availability of a growing cohort 
of ground truth libraries will encourage others to 
generate additional annotation datasets that may be 
complimentary or incrementally accurate over that which 
is currently available today.

Finally, public availability of such curated ground truth 
map data sets would further enable a recent phenomenon 
known as crowd sourcing. We can envision that such 
repositories would contain ground truth data sets that 
encompass numerous disease examples, different diseases, 
length scales, special stains, and even examples showing 
biological and technical processing variability.
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