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ABSTRACT
Introduction: More than half of diabetes mellitus (DM) and pre-diabetes (pre-DM) cases
remain undiagnosed, while existing risk assessment models are limited by focusing on
diabetes mellitus only (omitting pre-DM) and often lack lifestyle factors such as sleep. This
study aimed to develop a non-laboratory risk assessment model to detect undiagnosed
diabetes mellitus and pre-diabetes mellitus in Chinese adults.
Methods: Based on a population-representative dataset, 1,857 participants aged 18–
84 years without self-reported diabetes mellitus, pre-diabetes mellitus, and other major
chronic diseases were included. The outcome was defined as a newly detected diabetes
mellitus or pre-diabetes by a blood test. The risk models were developed using logistic
regression (LR) and interpretable machine learning (ML) methods. Models were validated
using area under the receiver-operating characteristic curve (AUC-ROC), precision-recall
curve (AUC-PR), and calibration plots. Two existing diabetes mellitus risk models were
included for comparison.
Results: The prevalence of newly diagnosed diabetes mellitus and pre-diabetes mellitus
was 15.08%. In addition to known risk factors (age, BMI, WHR, SBP, waist circumference,
and smoking status), we found that sleep duration, and vigorous recreational activity time
were also significant risk factors of diabetes mellitus and pre-diabetes mellitus. Both LR
(AUC-ROC = 0.812, AUC-PR = 0.448) and ML models (AUC-ROC = 0.822, AUC-PR = 0.496)
performed well in the validation sample with the ML model showing better discrimination
and calibration. The performance of the models was better than the two existing models.
Conclusions: Sleep duration and vigorous recreational activity time are modifiable risk
factors of diabetes mellitus and pre-diabetes in Chinese adults. Non-laboratory-based risk
assessment models that incorporate these lifestyle factors can enhance case detection of
diabetes mellitus and pre-diabetes.

BACKGROUND
Diabetes mellitus (DM) is a major public health burden as it
is common and chronic, and its complications including car-
diovascular diseases, renal disease, and retinopathy can lead

to disabilities and premature mortality1. Diabetes mellitus
develops slowly and the progression from normal blood glu-
cose to diabetes mellitus may take up to a decade2. Pre-
diabetes mellitus (pre-DM) refers to the condition where
blood glucose is between normal and diabetic levels. Globally,
the prevalence of diabetes mellitus was estimated to be 9.3%Received 8 July 2021; revised 3 March 2022; accepted 10 March 2022
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in 20193, and the estimated prevalence of pre-diabetes melli-
tus was much higher, at 35% in American adults4 and 35.7%
in Chinese adults5. More than 80% of people with pre-
diabetes mellitus6 and over half with diabetes mellitus3 remain
undiagnosed.
Pre-diabetes mellitus is important because it is a high-risk

state for diabetes mellitus with an annual conversion rate of 5–
10%, and an eventual conversion rate of 70%7,8, and the hyper-
glycemia of pre-diabetes mellitus may damage the kidneys4 and
blood vessels9 before the onset of diabetes mellitus. Early detec-
tion of pre-diabetes mellitus and the timely introduction of life-
style interventions can prevent or delay the onset of diabetes
mellitus and related complications7.
Screening of diabetes mellitus and pre-diabetes mellitus in

the general population is not cost-effective10. The World Health
Organization (WHO) recommends targeted opportunistic
screening of diabetes mellitus in high-risk individuals during
routine care11. The Hong Kong Reference Framework for Dia-
betes Care for Adults in Primary Care Settings12 adopts the
American Diabetes Association (ADA) recommendation to
screen for diabetes mellitus based on age, BMI, and the pres-
ence of any co-existing risk factors, which might not be cost-
effective.
Several non-laboratory-based risk assessment models for

diabetes mellitus have been developed and incorporated into
diabetes mellitus prevention programs worldwide to improve
the effectiveness and efficiency of case detection of high-risk
individuals for further blood tests. The most widely used are
the ADA Risk Test13, the Leicester Self-Assessment score
adopted by the UK National Institute for Health and Care
Excellence (NICE)14, the Australian type 2 diabetes risk assess-
ment tool (AUSDRISK)15, and the Canadian Diabetes Risk
Questionnaire (CANRISK)16, but these models developed
based on Caucasian populations may not be applicable to the
Chinese population17. The New Chinese Diabetic Risk Score
(NCDRS)18 and the Non-invasive Diabetes Score (NDS)19

were developed from cohorts of Chinese adults and appeared
to be more accurate than the ADA Risk Test for Chinese.
However, these existing models are all intended for the risk
assessment of diabetes mellitus and none has been developed
for identifying pre-diabetes mellitus. These models include
broadly similar risk factors such as age, sex, body mass index
(BMI), blood pressure, and a few included lifestyles factors
(i.e. physical activity, fruit and vegetable consumption)15.
Recent studies have found other lifestyle factors, such as alco-
hol consumption20 and sleep21 are associated with the risk of
diabetes mellitus, but their contribution to risk assessment for
diabetes mellitus and pre-diabetes mellitus have not been
evaluated.
This study aimed to develop a non-laboratory-based risk

assessment model that includes traditional risk factors and
lifestyle factors for the detection of undiagnosed diabetes mel-
litus and pre-diabetes mellitus in Chinese adults in primary
care.

METHODS
Study design and subjects
This was a cross-sectional study using data from the Hong
Kong Population Health Survey (PHS) 2014/15 which was con-
ducted by the Department of Health, HKSAR Government22.
The PHS adopted a systematic replicated sampling method to
recruit a representative sample of 12,022 people aged 15 or
above from the Hong Kong general population. Each partici-
pant completed a face-to-face questionnaire survey consisting of
questions on socio-demographics, self-reported health status,
and lifestyle factors. Of these, 2,347 adults aged 15–84 were
randomly selected to undergo physical measurements including
blood pressure, weight, height, waist and hip circumference,
and a blood test that included fasting plasma glucose and
hemoglobin A1c (HbA1c). Of the 2,347 participants, we
included 1,857 subjects without any self-reported doctor-
diagnosis of diabetes mellitus or pre-diabetes mellitus, hyperten-
sion, cardiovascular diseases (CVD) (coronary heart disease,
stroke), cancer, renal disease, or anemia in this study to develop
and validate risk assessment models for diabetes mellitus and
pre-diabetes mellitus. The study is reported following the guide-
lines of the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
statement23.

Outcome and risk factors
The outcome is newly detected diabetes mellitus and pre-
diabetes mellitus by blood tests. According to the WHO24,
ADA25 and the Hong Kong Reference Framework for Diabetes
Care for Adults in Primary Care Setting26, pre-diabetes mellitus
was defined as a fasting plasma glucose of 6.1–6.9 mmol/L or
HbA1c of 5.7–6.4%, and diabetes mellitus was defined as a fast-
ing plasma glucose higher or equal to 7.0 mmol/L or HbA1c
higher or equal to 6.5%.
We included all available socio-demographics, lifestyle factors,

and non-laboratory clinical parameters in the model develop-
ment. The socio-demographics included age and sex. Lifestyle
factors included smoking, alcohol consumption, physical activ-
ity, sleep duration and quality, and dietary habits. Alcohol con-
sumption was measured using the Alcohol Use Disorders
Identification Test Alcohol Consumption Questions (AUDIT-
C) which is a 3-item screening tool based on the WHO
AUDIT27. Physical activity was measured using the WHO
Global Physical Activity Questionnaire28. Sleep was assessed
using six items, including sleep duration, self-assessed insuffi-
cient sleep, self-assessed overall sleep quality, and the presence
of sleep disturbance (i.e., difficulty in falling asleep, intermittent
awakening, early morning awakening). Dietary habit was
assessed using daily fruit and vegetable consumption (standard
servings per day), and monthly eat-out frequency. Clinical
parameters included systolic blood pressure (SBP), diastolic
blood pressure (DBP), body mass index (BMI), waist circumfer-
ence, and waist-to-hip ratio (WHR). The detailed definition
and measurement of risk factors can be found in the PHS
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2014/15 Report22. No missing value was present in the study
dataset.

Statistical analysis
Descriptive statistics on the characteristics of the subjects were
tabulated by groups of diabetes mellitus, pre-diabetes mellitus,
and normal glycemia. The differences of each risk factor among
the different glycemia groups (DM/pre-DM/normal glycemia)
were compared using ANOVA for continuous variables and
Chi-square for categorical variables. Post hoc pairwise compari-
son P values were adjusted by the Bonferroni method.
The study sample was randomly split with a ratio of two-to-

one for the development (n = 1238) and validation (n = 619)
of the risk models. To cross-validate the risk factors and to
optimize the performance, we used both traditional logistic
regression (LR) and machine learning (ML) algorithms to
develop the risk models from the data of the development sam-
ple. Multicollinearity of the predictors were diagnosed using
variance inflation factors (VIF) based on the full logistic regres-
sion model. A VIF > 5 indicates the existence of multicollinear-
ity and greater than 10 indicates severe multicollinearity29. The
LR model was developed using the Akaike information crite-
rion (AIC) based bidirectional stepwise multivariable logistic
regression. The combination of risk factors that achieved the
lowest AIC value was included in the model. Quadratic terms
of the included risk factors, as well as their interactions with
age, were also evaluated based on their statistical significance to
improve the fitting of the LR model. The final LR model was
established by combining the coefficients of the risk factors and
the logistic function. The ML model was developed using
Extreme Gradient Boosting (Xgboost)30. The hyper-parameters
of Xgboost were determined by a 5-fold cross-validation grid
search. The predicted probability of the Xgboost model was cal-
ibrated using the isotonic method to improve the results31. The
Shapley Addictive Explanations (SHAP)32 method was used to
evaluate the importance of the risk factors and to show the
nonlinear relationship and interactive effects inside the ML
model, by way of calculating the marginal contributions of the
risk factors. Besides, the Boruta algorithm33 was used to select
statistically the most important risk factors without pre-defining
an importance threshold, by introducing randomized variables
(also referred to as shadow variables). The rationality of the
ML model was reviewed by clinical experts (CLK, ETYT,
EYTY), considering the clinical significance of the nonlinear
effect of the risk factors. The optimal risk cut-offs for the LR
and ML models were determined by Youden’s index34.
The performance of the LR and ML models was tested on

the validation sample. The discrimination power was evaluated
using the area under the curve of the receiver-operating charac-
teristic curve (AUC-ROC) and the precision-recall curve
(AUC-PR). The AUC-ROC ranges from 0.5 to 1, where 0.7 to
0.8 is considered good and more than 0.8 is considered excel-
lent35. The AUC-PR is a performance metric measuring the
model’s ability to detect positive cases, which is a recommended

evaluation when the proportion of positive cases is small36. A
higher AUC-PR indicates better performance but there is no
agreed standard. The confidence intervals of AUC-ROC and
AUC-PR were estimated using bootstrap. The sensitivity
(recall), specificity, positive predictive value (PPV or precision),
the negative predictive values (NPV) at different risk thresholds
were calculated. Model calibration was assessed by calibration
plots37,38 and the Hosmer-Lemeshow test, to measure how well
the predicted risk agreed with the observed event rate. Two
existing diabetes mellitus risk models specific for the Chinese
population, the NCDRS18 and the NDS19, and the screening
recommendation by the Hong Kong Reference Framework for
Diabetes Care for Adults in Primary Care Settings12 were also
applied to the validation sample for performance comparison
of detecting diabetes mellitus and pre-diabetes mellitus, and
diabetes mellitus only. The AUC-ROCs of different models
were compared using DeLong’s test39, and the AUC-PRs were
compared using a bootstrap-based test40 with MedCalc 19.8.
Net reclassification improvement (NRI) and integrated discrimi-
nation improvement (IDI) were also used to compare different
models, on the aspects of changes in risk classification and
changes in risk difference between events and non-events,
respectively41. A NRI and IDI significantly greater than zero
indicate a better performance of the updated model.
All significance tests were two-tailed, with a significance level

at a P-value of <0.05. Data analyses were conducted using R
3.5.1 and Python 3.6.

RESULTS
Among the 1,857 subjects, 47.7% were male and the
mean – standard deviation age was 40.7 – 15.5 years old. Sub-
ject characteristics by glycemic groups are shown in Table 1.
The prevalence of new diabetes mellitus and pre-diabetes melli-
tus as detected by blood tests were 3.77% (n = 70) and 11.31%
(n = 210), respectively. The total prevalence of newly detected
diabetes mellitus and pre-diabetes mellitus was 15.08%
(n = 280).

Development of DM and pre-DM risk assessment models
The multicollinearity diagnosis results showed that the highest
VIF of the possible predictors came from waist circumference
at 4.41, indicating no severe multicollinearity existed. The
results from the LR risk model are presented in Table 2, show-
ing seven significant risk factors, including age, BMI, WHR,
smoking status, sleep duration, vigorous recreational activity
time per week, and fruit consumption per week. Age showed a
significant non-linear effect on the outcome (odds ratio of age2:
0.999 [0.998, 1.000]), in that the risk of new diabetes mellitus
and pre-diabetes mellitus reached a peak at the age of 74 years
old. An age-dependent effect of sleep duration on the risk of
new diabetes mellitus and pre-diabetes mellitus was observed
(odds ratio of interaction term: 1.015 [1.004, 1.027]). Specifi-
cally, the effect of short sleep duration decreased with age. The
final function of the LR model is: 1/(1 + e^-(0.0854*Age +
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Table 1 | Subject characteristics overall and by glycemic status (n = 1,857)

Characteristic Overall
(n = 1,857)

DM
(n = 70)

Pre-DM
(n = 210)

Normal glycemia
(n = 1,577)

Demographics
Age, years 40.70 – 15.48 55.46 – 12.29b 53.22 – 12.87b 38.37 – 14.76
Sex, male 885 (47.66%) 46 (65.71%)a,b 96 (45.71%) 743 (47.11%)

Smoking status (current smoker) 226 (12.17%) 17 (24.29%)b 37 (17.62%)b 172 (10.91%)
Clinical parameters
SBP, mmHg 115.77 – 17.36 127.91 – 18.65b 124.46 – 18.33b 114.08 – 16.61
DBP, mmHg 76.60 – 10.39 80.67 – 11.73b 79.39 – 9.72b 76.04 – 10.32
BMI, kg/m2 23.03 – 3.77 26.18 – 4.78a,b 24.87 – 3.71b 22.64 – 3.59
WHR 0.84 – 0.07 0.91 – 0.06a,b 0.88 – 0.07b 0.83 – 0.07
Waist circumference, cm 79.68 – 10.65 89.14 – 10.26a,b 84.72 – 9.70b 78.58 – 10.38

Drinking habit
Drinking frequency
Never 528 (28.43%) 23 (32.86%) 70 (33.33%) 435 (27.58%)
Monthly or less 1003 (54.01%) 37 (52.86%) 115 (54.76%) 851 (53.96%)
Twice a month or more 326 (17.56%) 10 (14.29%) 25 (11.90%) 291 (18.46%)
Alcohol consumption each time, unit 2.00 – 2.90 1.92 – 2.60 1.53 – 1.98b 2.06 – 3.01
Harmful drinking frequency
Never 1712 (92.19%) 63 (90.00%) 200 (95.24%) 1449 (91.88%)
Less than monthly 93 (5.01%) 3 (4.29%) 7 (3.33%) 83 (5.26%)
Monthly or more 52 (2.8%) 4 (5.71%) 3 (1.43%) 45 (2.86%)
AUDIT score 2.07 – 2.64 2.31 – 3.08 1.75 – 2.26b 2.10 – 2.67

Sleeping
Sleeping duration, hour/day 6.90 – 1.19 6.76 – 1.18 6.69 – 1.34 b 6.93 – 1.16
Days of poor sleep in last month 7.08 – 9.16 6.93 – 8.72b 7.70 – 9.96 7.01 – 9.07
Self-conceived sleep quality
Good 1044 (56.22%) 31 (44.29%) 113 (53.81%) 900 (57.07%)
Fair 618 (33.28%) 33 (47.14%) 76 (36.19%) 509 (32.28%)
Poor 195 (10.50%) 6 (8.57%) 21 (10.00%) 168 (10.65%)
Difficulty in falling asleep yes 609 (32.79%) 26 (37.14%) 77 (36.67%) 506 (32.09%)
Intermittent awakenings, yes 640 (34.46%) 36 (51.43%)b 87 (41.43%)b 517 (32.78%)
Early morning awakening yes 537 (28.92%) 32 (45.71%)b 77 (36.67%)b 428 (27.14%)

Physical activity
Vigorous recreational activity time, min/week 37.18 – 111.41 16.00 – 57.77 14.36 – 57.53b 41.15 – 118.01
Moderate recreational activity time, min/week 55.47 – 125.56 67.86 – 115.99 77.24 – 148.98b 52.02 – 122.28
Vigorous work time min/week 61.69 – 349.66 68.57 – 330.42 106.29 – 454.51b 54.57 – 331.18
Moderate work time min/week 121.43 – 424.13 158.36 – 497.18 133.57 – 485.05 117.30 – 409.31
Travel to and from places min/week 456.29 – 479.37 443.43 – 386.62 443.79 – 457.86 457.88 – 484.76
Sedentary behavior time min/week 2905 – 1127 2871 – 1113 2838 – 1188 2916 – 1119
Overall energy expenditure MET/week 3313 – 4154 3355 – 3934 3580 – 5093 3275 – 4024
WHO PA level (physically active) 1640(88.31%) 64 (91.43%) 181 (86.19%) 1395 (88.46%)

Diet
Fruit consumption servings/week 32.33 – 35.53 34.29 – 42.98 31.09 – 26.74 32.41 – 36.20
Vegetable consumption servings/week 60.62 – 60.34 67.87 – 80.81 59.48 – 48.34 60.45 – 60.75
Eat-out frequency times/month 31.13 – 20.91 24.79 – 22.02b 26.07 – 21.06b 32.09 – 20.71

All characteristics are expressed in either number (percentage) or mean (SD). Post-hoc pairwise comparisons among groups of DM/pre-DM/normal
glycemia were conducted using t-test or Chi-square test with P values adjusted by Bonferroni method. aThe difference between diabetes mellitus
and pre-diabetes mellitus groups was statistically significant (P < 0.05). bThe difference between diabetes mellitus group or pre-diabetes mellitus
group and normal glycemia group was statistically significant (P < 0.05). AUDIT score, alcohol use disorder identification test score; BMI, body mass
index; DBP, diastolic blood pressure; DM, diabetes mellitus; MET, metabolic equivalent; PA, physical activity; pre-DM, pre-diabetes; SBP, systolic blood
pressure; WHR, waist to hip ratio.
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0.1251*BMI + 2.2947*WHR + 0.5562 * Smoker - 0.9718*Sleep
duration - 0.0026*Vigorous recreational activity time -
0.0041*Fruit consumption - 0.0012*Age2 + 0.0152*Age*Sleep
duration - 6.0591)).
Using data of the same subjects (N = 1,238), the importance

ranking of the risk factors and variable selection result of the
ML model developed by Xgboost are presented in Figure 1.
Eight risk factors, including age, BMI, WHR, SBP, waist cir-
cumference, sleep duration, smoking status, and vigorous recre-
ational activity time per week, were selected by the Boruta
method for inclusion in the final ML model. The relationships
between each risk factor and the risk of new diabetes mellitus
and pre-diabetes mellitus are shown in Figure 2. The effect of
important interactions between risk factors is shown in
Figure S1 with color scale rulers. The effect of age increased
sharply from the age of 35 years and peaked at the age of
60 years. The BMI showed a significant interaction with age, in
that after the age of 50, the effect of age on diabetes mellitus
and pre-diabetes mellitus among people with a higher BMI
were stronger than those with a low BMI.
Sleep duration showed a non-linear relationship with the risk

of new diabetes mellitus and pre-diabetes mellitus, where indi-
viduals with sleep duration of 7 to 8 hours showed the lowest
risk. Vigorous recreational activity time per week showed a pro-
tective effect especially in the elderly, and the relationship was
most prominent from 0 to 120 min per week.

Validation of DM and pre-DM risk assessment models
The ROC and PR curves evaluating the discrimination of the
LR, ML, and two existing models on diabetes mellitus and pre-
diabetes mellitus cases and diabetes mellitus cases only are
shown in Figure 3. For the detection of diabetes mellitus and
pre-diabetes mellitus, the ML model showed the best discrimi-
nation with an AUC-ROC of 0.822 [0.779, 0.863] and AUC-PR
of 0.496 [0.391, 0.602], which was significantly higher (P-
value<0.05) than those of the LR model (AUC-ROC = 0.812

[0.769, 0.853], AUC-PR = 0.448 [0.361, 0.535]), NCDRS
(AUC-ROC = 0.784 [0.739, 0.828], AUC-PR = 0.364 [0.276,
0.451]), and NDS (AUC-ROC = 0.786 [0.740, 0.831], AUC-
PR = 0.378 [0.270, 0.487]). The AUC-ROC and AUC-PR of
the LR model were significantly higher than those of NCDRS
and NDS (P < 0.05). The NRI and IDI of the ML model over
the LR model were both significantly greater than zero
(NRI = 0.27 [0.13, 0.42], IRI = 0.07 [0.04, 0.11]), indicating a
better performance of the ML model than the LR model. For
the detection of diabetes mellitus only, the ML model had the
highest AUC-ROC of 0.837 [0.784, 0.888] and AUC-PR of
0.178 [0.058, 0.298], and both the ML and LR models had a
significantly better discrimination power than the NCDRS and
NDS. To avoid that the results were due to chance, data split-
ting (random splitting of the development and validation sam-
ple at 2:1) was repeated 20 times and the performance of the
risk models remained largely unchanged (Table S1).
The optimal risk threshold to detect diabetes mellitus and

pre-diabetes mellitus identified by Youden’s index was 12.7%
for the ML model and 11.0% for the LR model. The sensitivity
(recall), specificity, PPV (precision), and NPV of the ML model
and the LR model at different risk thresholds are listed in
Table 3. Using the same risk threshold, the LR model showed
better sensitivity and NPV, whereas the ML model showed a
higher specificity and PPV. Using the PHS 2014/15 the preva-
lence of pre-diabetes mellitus and diabetes mellitus at 15%, the
ML model had a sensitivity of 72.4%, a specificity 77.9%, PPV
38.2%, and NPV 93.8%; and the LR model had a sensitivity of
77.6%, a specificity 68.1%, PPV 31.4%, and NPV 94.2%. The
corresponding specificity, PPV, and NPV of the risk models by
sensitivity levels are also listed in Table 3.
The calibration plots of the LR and ML risk models are

shown in Figure 4. Both the ML and LR models showed good
calibration, as the difference between the predicted risk and the
observed risk was not statistically significant (H-L test P-
value > 0.05). The LR model tended to underestimate the risk

Table 2 | Diabetes mellitus and pre-diabetes mellitus risk factors of prediction model developed by logistic regression (N = 1,238)

Coefficient OR (95%CI) P value

Age, years 0.0854 1.0891 (0.9768, 1.2143) 0.124
BMI, kg/m2 0.1251 1.1332 (1.0739, 1.1959) <0.001
WHR 0.2295 1.2579 (0.9110, 1.7370) 0.163
Smoker (ref. non-smoker) 0.5562 1.7440 (1.0882, 2.7952) 0.021
Sleeping duration, hour/day -0.9718 0.3784 (0.1989, 0.7200) 0.003
Vigorous recreational activity time, min/week -0.0026 0.9974 (0.9948, 1.0000) 0.047
Fruit consumption, servings/week -0.0041 0.9959 (0.9905, 1.0013) 0.136
Age2 -0.0012 0.9988 (0.9979, 0.9997) 0.009
Age*Sleep duration 0.0152 1.0153 (1.0037, 1.0270) 0.009
Constant -6.0591

The risk model was developed using AIC-based stepwise multivariable logistic regression. Variables that could significantly improve the model’s
goodness of fit measure were selected. The unit of change of WHR is 0.1, and the unit of changes of all other parameters is 1. BMI, body mass
index; CI, confidence interval; DM, diabetes mellitus; pre-DM, pre-diabetes; WHR, waist to hip ratio.
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when the risk was <0.2 (20%), and the ML model tended to
underestimate the risk when the risk was more than 0.2 (20%).
At the bottom of each calibration plot, a histogram of the
number of subjects at different predicted risks shows that most
subjects had a risk between 0 and 0.2. Hence overall the ML
model is more resistant to misclassification.

Deployment of the risk models
The risk models developed in this study have been deployed as
a computerized calculator as displayed in Figure S2. The calcu-
lator can estimate the absolute risk (0–100%) of diabetes melli-
tus and pre-diabetes mellitus from the input information on
the risk factors, using the LR model and ML model, respec-
tively. The clinician can decide on the need of further blood

tests based on the estimated risk and the associated sensitivity,
specificity, positive and negative predictive values (Table 3).
The risk assessment calculator is available online with detailed
installation and operation instructions (https://github.com/
dongdongdongdwn/Non-laboratory-DM-and-pre-DM-risk-
model-for-case-detection-in-Chinese-population.git).

DISCUSSION
The current study has demonstrated the utility of diabetes mel-
litus and pre-diabetes mellitus risk assessment models that
include only non-laboratory-based risk factors that are available
in routine clinical practice. It has the strength of using data
from a sample representative of the general population, which
is generalizable and most applicable to primary care. Another

Figure 1 | Diabetes mellitus and pre-diabetes mellitus risk factor (feature) selection and importance ranking by ML modeling (N = 1,238). BMI,
body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; ML, machine learning; pre-DM, pre-diabetes; SBP, systolic blood pressure;
WHR, waist to hip ratio. Feature selection was conducted using Boruta algorithm, based on the feature importance calculated by SHAP. Blue bars
indicate the randomized variables (shadow variables). Variables with significantly higher importance than the randomized variables are considered
to be important. Green bars indicate the important risk factors. Yellow bars indicate the marginally important risk factors. Red bars indicate the
unimportant risk factors.
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strength is the use of both LR and ML methods to develop the
risk assessment models showed largely similar risk factors, sup-
porting the validity of the results. The LR risk model and the
ML model both showed better discrimination power than the
two existing diabetes mellitus risk scoring models for the detec-
tion of diabetes mellitus and pre-diabetes mellitus and diabetes
mellitus only. They were also more accurate than the screening
criteria recommended by the Hong Kong Reference Framework
for Diabetes Care for Adults in Primary Care Settings. Consid-
ering the calibration and the prevalence of an undiagnosed dia-
betes mellitus and pre-diabetes mellitus found in the PHS of

15%, the ML model is likely to be more resistant to misclassifi-
cation bias.
In addition to the well-known risk factors of diabetes melli-

tus (age, BMI, WHR, SBP, waist circumference, and smoking
status), this study also found that sleep duration and vigorous
recreational activity time per week were significant risk factors
of new diabetes mellitus and pre-diabetes mellitus, both of
which are important predictors identified in the LR and ML
models. Kengne et al.42 summarized existing non-invasive risk
models of type 2 diabetes mellitus and had similarly found that
age, smoking, family history, BMI, waist circumference,

Figure 2 | Relationship between risk factors (feature) and relative risk of new diabetes mellitus and pre-diabetes mellitus by ML modeling
(N = 1,238). BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; ML, machine learning; pre-DM, pre-diabetes; SBP, systolic
blood pressure; WHR, waist to hip ratio. The SHAP method was used to interpret the fitting result of the ML model. Nonlinear relationships
between each risk factor (x-axis) and the relative risk of DM and pre-DM to the study population level (y-axis) are shown.
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hypertension, and physical activity were the most commonly
used risk factors. Our risk models also considered the nonlinear
effect of these well-known risk factors by using transformation
and interaction terms in LR, and by ML to improve model per-
formance over existing models.
It is interesting to note that SBP was not a significant predic-

tor in the LR model but was one of the most important risk
factors in the ML model. The interrelationships among risk fac-
tors are complex and linear adjustment of other covariates
might dilute the actual nonlinear effect of some factors in LR
model. The ML model analysis showed that the risk of diabetes
mellitus and pre-diabetes mellitus increased sharply above a
SBP of 120 mmHg, suggesting the threshold of SBP is
120 mmHg for the risk of diabetes mellitus and pre-diabetes
mellitus. People without hypertension but with elevated SBP of

more than 120 mmHg should be targeted for diabetes mellitus
and pre-diabetes mellitus screening.
The BMI, WHR, and waist circumference are all frequently

used indicators of obesity. The ML model included all three
and the LR model included two (BMI and WHR) of them,
which raised the issue of multicollinearity. The VIF of these
three parameters in regression were all <5, indicating no signifi-
cant multicollinearity existed. We further carried out pairwise
correlation analysis of these three parameters (Figure S3), and
found BMI, WHR, and waist circumference were linearly corre-
lated, but they were not redundant (Pearson relationship < 0.7).
The stepwise LR model selected BMI and WHR but not waist
circumference, indicating that WHR may be a stronger predic-
tor of diabetes mellitus and pre-diabetes mellitus than waist cir-
cumference when only the linear effect was considered. On the

Figure 3 | ROC and PR curves of risk prediction models to detect new diabetes mellitus and pre-diabetes mellitus (DM only) on the validation
sample (N = 619). AUC, area under curve; LR, logistic regression; ML, machine learning; NCDRS, the New Chinese Diabetes Risk Score; NDS, non-
invasive diabetes score; PPV, positive predictive value; PR, precision-recall; ROC, receiver-operating characteristic. 95% CIs were calculated using
bootstrap. (a) For diabetes mellitus and pre-diabetes mellitus detection, the ML model showed significantly better AUC-ROC (DeLong’s test P value
<0.05) and AUC-PR (bootstrap-based test P value <0.05) than those of LR model, NCDRS and NDS. The LR model showed significantly better AUC-
ROC and AUC-PR than NCDRS and NDS. Continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI) of the
ML model beyond the LR model were 0.27 [0.13, 0.42] and 0.07 [0.04, 0.11], respectively, both significantly higher than 0 (P < 0.05). (b) The ML
model showed significantly better AUC-ROC (DeLong’s test P value <0.05) than the LR model, NCDRS and NDS. The LR model showed significantly
better AUC-ROC than NCDRS and NDS (DeLong’s test P value <0.05). The ML model and LR model both showed significantly higher AUC-PR than
NCDRS and NDS, but the difference of AUC-PR between the ML model and the LR model was not significant.
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other hand, the ML model identified these three obesity indica-
tors were all significant risk factors, and the inclusion of all
three indicators provides a more accurate risk assessment. The
independent nonlinear effects of these three parameters after
adjustment (Figure 2) were in line with clinical experience and
published literature43,44. This implies that the ML model can
extract additional predictive information from some predictors
that the linear model cannot detect. There is no consensus on
which of these three parameters is the best indicator of obe-
sity45. Some studies have verified that waist circumference and

WHR can provide extra information on diabetes mellitus inci-
dence in addition to BMI46,47. These parameters may provide
predictive power singly or in combination for different individ-
ual patients. In addition, it seems remarkable that the ML
model showed a dramatic increase in diabetes mellitus and pre-
diabetes mellitus risk at a waist circumference of 85 cm, which
is consistent with the waist circumference thresholds observed
in other Asian populations43,48,49. For example, a Japanese
cohort identified that a waist circumference of 85/80 cm for
male/female was the best cut-off for metabolic syndrome43. A
waist circumference of around 85 cm, which is much lower
than the recommended 102 cm for Western populations50,
should be a more appropriate cut-off point for Asians to strat-
ify the risk of diabetes and other metabolic disorders.
In addition to conventional risk factors, sleep duration and

vigorous recreational activity time per week were identified as
significant risk factors of diabetes mellitus and pre-diabetes
mellitus in both the LR and ML models. Both predictors are
modifiable lifestyle factors, hence their importance in diabetes
mellitus risk intervention. With the ML model, sleep duration
(as a continuous variable) showed a U-shaped relationship
where subjects with 7–8 h of sleep per day showed the lowest
risk of diabetes mellitus and pre-diabetes mellitus. We further
tested the statistical association between sleep duration levels
(<7 h, 7–8 h, >8 h) and risk of diabetes mellitus and pre-
diabetes mellitus in our subjects and found, as shown in
Table S2, the effect of excessive sleep (>8 h) did not reach sta-
tistical significance (P > 0.05), which could be related to the
large variance in a small sub-sample. A meta-analysis con-
ducted from 11 prospective studies found that when compared
with the sleep duration category of 7–8 h per day, both insuffi-
cient and excessive sleep duration were associated with an
increased risk of type 2 diabetes mellitus51. Given all these,
sleep duration should be considered in diabetes mellitus and
pre-diabetes mellitus risk assessment. Physical activity (PA) is a
well-recognized risk factor of diabetes mellitus and has been
included in the ADA risk model13, AUSDRISK15 and CAN-
RISK16 models, where physical activity is measured by self-
reported time on total physical activities. Our study measured
physical activity using the WHO’s Global Physical Activity
Questionnaire (GPAQ)28, which enquires on a detailed account
of all activities at work, during travel to and from places, and
on recreation. It should be noted that only vigorous recreational
activity time per week was a significant risk factor of diabetes
mellitus and pre-diabetes mellitus, whereas other types of physi-
cal activity, overall energy expenditure in METs, and physical
activity levels according to WHO recommendations were insig-
nificant. A Japanese cohort also found that only vigorous-
intensity leisure-time exercise was associated with risk of type 2
diabetes mellitus, whereas the associations were insignificant for
moderate-intensity exercise and occupational physical activity52.
These results were further confirmed by a Chinese cohort
study53 and a multi-ethnic cohort study54. In addition, the non-
linear trend identified by our ML model between vigorous

Table 3 | Sensitivity, specificity, PPV, and NPV of diabetes mellitus and
pre-diabetes mellitus risk models at different risk thresholds and at
different sensitivity levels (N = 619)

Risk threshold Model Sensitivity Specificity PPV NPV

Models’ performance at different risk thresholds (10%/15%/20%/25%)
Best threshold
LR 11.0%,
ML 12.7%

LR model 0.888 0.622 0.306 0.967
ML model 0.786 0.739 0.362 0.948

10% LR model 0.888 0.601 0.295 0.966
ML model 0.827 0.653 0.309 0.952

15% LR model 0.776 0.681 0.314 0.942
ML model 0.724 0.779 0.382 0.938

20% LR model 0.663 0.764 0.346 0.923
ML model 0.571 0.821 0.376 0.911

25% LR model 0.571 0.816 0.368 0.910
ML model 0.500 0.868 0.415 0.902

Models’ performance at different sensitivity levels (0.9/0.8/0.7)
7.9% LR model 0.900 0.557 0.278 0.970
8.1% ML model 0.900 0.574 0.286 0.971
16/50 NCDRS 0.900 0.493 0.254 0.970
10/50 NDS 0.900 0.501 0.255 0.967
13.5% LR model 0.800 0.664 0.311 0.948
11.3% ML model 0.800 0.673 0.345 0.951
21/50 NCDRS 0.800 0.633 0.298 0.951
19/50 NDS 0.800 0.649 0.299 0.944
18.7% LR model 0.700 0.747 0.343 0.931
16.2% ML model 0.700 0.787 0.383 0.934
23/50 NCDRS 0.700 0.699 0.302 0.924
22/50 NDS 0.700 0.708 0.309 0.925

HK reference framework for diabetes care for adults in primary care
setting

0.942 0.353 0.227 0.968

Optimal risk cutoffs of LR model and ML model were determined by
Youden’s index. As NCDRS and NDS only provides risk scores instead
of corresponding absolute risk in percentage, the indexes by risk
thresholds cannot be calculated for these two models. The HK Refer-
ence Framework for Diabetes Care for Adults in Primary Care Setting is
a risk factor-based screening criteria and neither risk estimation nor risk
score is provided, hence only a set of sensitivity, specificity, PPV, and
NPV is presented in the table. LR, logistic regression; ML, machine learn-
ing; NCDRS, the New Chinese diabetes risk score; NDS, non-invasive dia-
betes score; NPV, negative predictive value; PPV, positive predictive
value.
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recreational activity time and risk of diabetes mellitus and pre-
diabetes mellitus was in line with the finding from a meta-
analysis of ten cohort studies, in that more pronounced dose-
response reduction in the risk of diabetes mellitus was observed
at vigorous recreational activities of 0–2 h per week55. Taken
together, focusing on the assessment of vigorous recreational
activity time per week might be more sensitive for diabetes

mellitus and pre-diabetes mellitus risk assessment, which would
also enhance the acceptability and efficiency in data collection
in primary care.
Given that the estimated risk of new diabetes mellitus and

pre-diabetes mellitus is a continuous value ranging between 0
and 100%, the risk threshold to be adopted for case detection
has to consider the trade-off between sensitivity and precision

Figure 4 | Calibration plots of risk prediction models to detect new diabetes mellitus and pre-diabetes mellitus on the validation sample (N = 619).
Hosmer-Lemeshow test results showed the difference between predicted risk and observed risk was not significant (I > 0.05) for both the LR and
ML models. The x-axis is the predicted risk of diabetes mellitus and pre-diabetes mellitus, and the y-axis is the observed risk of diabetes mellitus
and pre-diabetes mellitus. The curves were fitted based on restricted cubic splines. At the bottom of the graphs, histograms of the predicted risks
are shown for the subjects with (1) and without (0) diabetes mellitus and pre-diabetes mellitus. Since NCDRS and NDS only provides risk scores
instead of corresponding absolute risk in percentage, their calibration cannot be evaluated. Since the models were to estimate the risk of diabetes
mellitus and pre-diabetes mellitus, hence the calibration on DM only were not carried out.
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under different circumstances. At the same sensitivity level, the
ML model showed better specificity and precision than the LR
model. For example, if 80% of cases of diabetes mellitus and
pre-diabetes mellitus need to be detected successfully
(sensitivity = 80%), the precision of the ML model is 0.345,
corresponding to a number-needed-to-screen of 2.9 to identify
one case of diabetes mellitus and pre-diabetes mellitus, whereas
the number for the LR model (precision = 0.311) is 3.2, for
NCDRS (precision = 0.298) and NDS (precision = 0.299) is
3.4. This difference can be significant when screening has to be
applied to a large population on an ongoing basis in primary
care.
The vast majority of existing diabetes mellitus risk assessment

models were developed using regression-based methods56,
which are limited in their ability to handle complex relation-
ships and may lead to suboptimal results. The ML model
developed in this study showed outstanding discrimination and
calibration, and surpassed the developed LR model and the two
existing models (NCDRS and NDS). ML algorithms can pro-
vide more accurate risk assessments due to their powerful fit-
ting ability but they have been criticized for lack of
transparency57. In this study, we showed the SHAP method
could improve the interpretability of the ML model by quanti-
fying and visualizing the nonlinear and interactive effects of
each risk factor. Incorporating the review of clinicians based on
their experience and knowledge, the reliability and usability of
the ML models were substantially improved, ensuring the
models developed in this study have the potential to be inte-
grated into type 2 diabetes mellitus screening and prevention in
routine clinical practice.
This study has several limitations. First, some well-known

risk factors, such as a family history of diabetes mellitus and
a history of gestational diabetes mellitus could not be
included because they were not collected in the PHS 2014/
15. Second, the validation was carried out on a sample from
the same population, therefore, further validation on an exter-
nal sample in primary care should be carried to establish its
validity in clinical practice. Third, due to the exclusion cri-
teria, the model may not be generalizable to individuals with
a known diagnosis of hypertension, CVD, cancer, renal dis-
ease, or anemia.

CONCLUSION
Using a representative sample of the Chinese general popula-
tion, this study developed a non-laboratory-based risk assess-
ment models to detect undiagnosed diabetes mellitus and pre-
diabetes mellitus in Chinese adults using both a classical statisti-
cal method and an interpretable machine learning method.
Besides conventional diabetes mellitus risk factors, sleep dura-
tion of less than 7 h and vigorous recreational activity time of
less than 120 min per week were found to be significant modi-
fiable risk factors of diabetes mellitus and pre-diabetes mellitus,
which should be included in future risk assessment models as
well as interventions to prevent diabetes mellitus and pre-

diabetes mellitus. The new models developed in this study had
excellent performance with ROC-AUC >0.8 in the validation
sample, which was better than existing risk models and the
Chinese-specific Reference Framework for the detection of dia-
betes mellitus and pre-diabetes mellitus. Subject to confirmation
by external validation in primary care, the models can be incor-
porated in the electronic medical record system or made avail-
able as a mobile application to facilitate opportunistic case
detection of diabetes mellitus and pre-diabetes mellitus in pri-
mary care. Another potential application is for patient activa-
tion to self-monitor their own risk of diabetes mellitus and pre-
diabetes mellitus.
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Figure S1 | Important interactive effects of risk factors on the relative risk of diabetes mellitus and pre-diabetes mellitus by ML
modeling (N = 1238).

Figure S2 | Interface of software for diabetes mellitus and pre-diabetes mellitus risk assessment.

Figure S3 | The exploration of multicollinearity among BMI, WHR, and waist circumference.

Table S1 | Performance of the risk models based on repeated randomized data splitting.

Table S2 | Association between sleep duration level and risk of new diabetes mellitus and pre-diabetes mellitus (N = 1238).
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