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Infectious disease has witnessed the emergence of

mathematical modeling a tool of synthesizing data of

growing complexity now available to clinicians and

basic scientists alike. The purpose of this review is to

introduce mathematical tools commonly used to

model infectious disease. We will illustrate the use of

equation-based, agent-based or statistical modeling

approaches to a variety of examples pertaining to acute

inflammation, bacterial dynamics, viral dynamics, and

signaling pathways, focusing of host-pathogen interac-

tions rather than population models. We will discuss

the strengths and weaknesses of these approaches and

offer future perspectives for this rapidly evolving field.
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model are both knowledge-driven and data-supported and

therefore somewhere between black and white box models,
Introduction

The increasing use of mathematics and computational tools

in medicine is inevitable. Improvements in the quantity and

quality of data streams, from genomic to administrative in

nature, have resulted from the introduction of new measure-

ment, data gathering and data storage techniques. Physiolo-

gical complexity constitutes a formidable challenge to a

coherent and meaningful interpretation of these data.

Clearly, the development of tools to assimilate and interpret

data is just as critical as the data itself to the knowledge

discovery process in this new, data-rich ear [1].

The advantage of mathematical modeling of disease lies in

the fact that such models not only shed insight as to how a

complex process works, which could be very difficult to infer

an understanding of each component of this process, but also
predict what may follow as time evolves or as the character-

istics of particular system components are modified. This

approach is particularly helpful where these predictions are

not already obvious to clinical or biological researchers, or

where particular outcomes are expected, but the mechanisms

leading to these outcomes cannot be directly intuited.

According to how much a priori information of the system

to be modeled is available, mathematical models are classified

into black box (data-driven or data-supported) and white box

(knowledge-driven) models. Practically all systems we wish to

so that this general construct is only used as a guiding

approach.

Types of models

Black, white and grey box models

A black box model represents a system for which there is no a

priori information available or assumed. Such models are

characterized in terms of their input and output character-

istics. The construction of black box models requires estima-

tion of functional forms of associations between variables

and the parameters in those functions. If prior knowledge of

factors (inputs) driving outcome (output) and sufficient data

exist, one could build up a set of functions that robustly

describe the relationship between input and output. Several

statistical models take advantage of such knowledge [2]. But

since in the case of black box models there is usually no or less
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a priori information available one would try to use functions

as general as possible to describe the given system. The main

drawback of black box models lies in the fact that the map-

ping between input and output remains largely unexplained,

that is, hidden in the black box. Calculation of such maps are

often computationally intensive. An often cited example of a

black box model is an artificial neural networks (ANN).

Neural networks are non-linear statistical data modeling

tools useful to learn complex relationships between inputs

and outputs, classify patterns in data, or predict time series

[3,4]. An artificial neural network involves a network of

simple processing elements which can exhibit global

behavior, determined by the connections between the pro-

cessing elements and element parameters. It is a trainable

model designed to solve complex problems from a set of

examples and generalize the acquired knowledge to solve

unforeseen problems, that is it is a self-adaptive system.

ANNs are applicable to situations where the complexity

of the data or task makes the design of a function inferred

by observations by hand impractical. For instance, ANNs

are used to model different aspects of biological neural

systems, and have been used successfully for prognostication

in critical illness where it may present advantages over

traditional statistical models, especially when data is sparse

[5–7].

A white box model (often also called clear box or glass box

model) is a knowledge driven system where all necessary

information needed to build the functions describing the

relationships between variables is given. White box models

are usually considered easier, because the functional relations

between the variables are given. In that sense, the processes

driving the evolution of the system are modeled explicitly

and those explicit relations, expressed in the model as rules or

equations, embody prior knowledge of causality. Typical

white box models are (1) differential equation-based models,

like ordinary differential equations (ODEs), partial differen-

tial equations (PDEs), stochastic ODEs and PDEs, and (2)

agent-based models (ABM). Both platforms are used exten-

sively to model infectious phenomena. No data are actually

needed to build such models.

Differential equations, as a modeling approach, have enor-

mous appeal. They (1) provide an intuitive means to translate

mechanistic concepts into a mathematical framework, (2)

can be analyzed using a large body of existing techniques, (3)

can be numerically simulated easily and inexpensively on a

desktop computer, (4) provide both qualitative and quanti-

tative predictions, and (5) allow for the systematic incorpora-

tion of higher levels of complexity and uncertainty.

Equation-based models usually depend on a large number

of parameters that quantify biological interaction, and that

specifying these parameters is a difficult task. However, these

parameters are explicit. Therefore, knowledge gaps are readily

identified, unlike alternative modeling approaches. Further,
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the speed of computation of differential equation-based mod-

els allows for massive experimentation with parameters that

may not be determined experimentally, leading to the devel-

opment of hypotheses on the roles of individual parameters,

reflecting the presence and relative importance of biological

processes or interactions that can drive subsequent experi-

mental investigations.

In some cases, biological systems may be so fragmented

that the use of differential equations may be impractical. In

such situations, agent-based models (ABM) certainly repre-

sent a more practical simulation platform than PDEs [8,9].

ABMs focus on the rules and mechanisms of behavior of the

individual components of a system. The components of a

system are classified into types of agents by virtue of shared

mechanisms that have been identified experimentally. The

mechanisms are expressed as a series of (‘if-then’) rules.

Tang et al. [10], for instance, developed an agent-

based model of the dynamics of rolling, activation and

adhesion of individual leukocytes in vitro. Other models

relevant to infectious disease have been applied to the

progression of infection and the ensuing immune host

response [8,11], the dissemination of infection in a limited

environment [12], in a city, where health care service

points, schools, restaurants and churches all represent pri-

vileged areas of disease transmission, would be difficult to

simulate with equation-based models [13], or even country-

wide [9]. Although intuitive and often the best modeling

approach, ABMs are difficult to calibrate with experimental

data, there are no tools to analyze their expected behavior,

or the impact of varying model assumptions, without

actually performing the simulations and such simulations

are computationally intensive for medium to large size

models.

Grey box models are a mixture of knowledge driven and

data supported systems. Many statistical models fall into this

category, where the choice of predictors is based in large part

on prior knowledge. Most of the assumptions underlying

large-scale models of infectious disease spread of the type

susceptible-infected-recovered (SIR) rely on epidemiological

or microbiological observations. Yet, formal validation of

those models, or of their ABM counterparts, that would be

refined estimation of model parameters from prospective

epidemiological data, remains problematic. As a conse-

quence, predictions from such models must be carefully

evaluated. Knowledge-based models of host–pathogen that

have been fit to experimental data and provided quantitative

predictions are typical examples of grey box models of rele-

vance. Clermont et al. [14], Vodovotz et al. [15] and Chow

et al. [16], for instance developed equation-based models of

the acute inflammatory response (AIR) based on the kinetics

of well-accepted constituents of the AIR and on experimental

data. Such models might prove very useful in rational drug

design, in patient selection for a given intervention, or in
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Figure 1. Contrasting approaches to modeling. Biological models are more likely to be useful if they include a balance of pre-existing knowledge and

sufficient data for validation. Similarly, models should be detailed enough to provide predictions of biological relevance (such as optimizing experimental

design), yet knowledge-driven simplifications are also beneficial.
optimizing intervention strategies that could serve as basis for

clinical trial design [17,18].

Top-down and bottom-up models

Top-down models abstract a complex system into high-level

biological functions and quantities to simplify the description

and prediction of its dynamics. In the physical world, such

models have been enormously successful in describing the

behavior of large collection of interacting objects, such as

molecules in a gas where pressure, volume and temperature

emerge as useful observables. Although significant insight and

non-intuitive predictions may result from such models of

biological systems [19,20], insufficiently detailed biological

models may be impossible to validate and should be perceived

as mostly exploratory in nature. Bottom-up models on the

other hand, attempt to maximize granularity, and thus for

example will reconstruct an entire cell from detailed and

hierarchical models of its subcomponents [21], or data-mine

extremely large datasets to extract patterns and associations.

Such models may suffer from severe knowledge-gaps or suggest

incorrect biological inference from data-discovery exercises,

when no prior interpretative filter is offered to such compu-

tationally intensive tools. Therefore, just as important as the

modeling exercise itself, high priority should be placed on the

development of methods that reconcile top-down and bot-

tom-up models [22], and guide optimal use of data to refine

knowledge-rich models, or appropriate use of existing knowl-

edge to inform data-mining algorithms (Fig. 1).

In silico disease models

In this section we will focus on a selection of mathematical

models of diseases. We chose relevant examples out of the

field of acute inflammation, bacterial dynamics, viral

dynamics and signaling pathways.
Acute inflammation

An [23] has produced an abstracted ABM of acute inflamma-

tion centered on cell-cell interaction, much like the ODE

models discussed above [14–16]. The model focuses on the

interactions that occur at the interface between endothelial

cells and blood-borne inflammatory cells and mediators. The

model was designed to respond to insults that stimulate both

infection and noninfectious tissue injury such as trauma. The

premise is based on the idea that similar pathways and

actions are responsible for the propagation of inflammation

once the process has been initiated. The ODE models and the

ABM focus on slightly different mechanisms occurring in

different anatomic regions and they predict similar results

both in individuals and in simulated clinical trials [24].

Models of bacterial dynamics

Models of diverse degree of sophistication have been con-

structed to simulate bacterial dynamics, such as growth under

various nutritional and chemical conditions [25–27], chemo-

tactic response [28,29] and interaction with host immunity

[30–32]. Such models have both theoretical interest and

practical applications. For example, elucidating the determi-

nants of bacterial size, total bacterial biomass and nutrient

requirements are primarily theoretical [33–35]. Yet, the

impact of physical factors on such variables are of particular

relevance to the food industry [36,37]. Clinically relevant

models of bacterial dynamics relating to peritoneal dialysis

[38], pulmonary infections [30], and particularly of antibiotic

treatment and bacterial resistance [39–42] have appeared in

the past several years.

Surprisingly however, it remains difficult to document

simple parameters for most models of bacterial dynamics.

For example, there are very few reports documenting the

dynamics of total bacterial load in the course of an infection
www.drugdiscoverytoday.com 119
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in an animal model, total number of active phagocytes and

their maximal phagocytic capacity, or compartmentalization

dynamics of infections. Thus, realistic models of in vivo

infections are correspondingly difficult to design and cali-

brate to empirical observations.

Models of viral dynamics within a host

Baccam et al. [43] utilized a series of mathematical models of

increasing complexity, which incorporate target cell limita-

tion and the innate interferon response, to examine influenza

A virus kinetics in the upper respiratory tracts of experimen-

tally infected adults. These author show that these models

can be applied to improve the understanding of influenza A

virus infection and estimated that during an upper respira-

tory tract infection, influenza virus initially spreads rapidly

with one cell, on average, infecting �20 others. The model

suggests that, as target cells are consumed and by the time of

the virus peak at days 2 to 3, the vast majority of the initial

target cells have been destroyed. Thus, influenza A infection

could be self-limiting providing the ensuing inflammatory

response in not excessive. Hancioglu et al. published a more

complex model of Influenza A [44], expanding from prior

work by Bocharov [45] and others [46], providing a biological

basis for population variability in severity and course of

infection. The purpose of such models is to provide a biolo-

gical basis for parameters, such as symptom duration, severity

of illness and infectivity, generally assumed in population

simulations. Such biological models also have the potential

to test the usefulness of alternative host-centered interven-

tion strategies. For example, simple target cell-limited (infec-

tion spread in a host is limited by the number of residual

healthy cells that can be infected) models of hepatitis C virus

infection have been used to estimate the antiviral efficacy of

interferon [47] and the effects of ribavirin [48].

Human immunodeficiency virus

Several groups of investigators modeled the Human Immu-

nodeficiency Virus (HIV)-host dynamics as reviewed by

Wodarz and Nowak [20], who by themselves use a basic

model of virus infection and replication to study HIV

dynamics and to measure crucial parameters that lead to a

new understanding of the disease process [49]. Simulation

studies have shown that (1) HIV is continuously replicating

with a high turn-over rate during the asymptomatic phase of

the infection, which enables the virus to evolve at a fast rate

[50,51], and (2) successful therapy can suppress virus below

detection limit but complete virus eradication is not possible

under normal circumstances because of long-lived latently

infected cells [52,53]. Relatively simple models describe the

effect of antigenic escape on disease progression, and are

examples of the general principle that virus evolution can

drive disease progression and the destruction of the immune

system [54–56]. A large number of experimental studies [56]
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have demonstrated the enormous potential of the virus to

escape from any kind of selective pressure exerted by CTL

responses, antibody responses or drug treatment. Thus, it is

predicted that the viral population in any one patient will

evolve away from control by the immune system (or drug

treatment) toward faster reproduction and broader cell trop-

ism. In addition to its clinical appeal, a mathematical model

of Wodarz et al. [57] suggested that structured therapy inter-

ruptions (STI) for HIV can boost immunity against HIV,

especially when performed relatively early after infection

[58–60]. Such predictions have not been supported by ensu-

ing clinical trials of STI, suggesting that further models

should improve biological fidelity [46,61]. The predictions

of such models have not been directly tested [62].

Model parameters and spread of disease

As mentioned earlier, one of the main challenges in math-

ematical modeling is the estimation of model parameters.

Since not all model parameters have a physiological meaning,

they need to be estimated numerically, which yields a given

uncertainty in these parameter values. Tools such as sensi-

tivity analysis, identifiability analysis, and bifurcation ana-

lysis give us the opportunity to understand how model

outcome and model parameters are correlated, how sensitive

a system is with respect to certain parameters and how big the

uncertainty in the model outcome yielded by the uncertain-

ties in the parameter values is [63,78].

Chowell et al. [64] and Sanchez et al. [65] used uncertainty

and sensitivity analysis to asses the role input parameters play

on the basic productive rate (Ro) of the severe acute respira-

tory syndrome (SARS) and tuberculosis, respectively. Control

of the SARS outbreak was based on rapid diagnosis coupled

with effective patient isolation. Mathematically spoken con-

trol of an outbreak relies partly on identifying what disease

parameters are likely to lead to a reduction in Ro. Therefore,

these authors and others [66] perform uncertainty and sensi-

tivity analysis to identify key parameters in outbreak control.

Signaling pathways

Activation of pathways leading to NFkB upregulation play a

key role in the initiation of an immune response to infectious

products. The activation dynamics of the transcription factor

NFkB exhibit damped oscillatory behavior when cells are

stimulated by tumor necrosis factor-a (TNFa) but stable

behavior when stimulated by lipopolysaccharide (LPS). LPS

binding to Toll-like receptor 4 (TLR4) causes activation of

NFkB that requires two downstream pathways, each of which

when isolated exhibits damped oscillatory behavior. Compu-

tational modeling of the two TLR-4 dependent signaling

pathways [67] suggests that one pathway requires a time

delay to establish early antiphase activation of NFkB by the

two pathways. The MyD88-independent pathway required

Inferon regulatory factor 3-dependent expression of TNFa to
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activate NFkB, and the time required for TNFa synthesis

established the delay.

Mathematical models describing the dynamics of NFkB in

T-lymphocytes have been developed by Carlotti et al. [68] and

Hoffman et al. [69] The first model describes the association

and dissociation of NFkB and IkB and their translocation into

the nucleus both in the associated and dissociated forms. This

model demonstrates that NFkB is localized in the cytoplasm

at rest because of its association with IkB and the export of

NFkB from the nucleus. The second model demonstrates that

the temporal control was because of coordinated degradation

and resynthesis of IkB and that IkB provides a strong negative

feedback that can turn off the NFkB response. The hope of

such models is two-fold: (1) to probe mechanisms of action

such as the relative importance of competing pathways under

a variety of circumstances [70] and (2) the identification of

key intracellular targets for prospective immunomodulatory

interventions.

Multi-scale models of disease

Multi-scale models are key to understanding the function of

complex organs based on their genetic and cellular composi-

tion. In essence, a multi-scale model comprises several com-

ponents hierarchically organized, where the behavior of a

higher-level component is explained by the joint dynamics of

lower-level components [71–73]. The different components

which must be taken into account in the modeling process

range from genetic information through cells and tissue to

the behavior of whole organs, organisms, and whenever

relevant societal behaviors [73,74]. We presented above a

compelling argument for the inclusion of multi-scale meth-

odology in simulations of disease spread and containment.

The identification of key drivers of disease spread may only be

identified from host-centered models. Such drivers include Ro

and u, but also the presence of a combination of host factors

characteristic of superspreading capability [75,76], or of pre-

existing immune function conveying vulnerability or resis-

tance to an infectious agent. Of note, a model need only be as

complicated as the level of insight sought, or the target of a

proposed investigation or manipulation.

Complex systems and Systems Biology are emerging fields

that aim at systems-level understanding of biological sys-

tems. The highly mathematical and statistical aspect of those

modeling efforts were pioneered by engineers, physicians,

chemists and mathematicians, a growing proportion of

which now focusing on biological applications. New organi-

zations such as the International Society for Systems Biology

(http://www.issb.org/) and the Society of Complexity in

Acute Illness (http://www.scai-med.org/) [77], have been

founded to bring together researchers from those quantita-

tive fields with biological and clinical scientists to discuss

complex systems approaches in modeling different diseases

with the goal of understanding and solving the core chal-
lenges impeding the development of robust methods of

knowledge discovery in the high-throughput era, and trans-

lating this knowledge into improving clinical outcomes.

Conclusion

Modeling infectious disease is a rich and growing field. Tra-

ditionally focused on models of infection spread and contain-

ment, increasingly sophisticated models are leveraging the

newly available rich clinical, physiological, molecular and

genetic data steams. Progress will result from the concerted

actions of highly interactive inter-disciplinary teams, where

knowledge discovery will itself be model guided [1].
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