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Abstract: Our aim was to investigate the feasibility of using limestone waste resulting from stone 

processing for the manufacturing of fired clay bricks. Waste materials were considered as a partial 

replacement for clays to reduce the exploitation of natural resources and as a response to the climate 

neutrality commitments. The samples were prepared to have a waste content of up to 15% and were 

fired at a temperature of 900 °C. The chemical and mineralogical composition and the physical anal‐

ysis of raw materials were investigated by using SEM–EDS and XRD diffraction. The result showed 

an increase in CaO in the clay mixture due to the presence of limestone, which reduced the shrink‐

age of the products’ compressive strength, up to 55% for samples with a higher content of limestone 

(15 wt.%), and influenced the samples’ color by making them lighter than the reference sample. 
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1. Introduction 

The quarry and processing of natural stone yearly generate a high quantity of waste, 

which  can  be  recycled  in  construction materials  to  sustain  circularity  and  economic 

growth. Waste resulting from the processing of stone as formed, cladding, floor‐paving 

elements represents up to half of the volume of the extracted material [1]. This has a sig‐

nificant economic and environmental impact, as well as a huge potential in recovering the 

construction industry [2,3] as a circular economy measure. 

Studies conducted in recent years by academic and scientific researchers have high‐

lighted the potential of using recycled limestone waste as a binder [3–7] or aggregate in 

cementitious materials [3,8–10], or as a filler in bituminous concrete [11], glass fiber [12], 

or production of ceramic materials [13–15]. The limited studies performed thus far on clay 

bricks with the addition of limestone waste have  increased the interest in studying the 

potential of local waste recovery in the production of ceramic materials. Substituting re‐

cycled limestone waste in the clay matrix may contribute to the preservation of natural 

resources and reduction in waste disposal. Waste materials’ circularity resulting from the 

construction industry is essential in the transition toward a circular economy. The waste 

hierarchy “reduce–reuse–recycle” [16,17] was considered a sustainable action plan [18–

20] to reduce the environmental impact, provide new jobs, and limit the taxes associated 

with pollution, including CO2 emissions certificates. Recovery of waste materials for man‐

ufacturing of new products should be managed by considering the waste stream, recy‐

cling process (collection, distribution, sorting, grinding, transportation), and investment 

costs required for a supply chain. 
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Abstract: Our aim was to investigate the feasibility of using limestone waste resulting from stone 

processing for the manufacturing of fired clay bricks. Waste materials were considered as a partial 

replacement for clays to reduce the exploitation of natural resources and as a response to the climate 

neutrality commitments. The samples were prepared to have a waste content of up to 15% and were 

fired at a temperature of 900 °C. The chemical and mineralogical composition and the physical anal-

ysis of raw materials were investigated by using SEM–EDS and XRD diffraction. The result showed 

an increase in CaO in the clay mixture due to the presence of limestone, which reduced the shrink-

age of the products’ compressive strength, up to 55% for samples with a higher content of limestone 

(15 wt.%), and influenced the samples’ color by making them lighter than the reference sample. 
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Abstract: Our aim was to investigate the feasibility of using limestone waste resulting from stone
processing for the manufacturing of fired clay bricks. Waste materials were considered as a partial
replacement for clays to reduce the exploitation of natural resources and as a response to the climate
neutrality commitments. The samples were prepared to have a waste content of up to 15% and were
fired at a temperature of 900 ◦C. The chemical and mineralogical composition and the physical analy-
sis of raw materials were investigated by using SEM–EDS and XRD diffraction. The result showed an
increase in CaO in the clay mixture due to the presence of limestone, which reduced the shrinkage
of the products’ compressive strength, up to 55% for samples with a higher content of limestone
(15 wt.%), and influenced the samples’ color by making them lighter than the reference sample.
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1. Introduction

The quarry and processing of natural stone yearly generate a high quantity of waste,
which can be recycled in construction materials to sustain circularity and economic growth.
Waste resulting from the processing of stone as formed, cladding, floor-paving elements
represents up to half of the volume of the extracted material [1]. This has a significant eco-
nomic and environmental impact, as well as a huge potential in recovering the construction
industry [2,3] as a circular economy measure.

Studies conducted in recent years by academic and scientific researchers have high-
lighted the potential of using recycled limestone waste as a binder [3–7] or aggregate in
cementitious materials [3,8–10], or as a filler in bituminous concrete [11], glass fiber [12],
or production of ceramic materials [13–15]. The limited studies performed thus far on
clay bricks with the addition of limestone waste have increased the interest in studying
the potential of local waste recovery in the production of ceramic materials. Substituting
recycled limestone waste in the clay matrix may contribute to the preservation of natural
resources and reduction in waste disposal. Waste materials’ circularity resulting from the
construction industry is essential in the transition toward a circular economy. The waste
hierarchy “reduce–reuse–recycle” [16,17] was considered a sustainable action plan [18–20]
to reduce the environmental impact, provide new jobs, and limit the taxes associated with
pollution, including CO2 emissions certificates. Recovery of waste materials for manufac-
turing of new products should be managed by considering the waste stream, recycling
process (collection, distribution, sorting, grinding, transportation), and investment costs
required for a supply chain.
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The quality of units is a very important parameter. Therefore, the maximum percent-
ages of waste that can be incorporated into clay matrix must be established in accordance
with the raw materials’ characteristics and green- or fired-product properties. Limestone
waste may be used as a fluxing material to reduce the clay plasticity or as a pore former,
enhancing the thermal characteristics of ceramic materials by increasing their porosity. The
recovery potential of other waste materials rich in calcite as an admixture in the mass of
clay materials has also been investigated [21–23].

Limestone is a material rich in calcium carbonate and can contain magnesium carbon-
ate [24], which has been used in the past as masonry stone units for the construction of
residential, cultural, and administrative buildings. Now, its use as a unit in masonry build-
ings is limited to ecological constructions, mainly wall cladding or floor paving. Limestone
is locally available and may be used as a primary or secondary raw material (resulting from
stone processing or quarries activities) for manufacturing new materials.

During the firing process, the limestone decomposition must be complete to ensure
brick quality. According to [25], carbonates with particle sizes larger than 5 mm may have
negative effects if used as additives in a clay matrix. The CaO grains in the presence of
water may favor the appearance of portlandite [26], followed by an increase in volume [25]
and a decrease in material properties.

In that respect, this paper presents our findings from experiments on fired-clay materi-
als having a composition of up to 15% limestone waste. The aim of the present investigation
was to evaluate the feasibility of the use of limestone waste as a resource for manufacturing
of fired bricks. Characterization of the samples was performed in terms of mineralogical,
physical, and mechanical properties.

The paper is structured in four sections. In the second section, the materials and
methods used in the experimental study for investigations of raw materials and green and
fired samples, are presented. In the third section, the results obtained are highlighted, and
some observations and remarks are discussed to support the findings. Conclusions and
further research are drawn at the end of this paper based on the results.

2. Materials and Methods

The raw materials were treated (dried at a temperature of 90 ◦C and ground), and
their density was determined by pycnometry, resulting in the following values: 2.38 g/cm3

clays and 2.44 g/cm3 limestone. Based on material densities, the specimens were prepared
as admixtures of clays and limestone waste resulting from stone processing activities, in
different percentages by weight. The limestone content in the clay matrix was 0% (reference
sample C0), 5% (sample C1), 10% (sample C2), and 15% (sample C3). The specimens were
cylindrically shaped with an 18 mm diameter. Then, they were dry-pressed at 39 MPa by
using a hydraulic press and fired at a temperature of 900 ◦C/2 h [27,28].

Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis (Jeol
5600 LV microscope) were used to investigate the limestone and fired samples. For each
value presented in the paper, a minimum of 5 different measurements were conducted and
averaged. The density of a sample was determined by dividing the sample’s mass by the
calculated volume. Because it had a regular shape, the sample’s volume was calculated
from linear measurements made with 0.1 mm accuracy. Linear shrinkage was calculated
as the ratio of the sample’s diameter shrinkage divided by the initial diameter, and is
presented as a percentage; the linear measurements were conducted again with 0.1 mm
accuracy. Similarly, the mass loss was calculated by dividing the measured weight loss from
the sample’s initial mass. The values are given as a percentage. The sample’s color was
taken from the sample images. Phase identification was conducted using X-ray diffraction
(Equinox D3000 diffractometer), using Co-kα radiation. Phase composition was estimated
from the X-ray diffraction patterns based of the height of the most intense peak for each
compound. The compressive strength of the specimens was determined on cylindrical
specimens with a diameter of 18 mm and an aspect ratio of 1 by using a Controls Advantest
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9 hydraulic press. The load rate we used was 0.2 MPa s−1, and the accuracy of the pressure
recording was 0.01 MPa.

3. Results and Discussion
3.1. Raw Materials

The SEM images at different magnification and X-ray diffraction pattern are presented
in Figure 1. The SEM images (Figure 1a,b) highlight an agglomerated powder with a wide
size range starting from ~1 to 100 µm.
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Figure 1. SEM images of limestone at low (a) and higher (b) magnification; X-ray diffraction pattern 

of the used powder (c). 

The limestone waste was analyzed by using the EDX microprobe, and the main met-

als are evidenced in Table 1. 

Table 1. Elemental metal composition of limestone (wt.%). 

Element Mg  Al Si  K  Ca  Fe  

Content (wt.%) 2.7 3.8 7.2 1.0 82.4 2.8 

Figure 1. SEM images of limestone at low (a) and higher (b) magnification; X-ray diffraction pattern
of the used powder (c).

The X-ray diffraction pattern (Figure 1c) shows that limestone waste mostly con-
tained calcite and some traces of dolomite. An X-ray diffraction peak shift was observed
due to the differences in ionic radii between the main element (calcium) and the other
coexisting elements.

The limestone waste was analyzed by using the EDX microprobe, and the main metals
are evidenced in Table 1.
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Table 1. Elemental metal composition of limestone (wt.%).

Element Mg Al Si K Ca Fe

Content (wt.%) 2.7 3.8 7.2 1.0 82.4 2.8

The analysis showed that limestone mainly consisted of calcium carbonate (CaCO3)
and traces of dolomite (MgCO3), which may have contributed to the increase in the speci-
men’s porosity during firing and decrease in its density. It is noteworthy that 44 wt.% of
CaCO3 and 52 wt.% of MgCO3 were emitted into the atmosphere in the form of CO2, an
unwanted greenhouse gas, during the firing.

3.2. Brick Sample

As in reference [25], in samples with limestone content (more highlighted in samples
C2 and C3), the presence of unreacted CaO grains was observed (Figure 2b). This can
generate decay of materials in the presence of water and lead to the transformation of
calcium oxide (CaO) into portlandite (Ca(OH)2).
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Figure 2. Green (a) and fired samples (b).

A higher temperature may be required for sealing CaO particles in a clay matrix to
avoid this undesirable phenomenon, which increases the energy demand, the product cost,
and pollution. Other issues have been highlighted [29,30], clearly showing a higher release
of CO2 from raw materials rich in carbonate.

The lower content of Fe2O3 in samples with a higher content of limestone influenced
the sample’s texture and color (Figure 2). We found that the color of a sample with the
addition of limestone waste (C1–C3) was influenced by the increase in waste content,
because it was lighter than the reference sample (C0).

For the description of the color changes due to the presence of limestone waste, the
most employed color space (the RGB color space) was used. The RGB color space is based
on the mixture of three primary, reference colors: red, green, and blue (R, G, and B). They
form the base vectors of a three-dimensional orthogonal (color)–vector space, where the
origin represents black because any color can be viewed as a mixture of the three. The three
components are determined by the measured intensities of visible light in the long-wave
(red), middle-wave (green), and short-wave (blue) area. As shown in Figure 3, which
represents the samples color in the RGB space, increases in the green and blue components
were recorded, so the color was lighter than that of the reference sample.
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Regarding fired clay materials, the main oxides that influenced the samples color were
alumina, iron oxide, calcium, and magnesium oxide. As we showed, adding the limestone
into the clay matrix increased the calcium and magnesium oxide contents, while other
oxides appeared to remain constant. The main components identified by X-ray diffraction
were quartz (around 80%), feldspar, and calcium oxide (Table 2). Minor components (not
marked in Figure 3b to avoid being illegible) were hematite, gehlenite, and muscovite.
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Table 2. Estimated concentration of present minerals.

5% Limestone Waste 10% Limestone Waste 15% Limestone Waste

Quartz 80% 82% 75%
Feldspar 8% 7% 13%
Calcium oxide 5% 6% 7%
Hematite 4% 2% 2%
Muscovite 3% 1% 1%
Gehlenite 0% 2% 2%
Total 100% 100% 100%

From Table 1, one can conclude that some part of the calcium oxide remained as a free
mineral present in the fired samples in the form of white spots (see Figure 2b). Some of it
reacted with aluminum oxide and quartz to form at lower content gehlenite or at higher
CaO content with Ca-containing minerals of the feldspar group. Based on the work of R.
Kreimeyer [31], the increased CaO and MgO contents of more than 10% caused the iron
oxide (responsible for the usual brown color) to be partially consumed by the formation of
different compounds such as dicalcium ferrite, gehlenite, or pyroxene. From these minerals,
only the gehlenite was identified in the samples with more than 10% limestone waste. This
effect, the lightening of the brown color, is clearly evidenced in Figure 3, where the colors
of samples C2 and C3 are far from that of the reference sample; a strong increase in the blue
(short-wave) and green (middle-wave) intensities is clear. For sample C1, an increase in
the green component is visible. This slight color modification compared with the reference
sample was mainly due to the presence of free, white CaO particles, visible in Figure 2b.

Using the EDX analysis, we found three main elements whose oxide could be respon-
sible for the color change: aluminum, calcium, and iron. The calcium was observed as
individual grains in accordance with the previous observations, as presented in Figure 2
(the white dots) and further evidenced in Figure 4, and its effect was visible in the present
case. The alumina and iron ratio was relatively constant for the fired samples; however
the absolute value of the iron concentration steadily decreased with the increase in the
limestone addition (from ~5.5 to 4.1 wt.%).
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The masses of the green and fired samples are shown in the Figure 5. Up to 17% mass
loss on firing was measured in the sample with highest content of limestone (C3), which
occurred due to the thermal decomposition of inorganic substances of raw materials.
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Figure 5. Weight of green and fired clay samples.

During the decomposition of carbonates, clays and limestone were transformed into
CaO and CO2 for calcite, while the MgCO3 was transformed into MgO and CO2; both
reactions require elevated temperature. The samples’ mesoporous structure [32] increased
the samples’ porosities. At a lower temperature, the water was released into atmosphere
due to dehydration and dehydroxylation of clay materials. CaO may react with SiO2,
resulting in wollastonite, which may contribute to reduction in shrinkage [30].

The variation in the linear dimension with the limestone content is presented in
Figure 6.
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Figure 6. Variation of linear dimension with the limestone content.

According to [33,34], shrinkage takes place due to the loss of chemically bound water
during the drying and firing stage of the product because of the reduction in porosity
during sintering and the expansion caused by the voids generated during the burning of
organic matter and other pore formers.

The shrinkage (percent), determined as the ratio between the sample’s diameter
measured before and after sintering, highlighted a decrease to 0.7% in sample C1 and
a further expansion to 1.5% for sample C2 and 2.8% in sample C3. This suggested that
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the decrease in shrinkage depended on the increase in limestone content and was an
exponential decay. Similar trends were highlighted by authors [25] in a different study.

The densities determined for green and fired samples are presented in Figure 7. It
is shown that the green samples’ densities had insignificant increases of 1.03% (sample
C2) and 0.52% (sample C1), as well as a decrease of 0.52% (sample C3) compared with
the reference sample (sample C0). After firing, the density of the samples decreases from
12% in the reference sample and up to 17% in sample C3. It may also be observed that the
sample density of fired bricks with the highest percent of limestone waste (C3) experienced
a decrease of about 6% compared with the control sample (C0). Because the densities of the
raw materials were close, their decreases are attributed solely to the increase in porosity by
carbonate decomposition.
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Figure 7. Density of green and fired samples (g/cm3).

The samples with limestone as an admixture (C1–C3) were materials with high density
(>1 g/cm3), normally being proper for masonry, and are protected against water with
cladding materials if the firing temperature is lower than 1000 ◦C.

The compressive strength of the fired clay samples is shown in Figure 8.
Figure 8 shows that mechanical strength of the samples was reduced by up to 55%

from 15.7 to 7 N/mm2, such as sample C3, compared with the standard sample. Based
on the results obtained, sample C3 is recommended for the production of solid units
for exploitation in dry environments. Increasing the firing temperature to 1100 ◦C, the
compressive strength of samples was reduced up to 8% in the reference samples and 9% in
sample C2. By incorporating different wastes, we deviated from optimal composition, so a
decrease in the mechanical properties may be expected.

To improve the mechanical characteristics of materials with limestone as an admixture,
further research can be performed based on these results. Future investigation should
envision the environmental impact of the materials by partially or totally considering the
uptake of the CO2.

In order to compare the magnitude of the reduction in the compressive strength, the
slope of the linear regression of the data presented in Figure 9 [28,35–39] was compared
with the data in the literature of other commonly used waste. The positive slope indicated
that the waste increased the compressive strength. As can be observed, only the fly ash had
a positive effect on the compressive strength. The limestone waste had the largest negative
effect. We suggest that the maximum amount of limestone waste to be used in combination
with the high CO2 emissions is around 5%.
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waste—present work).

3.3. Advantages and Disadvantages of Reusing Limestone Waste as Admixture in Clay Materials

The durability of materials is one of the most important parameters to ensure the
maintenance of a product in economy for many years after manufacturing, considering
that waste prevention is a priority in the Waste Framework Directive [17]. Usually, clay
materials have a high lifecycle compared with other building materials if they are properly
used and maintained in construction. After building demolition or dismantling, the clay
materials may be reused in other construction if their parameters are adequate, or they may
be recycled as a binder or aggregate for new material productions.

Some opportunities for and threats of using the limestone waste as an admixture in
the clay matrix are summarized in Table 3.
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Table 3. Advantages and disadvantages of using limestone in the clay materials.

Advantages Disadvantages

A1: limestone waste generated from stoned
processing is a locally abundant resources that
may partially substitute the clays in brick
production or other materials
A2: is a natural material that is not hazardous
A3: stone processing companies may create
durable partnerships with industries
A4: materials industry can take advantage of
financial support to sustain waste circularity
and consequently limit waste disposal
A5: may represent a valuable resource,
especially in areas scarce in clays
A6: facilitate new jobs in recycling process and
revitalization of disposal areas

D1: limited knowledge about limestone
recycling opportunities
D2: tests on a real scale product have been
insufficient performed
D3: costs of primary resources are still low,
which make waste processing cost-ineffective
and less attractive
D4: lower mechanical properties for high
content in comparison with
conventional materials
D5: lack of chain for distribution of waste
D6: may increase production cost due to waste
transport and pretreatment
D7: strong competition with other low-cost
green materials
D8: lack of guidelines for secondary
raw materials

It is well-known that to determine the environmental impact of a manufacturing pro-
cess of ceramic materials, the carbon emissions generated during exploitation of materials,
technological flux (firing and drying), and decomposition of organic raw materials must
be considered [40]. In the analyzed samples, the content of CaO was increased due to the
addition of the limestone waste.

We propose that the contribution of limestone waste as a pore-forming agent may
counterbalance the impact upon environment. This may contribute to manufacturing
products with improved thermal properties and lower density.

4. Conclusions and Further Research Development

The results obtained on clay materials with admixture of limestone waste highlighted
the following:

- The limestone waste increased the carbonate content and CO2 release due to their
decomposition, contributed to the waste circularity, and may improve the thermal
performance of products;

- The compressive strength of the samples with limestone waste was lower than that of
the reference samples, with up to 55% (sample C3);

- The sample density was reduced only by 17% for the sample with highest limestone
content, so it can be recommended for use in dry environments; to avoid their damage,
the color of the samples lightened as the limestone waste content increased.

A holistic approach at the macrolevel is necessary in making decision regarding the
stream flux and opportunity in waste recovery. Selective collection and treatment programs
are needed in each country and cities with relevant action plans established for waste
management based on “reuse–recycle–recovery”.
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