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A B S T R A C T   

Crimean-Congo Hemorrhagic Fever (CCHF) is a viral disease that can infect humans via contact with tick vectors 
or livestock reservoirs and can cause moderate to severe disease. The first human case of CCHF in Uganda was 
identified in 2013. To determine the geographic distribution of the CCHF virus (CCHFV), serosampling among 
herds of livestock was conducted in 28 Uganda districts in 2017. A geostatistical model of CCHF seroprevalence 
among livestock was developed to incorporate environmental and anthropogenic variables associated with 
elevated CCHF seroprevalence to predict CCHF seroprevalence on a map of Uganda and estimate the probability 
that CCHF seroprevalence exceeded 30% at each prediction location. Environmental and anthropogenic variables 
were also analyzed in separate models to determine the spatially varying drivers of prediction and determine 
which covariate class resulted in best prediction certainty. Covariates used in the full model included distance to 
the nearest croplands, average annual change in night-time light index, percent sand soil content, land surface 
temperature, and enhanced vegetation index. Elevated CCHF seroprevalence occurred in patches throughout the 
country, being highest in northern Uganda. Environmental covariates drove predicted seroprevalence in the full 
model more than anthropogenic covariates. Combination of environmental and anthropogenic variables resulted 
in the best prediction certainty. An understanding of the spatial distribution of CCHF across Uganda and the 
variables that drove predictions can be used to prioritize specific locations and activities to reduce the risk of 
future CCHF transmission.   

1. Introduction 

Crimean-Congo Hemorrhagic Fever (CCHF) is a zoonotic disease of 
humans and domesticated and wild animal species. Ixodid ticks, espe-
cially those from the genus Hyalomma, are considered the primary res-
ervoirs of CCHF virus (CCHFV) and act as vectors to transmit the virus to 
susceptible individuals [1]. Humans can become infected with CCHFV 
through contact with animal body fluids and tissue, and seroprevalence 
studies have found livestock handlers, abattoir workers, butchers, and 
others who live or work in close contact with livestock or animal derived 
products to be at highest risk of infection [2,3]. Human-to-human 
transmission can also occur via contact with infectious blood or body 
fluids of an infected individual [4]. Animal hosts typically remain 
asymptomatic upon infection, but humans can develop severe symptoms 

such as high fever and uncontrolled bleeding. Human case fatality rates 
from past outbreaks have ranged from 3 to 30% [5]. 

The geographic distribution of CCHFV encompasses countries across 
the African, Asian, and European continents [1,6]. Habitat suitability for 
CCHFV varies by tick species, some viable CCHFV tick vectors being 
most common in wooded or forested areas while others thrive in arid 
climates. Land conversion for agricultural purposes has also been shown 
to create suitable tick habitat and result in increased CCHF prevalence 
[1,7,8]. Ticks generally prefer geographies with well-drained sandy soils 
and vegetation that provides protection from extreme weather [9]. 
CCHFV is maintained within tick populations and in an enzootic cycle 
between ticks and vertebrate hosts. Within tick populations, CCHFV 
survives both transovarially (to offspring) and transstadially (through 
life stages) [1]. Ticks can seek blood meals from mobile vertebrates for 
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extended periods of time, leading to their potential dispersal across 
borders and continents and between susceptible populations [1,10–12]. 

The first ever human CCHF case in Uganda was reported in 2013, and 
subsequent cases have been identified throughout the country, most in 
Uganda's “Cattle Corridor” [13,14]. Recently, an outbreak of two CCHF 
cases was investigated in a refugee camp in western Uganda in April 
2021 where sero-epidemiological investigations found evidence of an-
tibodies against CCHFV in 71% of goats sampled within the camp [15]. 

Aside from recent outbreak investigations, the geographic distribu-
tion of CCHF in Uganda remains unknown. We conducted serosampling 
among livestock (cattle, sheep, goats) herds in 2017 and fit a geo-
statistical model to estimate the distribution of CCHF on a map of 
Uganda. This model was then divided into two partial models repre-
senting environmental and anthropogenic predictors of CCHF seropre-
valence, and subsequent predictions from partial models were compared 
to determine possible spatial heterogeneity in drivers of CCHF 
seroprevalence. 

2. Methods 

2.1. Ethical statement 

The Uganda Virus Research Institute (UVRI) in collaboration with 
the Viral Special Pathogens Branch at the Centers for Disease Control 
and Prevention received permission from the Uganda Ministry of Health 
to gather blood samples from livestock to prevent future morbidity and 
mortality from RVF. Human subjects approval for this study was granted 
from review by the UVRI Research Ethics Committee (UVRI REC: GC/ 
127/16/03/551). Animal subjects work was conducted according to 
Uganda national guidelines and performed by officers from the Ministry 
of Agriculture, Animal Industries and Fisheries. 

2.2. Livestock sampling data 

Blood samples were collected from 3181 animals selected from herds 
at 112 sites in 28 Uganda districts between February–August 2017 
(Fig. 1). Approximately half of animals sampled were cattle (54.4%), 
while 34.3% were goats and 11.3% were sheep. Sampling locations 
targeted the various geographies within the country and border districts 
where virus importation could occur. For each herd represented, a 
random sample of animals was selected from which to collect a blood 
sample for serological testing. 

2.3. Spatial predictor data 

Given the complex transmission cycle of CCHF between ticks, 
humans, and vertebrates, we evaluated the relationship between CCHF 
seroprevalence and a wide range of variables to identify those with the 
strongest predictive ability. Covariate raster data were obtained on a 
1km2 grid of Uganda and values were extracted at sampling locations for 
analysis. Covariate data unavailable at a resolution of 1km2 were 
resampled using bilinear interpolation to match this resolution. We 
assumed that the average lifespan of livestock in Uganda was 8 years 
(personal communication, FAO Uganda), therefore annual values of 
each variable were averaged over the 8 years prior to sampling 
(2009–2016). 

Potential model covariates were classified into the following do-
mains describing unique ecological processes associated with CCHF 
transmission: bioclimatic, geologic, land cover, and population density 
of humans and animals. Variables within each domain were evaluated to 
identify those with the best fit to sampling data. We sought to represent 
each domain within the final model to encompass each ecological sys-
tem associated with CCHF transmission. Evaluated covariates under 
each domain are listed in Supplemental Table 1. 

2.4. Statistical analysis 

Initial data analysis explored the relationship between logit- 
transformed CCHF seroprevalence with each covariate in a binomial 
generalized linear model (GLM) to identify those with positive or 
negative relationships with logit-CCHF seroprevalence. Covariates 
associated with CCHF seroprevalence in a non-spatial GLM (α = 0.05) 
were then analyzed using a Generalized Linear Geostatistical Model 
(GLGM) to determine whether the relationship remained after ac-
counting for the spatial structure of the sampling data. We fit the GLGM 
using Model-based Geostatistics [16,17] in the R package PrevMap [18]. 
A multivariate GLGM model was developed in a step-wise process, first 
retaining the covariate resulting in the best model fit, and subsequently 
adding the next variable resulting in the best model fit until each 
ecological domain was represented and the best fitting model was 
identified. Covariates included in the model were tested for collinearity, 
and a correlation coefficient of 0.6 was used as a cutoff, in which case 
the variable resulting in the better model fit was retained. Model over-
fitting was evaluated using a correlation matrix of the parameter 
maximum likelihood estimates, and we used a cutoff value of 0.6 to 
determine the presence of linear dependence between any covariates. 
The best fitting model was identified as the one which reduced uncer-
tainty most in the cumulative output probabilities of exceeding 30% 
CCHF seroprevalence in each prediction location, as described in Giorgi 
et al. [19]. The final model included six covariates: animal species 
(SPECIES), distance to cropland (DIST CROP), average annual change in 
a night-time light index (NTL CHANGE), percent sand soil content (% 
SAND), land surface temperature (LST), mean annual enhanced vege-
tation index (EVI), which is a satellite-derived index measure of vege-
tation “greenness” [12,20–23]. Because sheep and goats are typically 
maintained under similar grazing and movement patterns, they were 
combined for analysis. The model of the probability that a given 
sampled animal had positive antibodies for CCHF was implemented as 
follows: 

Log{p(x)/[1 − p(x) ] } =β0 + β1(SPECIES)+ β2(DIST CROP)
+ β3(NTL CHANGE)+ β4(%SAND)+В5(LST)
+ β6(EVI)+ S(xi)+Ui  

where p(x) represents CCHF seroprevalence in location x, β represents 
the effects of each covariate at a given prediction location, S(x) repre-
sents a spatial random effect following a Gaussian process with mean 
zero and variance σ2 and a Matern correlation function. Model cova-
riates were considered statistically significant using α = 0.05. The 
“nugget effect” Ui represents the unstructured random variation in the 
outcome and is included to capture the effects of unmeasured explana-
tory variables unassociated with spatial structure in the data. The shape 
parameter of the Matern correlation function was specified as k = 1, 
based on the profile likelihood for the shape parameter in a logit- 
transformed linear Gaussian model. Covariance parameters were 
determined using a semi-variogram of model residuals. 

The final binomial GLGM was fit using Markov Chain Maximum 
Likelihood (MCML), using 200,000 simulations to calculate final model 
coefficients and covariance parameters with PrevMap [18] in R 1.3.1075 
version [24]. Model parameters were then fit to covariate values on a 
1km2 resolution grid of Uganda to predict CCHF seroprevalence on a 
map of Uganda. Maps were created separately for sheep and goats 
compared to cattle given differences in seroprevalence and animal 
management practices, and were generated using the ggplot2 package in 
R 1.3.1075 version [24,25]. Prediction uncertainty was quantified by 
generating a map of the probability that CCHF seroprevalence exceeded 
30% in each prediction location. We used 30% as a cutoff because 
overall seroprevalence was approximately 30%, therefore allowing us to 
determine the probability that seroprevalence was above average. Lo-
cations with a high (>0.95), moderately high (0.7), moderately low 
(0.3), or low (<0.05) probability are those at which the model reduces 
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Fig. 1. Observed herd-level seroprevalence of Crimean-Congo Hemorrhagic Fever (CCHF) among Ugandan livestock in 2017 and spatial distributions of predic-
tor variables. 
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error sufficiently to determine with relative confidence whether CCHF 
truly exceeds 30%. Conversely, locations with a probability 0.3–0.7 are 
those at which there is inadequate sampling and/or covariate data to 
confidently determine whether seroprevalence exceeds 30%. 

The full model was divided into two partial models; one including 
only environmental covariates (percent sand soil content, land surface 
temperature, EVI) and the other one including only anthropogenic 
covariates (distance to croplands, average annual change in night-time 
light index). Both partial models (environmental and anthropogenic) 
were fit using MCML as previously outlined, and individual maps of 
predicted seroprevalence and probability that seroprevalence exceeded 
30% were also generated. An intercept-only model was also run to es-
timate CCHF seroprevalence without using covariate information and 
used to estimate CCHF seroprevalence on a map of Uganda. Because it 
was necessary to make predictions separately for each species category 
(cattle, sheep/goats), we averaged the predictions to get a single pre-
diction of livestock seroprevalence for each model, which required the 
assumption of equal distribution of livestock species across the country. 
We used two methods to compare the models as outlined by Giorgi et al. 
[19]. First, we used the root-mean-integrated-square-error (RMISE) 
criterion to determine which partial model resulted in greater similarity 
in predictions to full model; the model with a RMISE value closer to zero 
is that which produces predictions closer to those from the full model. 
Second, we calculated a certainty index for each model to determine that 
which produced exceedance probabilities further from 0.5; a probability 
of 0.5 indicates complete uncertainty in determining whether CCHF 
seroprevalence exceeds 30% at a given prediction location. Certainty 
index values further from zero result from models that produce ex-
ceedance probabilities closer to 0 or 1, while values closer to zero result 
from models that produce exceedance probabilities closer to 0.5. Using 
RMISE and the certainty index in combination identified which covar-
iate class (environmental or anthropogenic) drives predictions in the full 
model, and which improves certainty in predictions. 

2.5. Model validation 

We simulated 1000 semi-variograms using Monte Carlo iterations 
given the full model to determine the validity and fit of the spatial 
correlation structure to the data. A 95% interval defining the variability 
of the model simulations was used to evaluate whether the model 
accurately fit the data. After simulation, the fitted semi-variogram from 
the observed data fell within the 95% interval of variograms estimated 
from the simulated data, and it was determined that our specified cor-
relation structure adequately fit the spatial structure in our data to 
proceed with prediction [17]. 

3. Results 

3.1. CCHF seroprevalence model and prediction map 

Overall CCHF seroprevalence was 31.4%, being 16.9% among cattle, 
48.7% among goats, and 49.2% among sheep. There were 84 herds of 
cattle sampled, among whom CCHF seroprevalence ranged from 0 to 
75%, and there were 75 herds of sheep and goats sampled among whom 
CCHF seroprevalence ranged from 0 to 100%. 

Output from the full model showed that the odds of CCHF seropos-
itivity among sheep and goats was 2.16 times the odds among cattle 
(95% CI: 1.68–2.64). An inverse association was found between CCHF 
seroprevalence and distance in kilometers to the nearest croplands, 
where seroprevalence increased as distance decreased (Beta: − 0.03; p =
0.01) Seropositivity tended to increase in locations that had an average 
annual increase in night-time light indices, however, this relationship 
was not statistically significant based on a 95% confidence limit (Beta: 
0.06, p = 0.22). CCHF seroprevalence was higher in locations that had 
higher average land surface temperature (p < 0.01) and in drier envi-
ronments that had lower EVI values (p = 0.03). Seroprevalence tended 

to be higher in locations with higher proportions of sand soil content, 
but this relationship was not considered statistically significant (p =
0.07) (Table 1). Compared to the full model, parameter estimates from 
the partial models remained relatively stable in magnitude and direction 
of association and are shown in Supplemental Tables 2–3. 

Predicted CCHF seroprevalence among sheep and goats ranged from 
0 to 93% and was considerably higher throughout Uganda compared to 
predicted seroprevalence among cattle, which ranged from 0 to 64%. 
Predictions were highest in northern Uganda, especially near the 
northwestern Nile River and in locations with very sandy soil (Fig. 1-2). 
Patches of locations with high predictions also occurred surrounding 
Lake Kwania and Lake Kyoga, near the border of South Sudan, along the 
border of Kenya, and around the Queen Elizabeth National Park in 
Southwestern Uganda. Comparing the model-predicted CCHF seropre-
valence to the observed herd seroprevalence showed overall strong 
correlation between the values, where the greatest differences in pre-
dicted and observed seroprevalence occurred in locations where the 
sample size was low (Supplemental Fig. 1). Maps of the probability that 
CCHF seroprevalence exceeds 30% show stark differences between 
cattle and sheep and goats. Among cattle, <1% of the country had a 
probability >0.95 that CCHF seroprevalence exceeded 30%, and only 
1% of the country had a probability >0.7 that CCHF seroprevalence 
exceeded 30%. In contrast, among sheep and goats, 29% of the country 
had a probability >0.95 that CCHF seroprevalence exceeded 30%, and 
63% of the country had a probability >0.7 that CCHF seroprevalence 
exceeded 30% (Fig. 2). 

3.2. Environmental vs. anthropogenic drivers of transmission 

The species-averaged prediction maps resulting from each of the 
partial models show varying spatial trends in predictions and suggest 
that predictions in the full model were driven by environmental vari-
ables more than anthropogenic variables, given that the predictions 
from the environmental partial model are more similar to those from full 
model compared to the anthropogenic and intercept-only models 
(Fig. 3). This was confirmed by comparison of RMISE values across the 
partial models, where the lowest RMISE values resulted from the envi-
ronmental partial model, followed by the anthropogenic partial model, 
and then the intercept-only model, suggesting that predictions in the 
environmental model were most similar to the predictions from the full 
model (Table 2). RMISE values for the anthropogenic model were only 
marginally better than the intercept-only model, suggesting that these 
variables had little influence on the predictions in the full model. Cer-
tainty indices for each model showed that the full model resulted in the 

Table 1 
Generalized Linear Geostatistical Model parameter estimates.  

Parameter Coefficient Standard 
Error 

0.025 
CI 

0.975 
CI 

P- 
value 

Intercept − 66.80 23.90 − 113.64 − 19.96 <0.01 
Sheep/Goat Species 

(Ref: Cattle) 2.16 0.25 1.68 2.64 <0.01 

Change in Night- 
time Light Index 

0.06 0.05 − 0.04 0.16 0.22 

Distance to 
Croplands (km) 

− 0.03 0.01 − 0.05 − 0.01 0.01 

Sand (% Soil 
Content) 

2.48 1.37 − 0.20 5.16 0.07 

Land Surface 
Temperature 0.22 0.08 0.06 0.37 <0.01 

EVI − 4.56 2.14 − 8.75 − 0.36 0.03 
log(sigma^2)† − 0.34 0.45 − 1.22 0.54 – 
log(phi)†† 1.65 0.57 − 2.77 − 0.54 – 
log(tau^2) ††† 0.3 0.98 − 1.62 2.22 – 

Abbreviations: km = kilometers. 
† Variance of the Gaussian process. 
†† Scale of the spatial correlation. 
††† Variance of the nugget effect. 
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greatest certainty in predictions (values further from 0), followed by the 
environmental model, the anthropogenic model, and then the intercept- 
only model (Table 2). Therefore, we conclude that both environmental 
and anthropogenic variables should be accounted for in predicting CCHF 
seroprevalence, although environmental variables were more important 
for improving model fit and reducing error. 

4. Discussion 

Using a geostatistical model of CCHF seroprevalence among live-
stock herds in Uganda, we estimate CCHF livestock seroprevalence 

throughout Uganda among cattle, sheep, and goats and the probability 
that seroprevalence exceeds the country-wide average of approximately 
30%. Variables resulting in the model with the best statistical fit to the 
sampling data included distance to croplands, average annual change in 
night-time light indices, percent sand soil composition, land surface 
temperature, and EVI. By dividing the full model into partial models 
comprised of anthropogenic and environmental variables, we found that 
environmental variables drove seroprevalence predictions more than 
anthropogenic variables and resulted in greater certainty in determining 
whether CCHF seroprevalence exceeded 30%. 

Our CCHF serological sampling results differed greatly by livestock 

Fig. 2. Predicted CCHF seroprevalence among livestock across Uganda in the sampling year 2017 (top) and probability that CCHF seroprevalence exceeds 30% 
(bottom) among cattle (left) and sheep and goats (right). 
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Fig. 3. Species-averaged predicted CCHF seroprevalence among livestock across Uganda in 2017 resulting from the full model (top left), and partial environmental 
(top right) and anthropogenic (bottom left) sub models, and an intercept-only model (bottom right) that ignored covariate information. 

Table 2 
Comparison of prediction accuracy and certainty of the full, partial (anthropogenic and environmental), and intercept models using RMISE and certainty index.   

Intercept-only Model Environmental Model Anthropogenic Model Full Model 

RMISE: Cattle Predictions 40.94 18.66 39.00 – 
RMISE: Sheep/Goat Predictions 73.87 36.06 70.49 – 
Certainty Index: Cattle Exceedance probability − 33,723.35 − 36,917.2 − 35,447.23 − 41,926.64 
Certainty Index: Sheep/Goat Exceedance probability − 22,160.49 − 33,249.7 − 23,670.64 − 34,518.36 

RMISE values closer to zero indicate better prediction accuracy (as compared to the full model). Certainty index values more distant from zero suggest greater certainty 
in determining exceedance of 30% seroprevalence. 
Abbreviations: RMISE = Root mean integrated square error. 
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species, where approximately 17% of cattle were CCHFV-seropositive, 
and almost 50% of sheep and goats were seropositive. A global review 
of CCHF seropositivity among domestic and wild animals similarly 
found that seroprevalence tended to be higher among sheep (23.85%) 
and goats (28.07%) compared to cattle (19.33%), however, the magni-
tude of the difference across species was notable [26]. Differences in 
animal handling practices could be a potential reason for higher levels of 
seroprevalence among smaller ungulates compared to large ungulates. 
For example, grazing patterns may vary by livestock species, where 
sheep and goats may be tethered or paddocked within smaller areas, 
whereas cattle may roam across larger areas or migrate annually ac-
cording to rain patterns, which could lead to different levels of contact 
with ticks carrying CCHFV [12]. Similarly, treatment of livestock with 
insecticide products to prevent tick infestation may vary by animal 
species based on perceived economic value or access to insecticide 
treatments [27]. Given that seroprevalence was considerably lower 
among cattle, additional information should seek to determine whether 
cattle are prioritized for treatment with insecticides compared to smaller 
ungulates. If cattle tend to be prioritized for insect control measures, 
future public health efforts to reduce the risk of human infections with 
CCHFV could target improved hygiene and vector control among 
smaller ungulates that may have higher likelihood of being infected with 
CCHFV. 

We found a statistically significant association between CCHF sero-
prevalence and proximity to agricultural land. These results are intuitive 
given that agricultural activities often occur in the same locations where 
animal husbandry is practiced, suggesting that proximity to croplands 
could act as a proxy indicator for high levels of livestock activity and 
congregation such as was found by a study in Greece where introduction 
of livestock and land conversion for agricultural purposes resulted in an 
increase in CCHF outbreaks [28]. Previous studies have also shown that 
abandoned agricultural lands were more conducive to ticks compared to 
actively cultivated lands, suggesting the potential for increased tick 
activity in areas that farmers allow their livestock to roam outside of 
actively cultivated fields [29]. We considered croplands as from MODIS 
land cover classes 12 and 14, which are defined as raster pixels where at 
least 60% of area is cultivated cropland (class 12) and mosaics of small- 
scale cultivation 40–60% with natural tree, shrub, or herbaceous vege-
tation (class 14). While such environments provide suitable habitat for 
ticks, agriculture is also commonly associated with management of 
livestock, shepherding, and pastoral activities, which can create op-
portunities for increased contact between humans, livestock, and ticks. 

Measures of night-time light obtained from satellite imagery can be 
used to measure shifts in human population density, and increases in 
average annual night-time light measures could indicate increases in 
development and human population sizes [30]. While changes in 
average annual night-time light index values did not result in a statis-
tically significant relationship in the full model, inclusion of this variable 
resulted in an improved model fit and could therefore represent some 
underlying relationship between changes in human population devel-
opment and CCHF transmission activity. However, the mechanism of 
this relationship is unclear, as increased human presence has been 
shown to impact many ecological conditions that may make importation 
and transmission of infectious diseases more likely [31,32]. We analyzed 
data on human and livestock population density and changes in human 
population density and found these variables to be weaker predictors of 
CCHF seroprevalence compared to the night-time light index. Importa-
tion of CCHFV through livestock trade has been reported extensively and 
could be an explanation for high levels of CCHF seroprevalence in 
Uganda, especially given that CCHF only recently emerged in Uganda 
[5]. Previous research on livestock movement in Uganda has identified 
locations in the country with high levels of animal movement and 
congregation such as abattoirs, animal markets, border crossings, and 
communal grazing areas, however, analysis of proximity to these loca-
tions showed weak relationships with CCHF seroprevalence among 
livestock sampled in this study [12]. Future research would benefit from 

data on the origin and number of animals imported into districts of 
Uganda. 

Stratification of environmental and anthropogenic variables into 
partial models showed that environmental variables (EVI, LST, and sand 
soil composition) both drove the predicted seroprevalence in the full 
model more than anthropogenic variables and resulted in greater cer-
tainty in predictions, but the best predictive certainty resulted in the 
combination of environmental and anthropogenic variables. According 
to these results, disease prevention or surveillance strategies such as 
vector control may be most effective when carried out in warmer and 
dryer areas with sandy soil conducive to ticks that is in close proximity 
to agricultural areas, such as those highlighted in the maps in Fig. 2. 
However, while environmental variables in our model drove predictions 
more than anthropogenic variables, predictors of CCHF seroprevalence 
could have been missed and therefore we cannot assume that anthro-
pogenic variables do not play an important role in the ecology of CCHF 
in Uganda. As previously discussed, we were unable to include infor-
mation on livestock movement, trade, and importation, which could 
play an important role in CCHFV ecology in Uganda given that is first 
identified in Uganda relatively recently in 2013. Likewise, measurement 
error in covariates evaluated in our model selection process could result 
in exclusion of variables that are important to the true transmission 
process of CCHF. Therefore care should be taken in the interpretation in 
the drivers of CCHF seroprevalence given that important considerations 
could be missing from this analysis or covariates we included could be 
correlated with external variables not evaluated here. 

This analysis had several limitations. First, selection of sampling 
locations may have been biased toward high-animal traffic areas, which 
could be more conducive to transmission of CCHFV. This model repre-
sented a single time point of seroprevalence sampling and was unable to 
account for temporal dynamics of CCHF transmission or the vast 
complexity of the CCHF transmission cycle, which includes numerous 
species tick and animals with differing feeding habits, geographic 
ranges, and environmental niches. This was the first of several planned 
longitudinal sampling efforts planned to be carried out among livestock 
herds in these sampling locations, and sampling results at additional 
time points will be reported separately. While we could not account for 
all possible modes of CCHFV survival or transmission, variables retained 
in the model after the model selection process represent conditions 
optimal for tick survival and viral transmission among susceptible ani-
mal hosts, and adequately reduced error in the model to confidently 
determine in most prediction locations whether CCHF seroprevalence 
greater or <30%. 

5. Conclusion 

This analysis provides predictions of CCHF seroprevalence in 2017 
using serosampling data from livestock across 28 districts in Uganda. 
Predicted CCHF-seroprevalence occurred in patches throughout the 
country; the highest predicted seroprevalence occurring in the northern 
half of the country. Covariates resulting in the best statistical fit to 
sampling data included distance to croplands, average annual change in 
night-time light index, percent sand soil content, land surface temper-
ature, and EVI. By separating the full model into partial models of 
anthropogenic and environmental covariates, we found that environ-
mental covariates drove predictions in the full model and resulted in 
greater certainty in predictions compared to anthropogenic covariates. 
These results can guide future public health prevention efforts to specific 
locations where there may be higher likelihood of CCHF circulation, 
especially near agricultural areas that may attract ticks and result in 
higher levels of contact between ticks, livestock, and humans. 

6. Disclaimer 

The findings and conclusions in this report are those of the authors 
and do not necessarily represent the official position of the Centers for 

C. Telford et al.                                                                                                                                                                                                                                 



One Health 17 (2023) 100576

8

Disease Control and Prevention or any institutions with which the au-
thors are affiliated. 

Declaration of Competing Interest 

Spatial prediction of Crimean Congo hemorrhagic fever virus sero-
prevalence among livestock in Uganda. 

The authors report no conflicts of interest in publishing this research 
manuscript. 

Data availability 

Data will be made available on request. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.onehlt.2023.100576. 

References 

[1] H. Hoogstraal, Review Article1: the epidemiology of tick-borne Crimean-Congo 
hemorrhagic fever in Asia, Europe, and Africa23, J. Med. Entomol. 15 (4) (1979 
May 22) 307–417. 

[2] R. Akuffo, J.A.M. Brandful, A. Zayed, A. Adjei, N. Watany, N.T. Fahmy, et al., 
Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler 
seroprevalence at an abattoir in Ghana, BMC Infect. Dis. 16 (1) (2016 Jul 8) 324. 

[3] A. Zohaib, M. Saqib, M.A. Athar, M.H. Hussain, A. Ur R. Sial, M.H. Tayyab, et al., 
Crimean-Congo hemorrhagic fever virus in humans and livestock, Pakistan, 
2015–2017, Emerg. Infect. Dis. 26 (4) (2020 Apr) 773–777. 
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