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ABSTRACT: With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for
high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered
as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have
been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the
current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire
polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry,
characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present
algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose
and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to
obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and
how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each
organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is
discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-
forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.

■ INTRODUCTION
Food, water, minerals, and the movement of commodities and
natural resources through trade routes provide us with a
multitude of resources that are vital for life on earth. The
exploitation of these resources or ocean economy is estimated to
reach an industrial scale of USD 3 trillion by 2030 (USD =
United States dollars).1 While the oceans cover over 71% of the
earth surface,2 over 80% of the ocean is unmapped, unobserved,
and unexplored.3 In addition to the fauna that is consumed for
food, the plant-like algae growing in the oceans are now a focus
of interest for diverse applications including food, biofuel, or as a
carbon dioxide reservoir.4 On land, soil plants have been used for
food production but also as materials for construction, and the
extraction of cellulose has led the establishment of thriving
textile and paper industries. While the ocean on our planet
covers a considerably larger area than land mass, the utilization

and exploitation of oceanic plant-like resources at an industrial
scale are still in infancy. With the available area that oceans offer
for culture and with developing knowledge on algae, there is an
untapped potential for the emergence of an industry based on
materials extracted from algae.
Algae, which can be unicellular or multicellular, unlike plants,

lack a vascular system and are classified as eukaryotic organisms.
They play a vital role in regulating the carbon dioxide and
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oxygen in our atmosphere, by functioning as a carbon sink and
releasing oxygen as part of photosynthesis. To be used as
materials, marine algae polysaccharides must exhibit interesting
properties. One particular property of several algae-extracted
polysaccharides is their capacity to form hydrogels, making them
suitable for several commercial applications. Hydrogels are
defined as a three-dimensional (3D) macromolecular network
that are highly swollen in water but do not dissolve.5 Beyond the
application of algae-extracted hydrogel-forming polysaccharides
as gelling agents or rheology modifiers in food applications,6

some of these materials have found applications in the high-
added-value field of biotechnology.7

In the laboratory, hydrogel-forming marine polysaccharides
such as agarose have been used since the 1970s as a support
medium in the analysis and separation of DNA strands and,
since the 19th century, as microorganism culture media.8 The
process of electrophoresis is familiar to biologists and is a routine
technique in any molecular biology laboratory. The extensive
use of agarose in molecular biology has led to the fundamental
understanding of the electrophoresis process, optimization of
the extraction and purification processes of agarose, and deep
understanding of the red algae farming and the impact of
geographical and seasonal variation on the quality of the
extracted agarose. In cosmetic formulations, carrageenan is now
used for facial masks and in topical creams.9 Similarly, in medical

devices, alginates are used in the formulation of wound-dressing
hydrogel-based pastes,10 and production of algal nanocellulose
has recently gained more attention,11 as it bears great potential
for biomedical applications.12

While these biomedical applications have placed marine algae
under the limelight, only a few polysaccharides, extracted from a
handful of algae, are currently used. With the increase of our
understanding of marine algae and a deeper knowledge of algae
farming and culture, new uses for algae products will have to be
identified to valorize these agricultural advances. Beyond the
obvious food application, high-added-value applications such as
the biomedical uses of polysaccharides could bring oppor-
tunities for creating a flourishing industry.
To achieve this, several avenues are possible and are discussed

in this review article. One is to find new uses for the hydrogels
currently derived from algae. This requires a deep understanding
of their physicochemical properties. Concomitantly, current
polysaccharides could be chemically modified to introduce
functional groups conferring key properties for biomedical
applications. The chemical modification of polysaccharides can
be achieved through either coupling of functional moieties or
direct modification of the saccharides’ repeat unit. Finally,
extension of the current library of seaweed-extracted hydrogel-
forming polysaccharides would allow the development of a new
area of applications. Such new polysaccharides could be

Table 1. Classification of Polysaccharides According to Their Gelation Mechanisms and a List of the Main Repeating Units of
These Polysaccharides, Their Chemical Structures, and Their Common Algae Sources
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discovered through the development of advanced extraction
methods, and the discovery of new seaweed species from which
yet unknown polysaccharides could be isolated.
In this article, we present the current library of hydrogel-

forming polysaccharides extracted from algae, their chemical
properties, and mechanisms of gelation. We further discuss
characterization methods applied to polysaccharides and their
resulting hydrogels. Then, we present chemical modifications
that can be used to tailor the polysaccharide properties. Finally,
we discuss the polysaccharide properties that are critical for their
biological performance and envision future industrial develop-
ments related to hydrogel-forming polysaccharides.

■ HYDROGEL-FORMING SEAWEED-EXTRACTED
POLYSACCHARIDES

Hydrogel Formation Mechanism. A hydrogel is defined
as a 3D network formed by hydrophilic polymer chains
connected by cross-linking. These chemical properties provide
a hydrogel with high water-swelling capacity while being
nonwater-soluble. Physically, hydrogels are characterized by a
lack of flow under the cuvette inversion test, due to amuch larger
storage moduli than loss moduli (G′ ≫ G′′)13 and a linear
plateau region of the storage modulus,14 and can hence be
classified as a rheological soft solid.15 These properties are
attractive for the biomedical field, as hydrogels can reproduce
the hydration conditions of natural mammalian tissues16,17 and
mimic some of the physical properties of the extracellular matrix
composed of polysaccharides such as hyaluronic acid and
protein such as collagen.18,19 Within the class of hydrogel-
forming polymers, polysaccharides represent a prominent family
of macromolecules. One of the main sources for hydrogel-

forming polysaccharides is seaweed. As such, algae-extracted
polysaccharides have had a tremendous impact on the field of
biotechnology. A case in point is the extensive use of agarose
hydrogel for DNA sorting and analysis.8,20 Without agarose,
current advances in molecular biology would not have been
possible. Beyond agarose, other polysaccharides extracted from
seaweed have been identified, but only a few of them form
hydrogels. It can be envisioned that these hydrogel-forming
algae-extracted polysaccharides could be a major source of
future materials for biomedical applications.
Algae-extracted polysaccharides form hydrogels through

physical cross-linking, that is, noncovalent bonding that only
relies on weak interactions such as hydrogen bonding, van der
Waals forces, and electrostatic interactions leading to a
reversible gel formation. Conversely, hydrogels such as poly-
(methacrylic acid) form cross-linking points through covalent
bonding leading to irreversible gels and are classified as
chemically cross-linked hydrogels. While this hydrogel class
could be extended to chemically cross-linked hydrogel-forming
polysaccharides induced by a cross-linking agent or chemical
modification,21,22 as demonstrated for laminarin and fucoidan,
we chose to focus strictly on polysaccharides that naturally form
hydrogels.
We identified seven hydrogel-forming algae-extracted poly-

saccharides: alginate, λ-carrageenan, ulvan, starch, agarose, ι-
carrageenan, κ-carrageenan, porphyran, and (nano)cellulose
(Table 1). While polysaccharides extracted from algae are
usually classified by the genus of their algae source, this can
become challenging, since their properties are strongly depend-
ent on species. Alginate is, for example, extracted from brown
algae of the Ochrophyta phylum, encompassing ∼1500 algae

Figure 1. Comparison of four different main gelation mechanisms in algal polysaccharides. (A) Schematic of the complexation in ionic
polysaccharides, such as alginates. (B) Aggregation of polysaccharide chains into secondary structures through a formation of double helices. (C)
Formation of physical cross-links by induced crystallization in amorphous regions. (D) Gelation of colloids, such as nanocellulose, by colloidal
crowding.
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species,23 such as Laminaria hyperborea, Laminaria digitata, and
Macrocystis pyrifera with different alginate compositions.24,25

Besides the type of species,25,26 harvesting season and water
quality affect the composition of alginates as well.27−29 Since
there is a strong correlation between the polysaccharide
structure and the properties of the resulting hydrogel, it is
crucial to have a deep understanding of the structure−property
relationship to gain some predictability in order to successfully
use algae-derived polysaccharides for an industrial biomedical
application. Additionally, the extraction methods and their
conditions such as pH, temperature, and mechanical pro-
cesses30,31 can induce changes in the polysaccharide composi-
tion and thus affect the resulting gel properties and commercial
potential.
With a focus on industrial-scale biomedical application, we

propose a classification of these hydrogel-forming polysacchar-
ides by their mechanisms of physical cross-links. In this respect,
it is important to identify the smallest subunit necessary for
gelation, as it is the key element in the gelation mechanism, that
is, gelator. The gelator will define the gel properties and its
processing and, eventually, will determine its final applications.32

A deep understanding of the gelator interactions and how
chemical modifications will influence them is critical to enable a
tuning of the hydrogel properties and a full exploration of the
polysaccharide’s potential as biomaterials. Within the seven
identified hydrogel-forming algal polysaccharides, we identified
four classes of gelation mechanisms, driven by either complex-
ation, crystallization, formation of secondary structure, or
colloidal assembly (Figure 1). The chemical structures of
polysaccharides presented in this review and the classification
into these gelation mechanisms are shown in Table 1.
Complexation. Some polysaccharides can naturally form

complexes with biomolecules such as proteins33,34 and
lipids.35,36 In the case of hydrogel-forming polysaccharides,
the gelation can be induced by the formation of a metal complex
with the ionic groups of polysaccharides with alginates as the
most common example (Figure 1A).37 The gelation occurs
because of the formation of a binding between the
polysaccharide chain and a coordination center (metals or
metalloids). The latter acts as a bridge between individual
macromolecular chains and thus forms a cross-linking point. In
the formation of the complex, both polysaccharide and
coordination center play an equal role, and this formation can
be supported by the polyelectrolyte nature of the polysaccharide,
through electrostatic interactions leading to further associa-
tions.38

Alginate is one of the most studied polysaccharides, which
gels via an ionic complexation. The polysaccharide structure
varies greatly depending on the seaweed growth environment,
leading to different polysaccharide compositions. In addition to
the culture environment, the polysaccharide composition is
dependent on the extracted algae tissue, as it can be extracted
from the whole frond or either the algae blade or stipe. Alginate
is composed of two saccharide units, β-D-mannuronic acid (M)
and α-L-guluronic acid (G) arranged in sequences of M- and G-
block regions and randomly inserted M and G units (MG-
blocks).39,40 It is now well-described that the G blocks
determine the stiffness and the M random regions contribute
to the flexibility of the resulting polysaccharide.41 An algae,
which is highly exposed to waves, requires a high stiffness to
resist the wave’s action and will finally produce more guluronate.
Hence the season42,43 and culture location have a huge influence
on the chemical structure of polysaccharides.44 The difference in

polysaccharide composition of the respective algae tissue can be
explained similarly; the stipe that mechanically supports the
algae requires a higher stiffness than the blade and, hence, is
composed of polysaccharides with a higher number of G-
blocks.25,44,45 In addition to these factors, the algae species is of
course important to consider,25,46,47 as well as the protocol of
extraction.48 A combination of all these factors influences the
resulting polysaccharide composition and thereby their gelation
and final hydrogel properties.
Once extracted, alginate gels in the presence of divalent

cations such as Ca2+, according to the egg-box model.37 The
divalent cations interact majorly with the carboxylate groups of
the G-blocks49,50 (while the M-blocks have a way lower affinity)
through electrostatic interactions leading to a network
formation. The gelation was often seen as solely occurring
through the G-blocks; however, studies from Donati et al.51

related the importance of the alternating MG sequences by
proving the formation of mixed junctions between G- and MG-
blocks through nuclear magnetic resonance (NMR). The M/G
ratio is defined by the ratio of M to G units. Because of the high
affinity of divalent cation toward the G-blocks, the gel properties
will greatly depend on theM/G ratio and the G-block length. An
alginate with a higher G content and a low M/G ratio will
therefore produce a stiffer gel with higher gel strength than an
alginate with a high M/G ratio.24,52 As the egg-box gelation
requires a divalent cation, the specificity of the cation and its
concentration will have an impact on the gel properties.53

Depending on the cation nature, the minimal concentration
required for gel formation, selectivity coefficient, and mechan-
ical properties considerably vary.49,53 For instance, it has been
shown that Ca2+ exhibits stronger interactions with the alginate
than Mg2+, and hence, lower amounts of Ca2+ are required to
form strong hydrogels.49,50,54

λ-Carrageenan is a linear polysaccharide composed of 1,3-
linked β-D- and 1,4-linked α-D-galactose substituted with three
sulfate groups per disaccharide units, and thus, in the group of
selected polysaccharides, it has the highest sulfate content. λ-
Carrageenan has a similar gelation mechanism to alginate.
However, it is usually only described as a thickening agent
unable to form hydrogels. But, a gelation mechanism based on a
trivalent cation complexation was reported by Running et al.55

and Cao et al.56 The latter confirmed the specific interaction
between λ-carrageenan and trivalent cations such as Fe3+ and
Al3+, whereas Cr3+ did not cause gelation.
The high sulfate content of λ-carrageenan is of significant

importance, as it can lead to antioxidant or anticoagulant
properties, a key feature for its consideration in biomedical
applications.57,58 However, factors such as species,59 seasons,60

growth conditions,61 and extraction processes62,63 are known to
influence the composition. These factors have been reported to
also influence the sulfate content and substitution pattern in ι-
and κ-carrageenan and thus may also be of influence in λ-
carrageenan. Since these chemical characteristics are key for the
biological properties, the development of industrial extraction
methods leading to a reproducible chemical structure is critical
for their further development into biomaterials.
Ulvan is a sulfated polysaccharide mainly composed of

glucuronic acid, iduronic acid, rhamnose, xylose, mannose,
glucose, and galactose.64 Several predominant repeating
disaccharide patterns have been found, such as a β-D-glucuronic
acid 1,4-linked with α-L-rhamnose-3-sulfate and an α-L-
iduraonic acid 1,4-linked to α-L-rhamnose-3-sulfate.65,66 Similar
to the other introduced polysaccharides, the structure and
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composition of ulvan was reported to considerably vary across
algae species67 and seasons of extraction.28,68 Ulvan exhibits a
particular gelation mechanism, which is reported to occur in the
presence of boric acid and divalent cations such as Ca2+ leading
to the formation of a thermoreversible gel.69−72 It is proposed
that the gel occurs either through the divalent Ca2+ ion that acts
as a bridge between the borate groups or by the cations that
stabilize the coordination of borate with the hydroxyl groups of
the polysaccharides.69,70 But, no evidence of borate-polysac-
charide complexes could be found by NMR.65 Further
investigation of the gelation mechanism has shown that factors
such as the cations67 and boric acid concentration70,71 were
influencing the gel properties. The metals involved in the
complexation of alginate and λ-carrageenan interact differently
with the ulvan polysaccharides. In ulvan gels, it was found that
Cu2+ cations led to the formation of a stronger hydrogel than
with Ca2+, whereas no gel formation was observed in the
presence of Mg2+.67 Shedding light on the hydrogel formation
mechanism of ulvan could be very beneficial and lead to
interesting applications, for example, in metal coordination for
the removal of metal.
Crystallization. With respect to synthetic polymers,

crystallization is a well-known process that impacts the material
properties, and similar observations have been made in natural
polysaccharides as well. The process of crystallization can be
controlled by an application of cooling rates or anisotropic
stretching of the polymer chains. In the course of crystallization,
a network can form through the interconnection of crystalline
regions (crystallites, spherulites) acting as junction zones
between the amorphous regions.73,74 In synthetic polymers
like polypropylene, the process is often known as a two-step
mechanism involving the nucleation of crystals followed by their
growth.75,76 However, more complex mechanisms involving
spinodal decomposition77 or the appearance of a mesomorphic
phase78,79 have been observed in natural polysaccharides.
Starch is a polysaccharide composed of two polysaccharides,

namely, amylose and amylopectin, and is primarily extracted
from plants such as potato, maize, and wheat,80 but it also occurs
in algae.81 Starch amylose is a linear gel-forming polysaccharide
mostly composed of 1,4-linked α-D-glucose with small numbers
of 1,6-linked α-D-glucose unit branches, while amylopectin is a
highly branched polysaccharide composed of 1,4-linked α-D-
glucose heavily interlinked with 1,6-linked units.82 The starch
composition and ratio of amylose and amylopectin vary
depending on the species and whether it is from land plants or
algae, and this ratio influences the starch gelation. For instance,
starch extracted from the red seaweed (Rhodophyta) called
Floridean starch lacks amylose and thus does not gel.
Starch gelation is attributed to a crystallization process and

occurs through gelatinization and retrogradation, which is an
order−disorder transition induced by a heating and cooling
cycle. Amylose forms a gel through a phase separation followed
by crystallization occurring in the polymer-rich phase.83−85

Amylopectin contributes to the network formation through a
slow retrogradation mechanism (days) that increases further the
crystallinity and long-term stability.80,85 Because of this
mechanism, the amount of amylopectin and the amylose/
amylopectin ratio play an important part in the gelation.
Retrogradation is a complex process that depends on many

factors such as the chain length of amylopectin and the starch
phosphate content.86−88 As the cross-linking points are
established through the crystalline regions, the concentration
of the polysaccharide85,89,90 and the crystallization conditions

such as the temperature and the cooling rate will have an impact
on the crystallite morphology and thus the gel properties.91,92

For instance, an increase in the cooling rate has been reported to
yield a softer gel, as it gives the macromolecular chains a smaller
time frame to reorganize and form ordered regions.92

Formation of Secondary Structure. The secondary
structure of a polymer is the 3D structure adopted by the
macromolecular chains. In solution, some polysaccharides can
go through a coil-to-helix transition. Like DNA polymers,
polysaccharides such as agarose and κ-carrageenan form double
helices in solution. Once formed the helix can aggregate to create
cross-linking points between the polymer chains leading to the
formation of a 3D network. The aggregation of helices is driven
(especially in the case of agarose93 or κ-carrageenan94) by
electrostatic interpolymer chain repulsions and stabilized by
weak attractive interactions. In these polysaccharide systems, the
helices can be interrupted due to kinks that are induced by the
irregularity in the polymer chains, which thus controls the size of
the cross-linking points.95

Agarose is one of the polysaccharides constituting agar, the
other one being agaropectin, which has the same backbone as
agarose but with sulfated galactose and pyruvic acid residues.
The purification and extraction process of agarose is therefore an
important step, as agaropectin is a nongelling polysaccharide.26

Agarose’s backbone is composed of β-D-galactose and 3,6-
anhydro-α-L-galactose (3,6-AG) similar to the one from ι- and κ-
carrageenan.96 Changes in the composition and structure of
agarose polysaccharide such as the presence of α-L-galactose and
other minor substituents (sulfate, methyl ether, pyruvic acid)95

are known to occur depending on the species26,95 and
seasons.29,97

The composition of agarose controls the formation of
secondary structures of the polysaccharide governing its gelation
mechanism.98 It is believed that agarose gelation occurs through
a phase separation mechanism, involving the formation of
double helixes in the polymer backbone and aggregations of
these helices into cross-linking points creating a 3D hydrogel
network.99,100 However, the phase separation mechanism is still
debated, and both spinodal decomposition100,101 and nuclea-
tion/growth102 are reported in the literature. The gelling
properties are correlated with the structure of agarose, in
which the equatorial hydrogens of the 3,6-AG residues force the
chains into a helix.26 Replacing the 3,6-AG by a 6-O-sulfo-L-
galactose interrupts the helix by a kink formation leading to a
lower gel strength.26,98 This principle can be used to tune the
mechanical properties of the hydrogel through a chemical
modification. Additionally, to modulate further the gel proper-
ties, the polysaccharide concentration can be increased to
induce a stronger helix aggregation resulting in a stronger gel
strength.103,104

ι- and κ-Carrageenan gelation occurs through the addition of
monovalent or divalent cations to inhibit the electrostatic
repulsion between the hydrogel chain due to the presence of
charged groups. While ι- and κ-carrageenan have the same
backbone, composed of β-D-galactose and 3,6-AG, they differ in
sulfate content; ι-carrageenan possesses sulfate groups on both
galactose and 3,6-AG, while κ-carrageenan features only
substitution on galactose units.105 This difference affects the
respective gelation mechanisms leading to different mechanical
properties of the hydrogels, κ gels being strong and brittle while ι
gels are softer.94,106,107 Like other algae-extracted polysacchar-
ides, many factors such as species,59,108 seasons,27,60 growth
conditions,61 and extraction conditions59,109 are influencing the
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3,6-AG and sulfate content, which in turn alters the helix
formation leading to different gel properties.110

In the presence of cations, ι- and κ-carrageenan go through a
coil-to-helix transition, leading to the formation of double
helices. In κ-carrageenan the helix formation is followed by
further helix aggregation,94,106,111 but this aggregation does not
occur in ι-carrageenan due to the presence of two sulfate groups
inducing a stronger electrostatic chain repulsion.112,113 In the
case of κ-carrageenan, the gelation is dependent on monovalent
cations.114 The type of cation used to induce the gel formation
will impact the mechanical properties of the hydrogel. For
instance, κ-carrageenan forms a stronger gel with K+ than with
Na+.114−116 Not only cations but also some anions such as I− and
SCN− have been reported to bind to the helix influencing the
gelation mechanism by impeding helix aggregations and
gelation.117−119 Since the ι- and κ-carrageenan hydrogel
formation is governed by their secondary structure, manipu-
lation of this structure, for example, through the addition of ions,
can have a drastic impact.
Porphyran is a sulfated polysaccharide composed of

alternating 6-O-methyl-β-D-galactose (Table 1), 6-O-sulfo-α-L-
galactose, and 3,6-AG units.120 Differences in the composition
occur depending on the species. However, it was reported that,
in nature, the sum of the β-D-galactose and 6-O-methyl-β-D-
galactose is equal to the sum of the 6-O-sulfo-α-L-galactose and
3,6-AG units.121 Porphyran can only form hydrogels after an
alkaline treatment that removes the sulfate groups on the
polysaccharide backbone.122,123 While the modification of the
backbone is necessary, the gelation is a physical process, and it
does not need any additional reactive species, such as
methacrylate groups used in synthetic and chemical hydrogels.
This alkaline treatment is also often used during processing of
agarose and carrageenan, converting the 6-O-sulfo-L-galactose
into 3,6-AG. Thereby, the mechanical properties of the hydrogel
are generally improved by “dekinking” the backbone and thus
allowing longer helical structures to form.124

Once the sulfate groups are removed, porphyran gelation
occurs through the aggregation of double helices.123 Only a few
studies have been published on porphyran, and therefore further
work is required to better understand its gelation mechanism
and the factors influencing its hydrogel properties. This will be
helpful to fully exploit its physical and biological properties for
applications in biomaterials.125

Colloidal Assembly.Within the family of hydrogel-forming
polysaccharides extracted from algae presented and discussed
herein, nanocellulose is the only polysaccharide having a
colloidal-based gelation mechanism. Cellulose is composed of
β-D-glucose units and can be obtained from various sources
including plants, algae, and bacteria. Bacterial cellulose is a
native strong, irreversibly entangled hydrogel,126,127 while algae
and plant cellulose needs to be processed into nanocelluloses to
form a hydrogel. Nanocelluloses are colloids, solid nanoparticles
homogeneously dispersed in aqueous media. They are obtained
through a deconstruction of the cellulose fiber into individual
nanosized building blocks, which can be dependent on the
treatment, either cellulose nanofibers (CNF) or nanocrystals
(CNC).128 These colloids feature a fluid-like character in a
diluted state and have a gel-like behavior at higher
concentrations.129 The transition from the diluted state into a
gel is reversible and based on repulsive particle−particle
interactions.13 Hydrogels are formed upon a concentration
threshold of the colloid, that is, critical concentration, which is
mainly dependent on the aspect ratio and volume fraction of the

colloid. In the case of CNF, the individual nanofibers form
entanglements, and thus their aspect ratio and flexibility can
favor the hydrogel formation.130,131 The colloidal characteristic
of the hydrogel formed by nanocellulose confers their shear-
thinning properties.132 Such flow properties make nano-
celluloses easily processable as a gelled material and allows the
embedment of living cells for injection into animals.133 This
shear-thinning property is also an attractive attribute as rheology
modifier in 3D printing inks.134 However, in contrast to other
polysaccharide gels, such as agarose, native nanocellulose in the
hydrogel state lacks a physical stability and is dispersed upon
dilution. Thus, to overcome this limitation, nanocellulose is
often combined with other hydrogel-forming polysaccharides
extracted from algae.135,136

■ ALGAE CULTURE AND EXTRACTION

According to Food and Agriculture Organization (FAO)
statistics,137 farmed seaweeds provided 97% of the total annual
world production of algae in 2018, with a weight of 32.4 million
wet tons. Seaweed aquaculture is mostly located in the East and
Southeast Asian countries of China, Indonesia, and Philippines.
Although∼220 species are cultivated worldwide, only six genera
of seaweeds provide more than 95% of global farmed seaweeds
production: Saccharina, Undaria, and Pyropia are essentially for
food applications, and Eucheuma/Kappaphycus and Gracilaria
are mainly used for carrageenan and agar extractions.
Farmed seaweeds are predominantly provided by ocean-

based systems. At sea, depending on species, seaweed can be
produced either on the seabed, attached to a hard substrate, or
on flexible anchored lines or nets that are seeded. The economic
viability of the offshore farming systems remains a challenge,
since it faces many issues.138 For offshore farming seaweeds
must be robust, resisting diseases and the growth of epiphytes
throughout the seasons;139 the culture site can be exposed to
extreme effects of weather and ocean conditions and is subjected
to varying environmental conditions.140 For these reasons,
offshore cultivation currently relies on a few robust seaweed
strains, providing a large volume of monospecific biomasses at
low cost while offering a weak diversity of algal raw material with
varying quality, which is not necessarily suitable for the
development of high-value biomaterials. Recently, the produc-
tion of seaweed in natural reserves where the water quality is
controlled and the shore preserved from industrial activity has
emerged as a potential source of high-quality seaweed. This
approach offers a valuable alternative to the costly land
production while providing the necessary water quality.
Land-based seaweed cultivation takes place in closed systems

such as tanks, raceways, ponds, or lagoons. In most cases, water
is maintained under agitation to keep seaweeds freely suspended
and exposed to the light. A broader diversity of seaweed genera
(except the largest kelp species) can be produced this way with a
higher yield per area compared to offshore systems. Onshore
systems offer a high level of control over environmental
conditions including nutrients, CO2, salinity, pH, and even
light and UV exposure in some cases. Moreover, specific
seaweed genera can be selected to obtain targeted biopolymers
or chemical compounds.140 However, infrastructure building
and the maintenance of farm conditions have a higher cost
compared to offshore culture, and the availability of land and
suitable water quality is limited. Amajor advantage of land-based
algae farms, over harvesting, is the possibility of producing more
standardized biomasses, whose chemical composition is more
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predictable, thus meeting the requirements to produce high-
value seaweed ingredients for new markets.

■ INDUSTRIAL PRODUCTION OF ALGAL
POLYSACCHARIDES

Each of the major algae polysaccharide families (agar, alginate,
carrageenan) is produced industrially at a large scale since the
first half of the twentieth century. While the processes vary for
each polysaccharide type and also depend on the species used as
a raw material, they are all based on several common features
exploiting the ionic nature of the polysaccharide (pH adjust-
ments, ion exchange, precipitation) and hydrogel properties
(gelation), which can be preceded by an alkaline treatment to
improve gelling properties and isolation.141 While these
processes have been optimized over the years, they have seen
few fundamental changes. This is mostly due to the limited
amounts of new factories, since heavy investments are required
to redesign an industrial process while the selling price of algal
polysaccharides is generally low.
Alginates Production. Alginates are extracted primarily

from harvested brown seaweed species, although cultivated
Laminaria japonica is sometimes used in China. The chopped
seaweed is first lixiviated in acidic conditions to convert all the
alginates in the seaweed into alginic acid and to extract
undesirable compounds and minerals. A subsequent treatment
in alkaline conditions allows its extraction as a viscous sodium
alginate solution, which is diluted, optionally bleached, and
filtered. The solution is then directly acidified to form alginic
acid or undergoes an intermediate step of gelling as calcium
alginate before conversion. The purified alginic acid can be used
as it is or converted into sodium alginate or other types.142

Agar Production. Most agar is produced from species of
Gelidium and Gracilaria, using a similar process relying on hot
water extraction but with different pretreatments.142 Gelidium is
directly heated in slightly acidic conditions, while Gracilaria is
first treated in alkaline conditions to increase its 3,6-AG content
and washed.141 Agar extraction is performed in hot water and
followed by filtration to remove seaweed residues. The agar

solution is subsequently cooled to form a gel (with subsequent
washing and bleaching steps).Water is then partially removed by
freeze−thawing or pressing of the gel, which is then dried and
milled. In the course of this treatment, agaropectin can be, for
example, removed through precipitation with poly(ethylene
glycol) to obtain a pure agarose polysaccharide.143

Refined Carrageenan Production. Carrageenans are
mostly produced from cultivated Kappaphycus and Eucheuma
species, but some harvested species such as Chondrus crispus or
Gigartina sp are still used too. The production process for refined
carrageenans is similar to the one used for agar. The washed
seaweed is cooked in alkaline conditions to increase the 3,6-AG
content and to extract the carrageenans. In a following alkaline
treatment, the polysaccharide solution is filtered to remove
seaweed residues and preconcentrated. Carrageenans can then
be precipitated by an isopropyl alcohol addition and
subsequently separated, pressed, washed, dried, and milled.
Alternatively, κ-carrageenans can be gelled using potassium
chloride and then processed as the agar gel.142

Nanocellulose Production. Nanocellulose can be ex-
tracted from leftovers of the industrial extraction processes of
algal polysaccharide. This has been demonstrated by, among
others methods, the utilization of brown algae waste after
alginate extraction for the isolation of high-aspect-ratio cellulose
nanofibers.144 Hence, the integration of a cellulose production
stream into existing industrial algae processes or valorization of
solid waste streams is very feasible and already demonstrated for
other algae species.145 To remove noncellulosic polysaccharides
and other residues, a cellulose-rich fraction from algae is purified
by (1) an extraction of lipids, (2) NaOH treatment, and (3)
bleaching steps.144,146,147 Hydrochloric acid treatments are
optional and can be added to increase further the cellulose
purity.144,148 These purified cellulose fractions can be then
processed into hydrogel-forming CNF or CNC. CNF were
obtained from algae by a mechanical high-pressure homoge-
nization147 or by a (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl
(TEMPO) oxidation and subsequent ultrasonication treat-
ment.11,144,149 These processes cause a fibrillation of the algal

Figure 2. Purification and extraction routes that can be used to isolate a polysaccharide according to its chemical structure.
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cellulose fiber into individual nanofibers. CNCwere obtained by
an acidic hydrolysis of amorphous, disordered regions of
cellulose, by sulfuric acid treatment.150 Algal nanocellulose
possesses a significantly higher aspect ratio than woody
nanocellulose and shows, hence, a high potential for the
production of mechanically robust hydrogels. Algal CNFs have
already been explored as a scaffold for human dermal fibroblast
cells and have been shown to promote fibroblast adhesion and
support high cell viability.11 Purification processes have been as
well established to produce high-purity algal nanocelluloses for
biomedical applications.148

■ EMERGING ALGAL POLYSACCHARIDES
EXTRACTION METHODS

As the need for algal polysaccharide is growing, processes to
extract novel polysaccharides are emerging. These may include
neutral algal polysaccharides as, for example, laminarin, or
complex ionic fucoidan and fucose-containing seaweed
polysaccharides (FCSPs) from brown species, or ulvans,
whose composition will strongly depend on the species used
and thus require modification of the known processes to adapt to
the specificities of the algae species. The use of acidic or alkaline
conditions, commonly performed for a polysaccharide extrac-
tion, might also impact the molecular weight or sulfation degree,
hence impacting the hydrogel properties or biological
activity.151 A schematic overview of extraction strategies for
algal polysaccharides is given in Figure 2. However, new
advanced extraction techniques (some not yet fully available at
industrial scale) are also increasingly explored to improve yields
or selectivity of the extractions. Obtaining a pure material often
requires additional steps to remove small impurities (heavy
metal, low molecular weight polymer, pigments). Dialysis can
easily remove small water-soluble impurities such as salts by
using a membrane with a suitable molecular weight cut off
(MWCO). At a lab scale, the removal of protein is usually

achieved by following the Sevag method, which uses a mixture of
chloroform and n-butanol to denature and thus separate
proteins from aqueous polysaccharide solutions.152 Because of
the toxicity and environmental impact of chloroform, its use is
strictly regulated. Alternatively, enzymatic hydrolysis is often
used, which is highly efficient under mild conditions.153 In many
cases a combination of both methods can lead to an increased
effectiveness of protein removal.154 With the development of
biotechnology, more advanced and pure enzyme cocktails can
be obtained for the selective removal of polymeric residues. One
example is the enzyme-assisted extractions using a commercial
“terrestrial” enzyme, such as cellulases, that can be leveraged to
selectively isolate a hydrogel-forming polysaccharide.155−157

Phenolic substances in the algae can cause an undesirable
coloring of the polysaccharide extract. Obtaining a colorless
material can be achieved by bleaching with hydrogen
peroxide,158 extraction with organic solvents,159 or purification
using macroporous resin.160 Note that too-high concentrations
of hydrogen peroxide can lead to a decomposition of the
polysaccharides reducing its molecular weight and the extraction
yield.161 The extraction of polysaccharides can rely on the
chemical properties, such as charge, for alginate.162 More recent
advances based on flocculation processes are using long-chain
quaternary ammonium salts, to precipitate the polysaccharide by
the formation of water-insoluble complexes and separate the
complex from neutral biopolymers. For this method, commonly
used reagents are hexadecyltrimethyllammonium bro-
mide163,164 and cetylpyridinium chloride.165 Besides precip-
itation by long-chain quaternary ammonium ions, ion-exchange
chromatography is also being developed for polysaccharide
purification. While this purification method can be time-
consuming, the obtained products are of high purity,166,167

which can be particularly attractive for high-value polysacchar-
ides for food or biomedical applications. In addition to the
industrial ethanol fractioning methods,168,169 other important

Figure 3.Analytical techniques available for the characterization of hydrogel-forming polysaccharides from algae. Techniques are classified by the scale
of the characterized structure. Gray: nuclear magnetic resonance spectroscopy, blue: chromatography, orange: scattering techniques, green: gas and
liquid sorption, pink: mechanical properties, red: microscopic techniques.
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purification methods are based on ultrafiltration170, size-
exclusion and affinity chromatography171 as well as solid-phase
extraction.157,172

■ CHARACTERIZATION OF HYDROGEL-FORMING
POLYSACCHARIDE

Algae polysaccharides are extracted from the complex algae
matrix by a deconstruction into its polymeric components,
which is a top-down approach. This stays in contrast to synthetic
polymer obtained by a bottom-up synthesis: from monomers to
polymers. Because of the complexity of biomatrices, such as
algae, the extraction process is very important, and it is necessary
to determine the exact composition of the extracted biopolymer,
which might contain impurities in the form of proteins, lipids,
polyphenols, or inorganics (heavy metals).
Similarly to the case of synthetic polymers, several character-

ization techniques are available to determine the chemical
composition and structure of algae-extracted polysaccharides.
The thorough characterization of the chemical structure, up to
the hydrogel physical state, should enable a linking of the
chemical properties to the performance of the resulting hydrogel
(Figure 3), and this is critical to define the potential use and
applications of these polysaccharides.
Molecular Scale. The monomer composition of the

polysaccharides dictates its final properties. However, an
analysis of the monomer units can be challenging when
polymers are branched or in the case of complex polysaccharides
such as carrageenans. The sugar composition is usually studied
by the analysis of monomeric sugars obtained from a two-step
acidic hydrolysis, i.e., total hydrolysis, in which the carbohy-
drates are first prehydrolyzed in a 72 wt % aqueous solution of
H2SO4 and then further hydrolyzed into the individual repeating
units in more dilutedH2SO4 at 40 wt %.

173 Then themonomeric
sugars are analyzed by ion chromatography coupled with a
refractive index detector,174 gas chromatography (GC) coupled
with mass spectrometry,175 or a flame ionization detector.176 In
the case of GC analysis a prior derivatization step is required to
increase the volatility of the analytes, in most cases by a
silanization of the saccharide.177 Following these techniques the
amount of each sugar of the polysaccharides can be assessed, but
one must take into account that less common sugars or generally
charged sugar units might not be detectable by a standard
method and will require more specifically optimized techniques.
After a sugar hydrolysis, monomeric sugars can also be studied
by liquid-state nuclear magnetic resonance (NMR) spectrosco-
py to determine their structures as well as identify the number
and type of functional groups.178,179 Further structural
information can be obtained by including desulfation180 and
methylation181 steps prior to the analysis.182 NMR analysis can
be also performed on oligomeric fractions, obtained via
enzymatic hydrolysis.183

More conventionally, polysaccharides can be analyzed by
colorimetric methods. These methods are simple, as they do not
need special equipment and are often used in the case of agarose
and polysaccharides for food applications.184,185 In these
examples, the total carbohydrate content is determined by the
phenol-sulfuric acid method of Dubois et al.;186 in which
polysaccharides are hydrolyzed into their repeating units and
further reacted with phenols to form conjugated molecules with
a yellow-gold color. The total carbohydrate content can then be
quantified by measuring their absorption in the visible light
range and relating this to suitable calibration curves. The
amounts of 3,6-AG units can be also quantified by a colorimetric

method, known as the resorcinol method. This method is based
on the reaction of resorcinol with ketose via the Seliwanoff
reaction and works with ketose sugars formed in the dehydration
of 3,6-AG.187,188 To measure the sulfate contents, the simplest
methods are based on turbidity measurements using BaCl2
causing the precipitation of the insoluble BaSO4, which is
formed from the sulfate ions in polysaccharide hydro-
lysates.189,190 In this method gelatin is often added to stabilize
the BaSO4 suspension and improve thereby the reliability of the
measurement. Generally, for polysaccharide containing charged
repeating units, these units can be quantified by a conducto-
metric titration.191 Since sulfate and carboxylate have different
pKa values, they can be determined simultaneously by this
method,192 which is especially interesting for complex
polysaccharides or chemically modified ones. In addition to
the monomer composition, a trace element such as a heavy
metal can be detected by an elemental analysis and help to
determine the purity of the polysaccharide extract.193

Macromolecular Scale. At the macromolecular scale, the
length of the polymer chains is the most critical characteristic
that can dictate many properties of the polysaccharide. The
polymer length can be expressed as the degree of polymerization
(DP), that is, the average number of monomer units per polymer
chain, but it is commonly described by the number-averaged
(Mn) and weight-averaged molecular weight (Mw). The latter
can be directly determined via light scattering.194 The Mw of
commercially extracted polysaccharides can greatly vary due to
occurring polymer degradation during extraction and purifica-
tion processes.195,196 In general, the higher the purity, the lower
the final DP of the purified polysaccharide. This is because of the
recalcitrant algae matrix, which requires harsh extraction and
purification conditions, which can cause polymer degradation
via chain scission.
While various techniques are available to determine the

absolute molecular weight of polysaccharides, the preferred
methods are based on light scattering.194 A combination of light-
scattering techniques with a previous separation method based
on size, such as gel permeation chromatography (GPC) or size
exclusion chromatography, gives not only averaged molecular
weight numbers but also the molecular weight distribution and
polydispersity values. Alternatively to get the absolute molecular
weight measurement, GPC equipped with a refractive index
detector can be used to determine the relative molecular weight
of the polysaccharide by applying a calibration curve of polymer
standards with uniform molecular weights, typically pullulan or
dextran.26

Supramolecular Characterization. The interactions of
individual biopolymer chains can result in supramolecular
assemblies. These structures can be classified as having a short-
range order, and one distinguishes it mostly between an α-helix
and β-sheet.197 The secondary structure of biological molecules
is commonly studied by circular dichroism (CD).198 For
instance, an agarose secondary structure can be characterized
by CD. The signal arises from the coupling of C−O−C ether
chromophores, leading to a positive residual ellipticity.199

Alternative techniques to study the secondary structure of
polysaccharides and its effect on their properties are based on
optical rotation.112,200

In polysaccharides with crystalline domains, mostly cellulose,
the crystallinity index and crystal dimensions are conventionally
measured with wide-angle X-ray scattering (WAXS) and are
based on the scattering of the X-rays in diffraction patterns. The
intensity of these patterns relates to the overall crystallinity
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index, which can be determined by a subtraction of the broad
amorphous peaks, and the crystallite size can be determined
from the peak width.201 In addition, the chemical and physical
environment of polysaccharide chains in crystalline domains is
different from the one in amorphous regions; this affects the
chemical shift of characteristic peaks in solid-state NMR202−204

as well as the wavenumber of the bands from IR205,206 and
Raman207 spectra, and can be used to estimate the sample
crystallinity. Nanoparticle dimensions and aspect ratios are
mostly determined by using atomic force microscopy (AFM)
and transmission electron microscopy (TEM). In all these
methods, the sample preparation plays a crucial role, and it is
recommended to follow well-established protocols, to make sure
that the analyzed nanoparticle fraction represents the whole
sample; alternatively, also scanning electron microscopy (SEM)
can be used to measure the dimensions of polysaccharides
organized into nanoparticles.193,208 The size of nanoparticle or
polysaccharide aggregates can be as well determined by dynamic
light scattering (DLS) measuring the time-dependent fluctua-
tions of the scattered light intensity of particles.209 This is based
on a simplification to a spherical shape, hence the obtained size
is in the case of differently shaped particles not absolute, but it
can be used as to assess the state of dispersion and the
hydrodynamic radius of the nanoparticles.210 Apart from
crystallinity and dimensions, the colloidal stability of poly-
saccharide nanoparticle electrostatic polymer chain repulsion or
particles can be assessed in the form of the zeta potential193,211

usually measured by electrophoretic light scattering. This is
based on the determination of the electrophoretic mobility of a
nanoparticle in an applied electric field determined by light
scattering, which can be then converted to the nanoparticle’s
zeta potential using the Henry equation with Smoluchowski or
Huckel approximations.212

Nanostructure Characterization (Dry Hydrogel). As
introduced in the previous section, SEM and TEM can be used
to investigate the nanostructure of supramolecular aggre-
gates.193,208 But these electron microscopy techniques can also
be used for the structural analysis of dried hydrogels. In this case
the type of drying procedure is of utmost importance. The goal
of these drying procedures is to produce a sample, from which
water is replaced by air without causing structural changes to the
sample, and the obtained highly porous dried hydrogel is
referred to as an aerogel.128 The most-used drying technique for
hydrogels is freeze-drying. It is a well-established method used,
for example, in food and biological applications and can also be
used in an industrial scale.213,214 In this process the hydrogel is
frozen, and the frozen water is removed under a high vacuum by
sublimation.215 However, an agglomeration in the hydrogel
occurs during this method in the freezing step.216,217 In the case
of water as the liquid phase, the formed ice crystals push the
hydrogel nanostructure together and induce thereby agglomer-
ation into a sheetlike structure, which is not very representative
of its solution nor native solid state.216,218,219 The size of the ice
crystals is dependent on the freezing procedure and also on the
sample thickness, and can be reduced by solvent exchange to
tert-butanol.14,220 Freeze-drying from tert-butanol yields struc-
tures that are very similar to aerogels obtained from a
supercritical CO2 drying (or a critical point drying).128,220 In
the case of a supercritical CO2 drying, a prior solvent exchange to
EtOH or acetone is usually conducted, and the drying yields a
representative aerogel.215,221,222

Once appropriately dried, the nanostructure of the poly-
saccharide or hydrogel can be investigated by high-resolution

electronic microscopy. However, polysaccharide aerogels are
nonconductive insulators. If not properly handled surface
charging can lead to a loss of contrast and difficulties in the
acquiring of images. Moreover, the high voltage of the electron
beam can cause local damage and a structural alteration of the
delicate aerogel structure. To overcome these issues, one can
coat the specimen with a conductive layer, conventionally gold,
platinum, or iridium.193,208

While electron microscopy can provide information on the
structure of the polysaccharide the size of the pore and formed
structure can be challenging to measure. The specific surface
area can be determined by gas sorption measurements of the
aerogels with nitrogen as the most common sorbate. The surface
area and pore size distribution are in this case calculated from
nitrogen sorption isotherms according to Brunauer, Emmett,
and Teller (BET) and Barrett, Joyner, and Halenda (BJH)
theories, respectively.223,224 These techniques have been
extended to the sorption of different gases such as octane,
which can be performed at room temperature.225 Limited to a
nanosized pore size (<100 nm), gas sorption cannot measure
micrometer-scale pores. Mercury intrusion is better-suited to
analyze a broad pore size range of up to the size of several
hundred microns.226 Alternative noninvasive methods such as
microcomputed tomography can analyze pores in micrometer
and centimeter ranges and provide an image from which
tortuosity and pore interconnectivity can be calculated.227,228

Hydrogel Characterization.While the previous character-
ization techniques focused on the characterization of the
hydrogel in the dry state, these can be destructive. For some
applications, noninvasive, nondestructive techniques are needed
for the characterization of the polysaccharides in the hydrated
hydrogel state. A direct analysis of the hydrogel nanostructure by
AFM has been shown for polysaccharide and protein hydro-
gels.229 AFM force measurements can also reveal information on
the mechanical properties of the nanostructures.230 In
comparison to SEM, no special sample preparation is necessary,
but the drawbacks of AFM are the time-consuming measure-
ment and the relatively small measured sample areas.
Small-angle X-ray scattering (SAXS) can reveal information

on the gel properties, such as the alignment, fibrillar diameter, or
specific surface area.14,231 The measurement principle is similar
to that of wide-angle X-ray scattering (WAXS), but it is sensitive
to larger aggregates, such as nanofibers. A SAXS diffraction
pattern is dependent on the scattering on these structural motifs,
and a fitting and analysis of these patterns gives detailed
structural information. In the wet state, the pore size of a
hydrogel structure can be imaged by magnetic resonance
imaging, which is a noninvasive and nondestructive method that
does not use ionizing radiation.232 Alternatively, X-ray
tomography can be used in wet conditions but requires the
application of contrast agents.233 Another method to determine
the pore sizes of hydrogels is to determine the hydrogel
permeability to defined polymers with a known hydrodynamic
radius.234

The water content of hydrogels can vary depending on the
hydrogel environment. Therefore, it is important to measure
their swelling behavior, usually expressed by the swelling degree,
that is, the amount of water per unit mass of the dry sample.235

The change of water content in a hydrogel affects their
mechanical properties, and hence the mechanical properties of
a specimen should be always measured in a swollen and
equilibrated state to provide a representative value of their
performance during the attended application.193 The simplest
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measurement to compare the mechanical properties of hydrogel
is unconfined compression testing, using a standard universal
tensile testing machine equipped with compression plates, a
texture analyzer, or a similar setup. Thereby, the mechanical
properties of a whole hydrogel sample can be determined, and
the compressive elastic modulus can be extracted from the initial
slope of the compression test curve. This modulus gives
information about the viscoelasticity of the given sample; in
addition, cyclic compressive tests can be conducted to assess the
elasticity of the hydrogel and its long-term stability under stress.
Depending on the sample and application, an even smaller-scale
mechanical analysis, such as nanoindentation with AFM, can be
useful to reflect the mechanical resistance on a supramolecular
level.236 Determining the stiffness at this scale can be of interest
to reflect the sensing behavior of living tissue, as living cells can
feel and respond to the stiffness of a substrate material.237 The
viscoelastic properties including the storage and loss modulus of
hydrogels can be further characterized by dynamic measure-

ments, such as a dynamic mechanical or rheological analysis.
The storage modulus describes the elastic behavior, and the loss
modulus describes the viscous behavior of a sample. These
moduli are used to give the definition of a gel. A gel is classified as
a soft solid with a higher elastic comportment than viscous
behavior; analysis of these moduli gives important information
on the gel strength and network interactions.238

■ CHEMICAL MODIFICATION
The chemical structure of algae-extracted polysaccharide
governs their abilities to form hydrogels. Understanding the
relationship between their chemical structure and physical
properties enables the prediction of certain polysaccharide
properties upon chemical modification. Nevertheless, the
available functionality of these natural polymers and the
reactivity are rather limited (Table 2). A chemical modification
of the accessible repeating units by a controlled introduction of
different functional groups allows us to tune the hydrogel

Table 2. Functional Groups Naturally Found on Algal Polysaccharides (red√) and ReportedaChemical Backbone Modification
(green √)

aNumbers in the table indicate reference citations.

Figure 4.Reported chemical reactions to modify an algae polysaccharide backbone. The reactions are shown exemplified on glucose or glucuronic acid
building blocks.
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formation, to perform coupling chemistry; and to bind biological
molecules such as peptides197 or reactive groups such as
acrylates for the chemical cross-linking of the polysaccharide.239

Naturally, these polysaccharides all bear secondary hydroxyl
groups. Some, such as starch, agarose, porphyran, and cellulose
contain primary ones. These primary groups are generally more
reactive than secondary alcohols179 and can be oxidized
regioselectively to carboxylic acids.240 In comparison to the
hydroxyl group, the natively available carboxyl in alginate and
ulvan is more reactive and can be directly used for a peptide
coupling via amidation.241 Moreover, the amount of functional
groups, such as sulfate andmethyl groups in porphyran, has been
shown to influence its gelation properties. This knowledge
relates the chemical structure with the physical properties of
natural polysaccharides and can be used to fine-tune the physical
properties of these hydrogels via chemical backbone mod-
ification.
The natively occurring chemical groups of selected algal

polysaccharides and the most frequently introduced functional
groups are summarized in Table 2, and we present the basic
chemical reactions to introduce these functional groups in
Figure 3.

(A) Carboxylic acid functional groups are attractive for the
functionalization of polysaccharide hydrogels. Indeed,
they enable the coupling of biological signals, such as
short peptides as demonstrated with alginate.262 In
contrast, polysaccharides without these groups, e.g.,
agarose or cellulose, are challenging to functionalize. An
attractive and straightforward avenue is the oxidation of
their primary alcohol into a carboxylic acid. The most
studied reaction for the mild oxidation of a polysaccharide
is the TEMPO-mediated oxidation (Figure 4A).
TEMPO-mediated oxidation is mostly conducted in the
presence of NaBr and the oxidizer, chlorine, under
alkaline conditions.240,263 But it can be also conducted in
neutral conditions.264 It is important to take into account
that the introduction of a carboxylic acid onto the
backbone of agarose and other polysaccharides can
modify their secondary structure and thereby their
gelation mechanism;197 in addition, the molar mass of
the polysaccharide is reduced due to the accompanying
chain degradation.265 A TEMPO-mediated oxidation
plays also an important role in the preparation of CNF
as negatively charged carboxylate groups are introduced,
which facilitate the deconstruction of the cellulose fiber
into individual nanofibers.144,266

(B) Aldehydes offer also a highly reactive site for the
functionalization of polysaccharides.251 These groups
can be introduced in a straightforward manner via
periodate oxidation. This oxidation is applicable only on
adjacent hydroxyl groups; in the case of sugars it mostly
attacks C2- and C3-OHs leading to the cleavage of the
C2−C3 carbon bond and the formation of two aldehyde
groups at C2 and C3 (Figure 4A).267 Consequently, it
does not react with agarose but is frequently used for 1,4-
linked glucose-containing polysaccharides, such as
cellulose259 or starch.268 Recently, it was shown that the
resource efficiency of the periodate oxidation can be
tremendously increased by reaction at high solid
content.206 In the case of cellulose, these oxidized groups
can be postmodified to give access to CNF decorated with

various functional groups, including, among others,
carboxylate and sulfonate ones.269,270

(C) Sulfated polysaccharides can bemade using sulfur trioxide
pyridine, yielding a polysaccharide substituted with
sulfate groups (Figure 4C).271,272 The addition of sulfate
groups in a polysaccharide can help to mimic a naturally
occurring backbone modification (e.g., in λ-carrageenan)
that impacts the hydrogel formation. These sulfate groups
add negative charges on the polysaccharide, which then
can be used as a polyanion with antifouling applica-
tions.273 So these sulfated carbohydrate can provide
anticoagulation properties, as it was reported for
agarose.255 Cellulose nanocrystals prepared by sulfuric
acid treatment are as well slightly sulfated.274 Alter-
natively, more hydrolytically stable polysaccharide
sulfonates (carbon-linked SO3

−) can be obtained, for
example, via a periodate oxidation of cellulose followed by
a reaction with bisulfites.270

(D) Halogenation of a carbohydrate can be achieved with
triphenylphosphine and tetrachloride to introduce
chloride groups (Figure 4D).275 Other protocols report
the use of triphenylphosphine in the presence of
imidazole and iodine to introduce iodide groups.276 The
halogenation of polysaccharide is also achieved indirectly
via esterification and is useful to introduce bromide
groups for a grafting polymerization through a surface-
initiated atom transfer radical polymerization.277 In
addition to coupling applications, a halogenated poly-
saccharide could be useful for the creation of biocompat-
ible polymers, which can form halogen bond interactions
that are stronger than hydrogen bonds. Such bonding is
expected to have, for example, applications in medicinal
chemistry to create new inhibitor-based drugs.278

(E) Methylation of a polysaccharide can be performed using
dimethyl sulfate under alkaline conditions (Figure 4E).253

This method was used on agarose to control its gelation
properties; a higher methylation led to a lower gelling
temperature and lower gel strength.253 The agarose
methylation reproduces the natural gel strength regu-
lation of agarose in the algae. Depending on the season
and the area of the culture, agarose with a different
methylation can be extracted. While the methylation of a
polysaccharide such as agarose is an efficient strategy to
control the hydrogel properties, it limits the reactivity of
the resulting polysaccharide by blocking, among others,
the C6-OH position of the monomer repeating units.

(F) Amidation of a carboxylic acid-containing polysaccharide
can be achieved through carbodiimide chemistry (Figure
4F).279 Typically polysaccharides that can undergo
amidation are alginate and ulvan through their C6
carboxylic acid group. Other polysaccharides bearing a
primary alcohol on their C6 position of the repeating unit
require a prior TEMPO oxidation or periodate oxidation
of C2- and C3-OHs and a subsequent chloride oxidation
prior to a reaction with amines via amidation. Amidation
reactions are often used for peptide coupling but can be
also used to introduce positively charged functional
groups on the polymer backbone.280

(G) Esterif ication is one of the most conducted treatments of
polysaccharides. The most common reaction is the
acetylation of cellulose to cellulose acetate by an acid-
catalyzed reaction with acetic anhydride (Figure 4G).281

The introduction of acetyl groups onto a polysaccharide
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increases the hydrophobicity of the polysaccharide and
thus improves its processability in an organic solvent.282

Naturally, polysaccharides such as alginate or agarose do
not promote cell adhesion. Thus, the acetylation of these
polysaccharides is of interest to increase the hydro-
phobicity of such polysaccharides, which can induce the
absorption of proteins on the polysaccharide backbone
and subsequently cell adhesion. Recently, also a wet
esterification process for cellulose has been developed204

yielding a surface-acetylated CNF.261 It is expected that
this protocol will be also applicable to other polysacchar-
ides.

(H) Thiolation of a polysaccharide can be achieved by using a
reaction of thiourea with halogenated polysaccharides
(Figure 4H).283 The presence of thiols group on the
polysaccharide backbone has twomajor applications: One
is for the reversible immobilization of enzymes through
disulfide bounds,284 and the second is as a mucoadhesive
polymer.285 With the increased demand of a mucoadhe-
sive drug delivery system, thiolated cellulose systems have
been shown to exhibit important adhesive properties
while being able to encapsulate and release pharmaceu-
tics. As the demand grows, additional thiolate poly-
saccharides are needed to uncover new applications and
broaden the formulation potential. As such, alginate
demonstrated also mucoadhesive properties once thio-
lated.244

On the basis of the presented chemical avenues, especially
amidation, esterification, or aldehyde modification, it is possible
to further functionalize the polysaccharide by introducing
chemical anchor groups for postmodification. For example,
with the introduction of azide groups, a desired functionality
with an alkyne group can be introduced via a copper-catalyzed or
strain-promoted azide−alkyne cycloaddition,286 both of which
are highly efficient and versatile reactions classified as click
chemistry.287 A click reaction can be also performed with
thiolated polysaccharides via thiol−ene click chemistry, with
strained double bonds, for example, norbornenes, by inverse
electron-demand Diels−Alder reactions or with maleic anhy-
drides.288 These reactions are in many cases also bio-orthogonal
and enable selective reactions in the presence of living tissue,287

and they can be used for rapid in situ functionalization and cross-
linking of polysaccharides. Recently, an aqueous silanization
protocol was established to introducemultiple functional groups
onto (nano)cellulose in aqueous media using catalytic amounts
of HCl and NaOH.289,290 This approach is a highly versatile

method to introduce functional alkoxysilanes with azido, thiol,
and other groups and lead to polysaccharides that can be
postfunctionalized via click chemistry.289,290

■ PROCESSING OF ALGAE HYDROGEL-FORMING
ALGAE POLYSACCHARIDES

Once the desired physiochemical properties of the algae-
extracted polysaccharide are obtained, one must process the
material into a shape, or morphology adequate for the targeted
application. We identified the six most applied processing
techniques for these hydrogel-forming polysaccharides: (a)
molding, (b) 3D printing, (c) bead formation, (d) drying, (e)
electrospinning, and (f) nanoparticle precipitation (Figure 5).

A Molding is the most straightforward processing technique
to produce hydrogels into a desired form. Usually, a
polysaccharide solution is injected or poured into a mold.
Subsequently, the physical gelation is induced to form the
hydrogel and retain its shape. The precision and structure
of the final hydrogel is strongly dependent on the used
polymer but enables even replication of microscale
structures.291 For instance, agarose is used in soft
lithography to obtain micrometer precision objects.292

Additionally, a molded hydrogel can be supplemented
with biologically active molecules such as antibiotics to
manufacture wound dressings.293 Sophisticated structures
showing inner porosity294 or complex 3D structures can
be obtained by sacrificial templating using sugar or salts,
which can be removed without impacting the hydrogel
stability or structure.228,295,296

B 3D printing or additive manufacturing is a very useful
method to prepare hydrogels with a specific shape without
the use of a mold.297 This technique can be used to print a
cell suspension in the hydrogel to prepare cell-laden
hydrogels for tissue engineering. However, additive
manufacturing techniques require a deep understanding
of the polysaccharide rheological properties to adapt the
printer flow to the solution viscosity. Some of the
hydrogel-forming polysaccharide presented herein exhibit
a shear-thinning property, that is, a reversible reduction of
viscosity upon shear stress, and an intrinsic feature of
many algal polysaccharides, such as agarose,298 algi-
nate,299 and nanocellulose.133 This property makes them
particularly suitable for applications requiring extrusion
such as additive manufacturing. The shear-thinning
properties of hydrogels can be further enhanced by an
addition of rheology modifiers, such as silicates300 or

Figure 5. Common processing techniques of hydrogel-forming polysaccharides to create microbeads, nanoparticles, nanofibers, hydrogels, and
aerogels that can be then used for biomedical applications.
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nanocellulose,301 chemical modification of the poly-
saccharide,302 or a combination of algal polysacchar-
ides.303 For instance, agarose is frequently used in
combination with alginate for bioprinting without
requiring any additional ionic cross-linking.303 Alginate
by itself has a limited mechanical stability, and usually 3D-
printed objects require post gelation with Ca2+, which
reduces the practical suitability of this polysaccharide for
bioprinting applications. But combined with nano-
celluloses the shape fidelity and structural integrity of
printed hydrogels is extremely improved.136,301,304

C Bead formation is particularly useful for drug delivery
applications. These microbeads can be manufactured by
simply dropping the dissolved polysaccharide into a
solution that triggers the gelation process while
maintaining the drop shape. The shape of these beads is
controlled by the applied pressure during the extrusion,
type of nozzle, and droplet size. κ-Carrageenan beads with
a size of 22−32 μm were produced through an extrusion
from a needle (0.6 mm diameter) into a solution
containing potassium ions inducing gelation.305 Analo-
gously, alginate beads can be prepared by physically cross-
linking in CaCl2 solution, and drugs can be incorporated
directly into the beads.306 The main challenge of this bead
production technique is the control over the bead size and
shape. But this issue can be overcome by using
microfluidic techniques, which enable the preparation of
highly uniform spherical particles using a polysaccharide
solution and a nonmiscible oil phase in the presence of
surfactant.307−310

D Drying of hydrogels is usually conducted via freeze-drying
to produce highly porous structures, that is, cryogels. Dry
gels can be more easily stored and sterilized than their
hydrogel counterparts. But freeze-drying the hydrogel
generally modifies its structure due to ice formation. This
can be used to induce a controlled pore shape through a
templating effect, that is, freeze casting or ice templating,
increasing mechanical properties, and introducing aniso-
tropic porosity.128,311 For instance, an aligned porous
structure of alginate/chitosan cryogel with a pore size of
∼60−80 μm was produced by freeze-drying, and this
architecture was used to guide the growth of neurites.312 If
we want to maintain the porous hydrogel structure,
special drying techniques are needed, yielding aerogels.

Supercritical CO2 drying enables the removal of a solvent
from a solvogel (a solvent-exchanged hydrogel, in which
water is replaced with supercritical CO2 miscible solvents,
commonly acetone or EtOH) without affecting the gel
structure.128 Polysaccharide aerogels from supercritical
drying techniques are generally of a higher specific surface
area than the respective cryogels.220,313,314

E Electrospinning is used to create mesh-like structures with
a fiber diameter in the nanometer and micrometer scales.
Electrospinning uses an electric force to draw charged
threads of polymer solutions. Challenges are, among
others, the stability of such structure in water, especially
for water-soluble polysaccharides. For instance, an
electrospinning of native alginate requires a subsequent
gelation step with multivalent ions, for example, Ca2+,
Sr2+, or Ba2+ to avoid disintegration of the spun
fibers.315,316 The electrospinning of agarose was facili-
tated in ionic liquids and enabled the direct fabrication of
water-stable fibrous mats with antimicrobial proper-
ties.317

F Nanoparticles of a polysaccharide are generally produced
by a controlled nanoprecipitation, which can be induced
by different approaches, for example, complexation318 or
with an antisolvent.319 Other production techniques are
analogous to the bead formation using a microfluidic
channel. Oil-in-water nanoemulsions of an alginate-
chitosan mixture were prepared and subsequently gelled
with Ca2+; simultaneously, the particles can be loaded
with drugs.320 κ-Carrageenan composite nanoparticles
were produced through complexation with the protein
ovalbumin and used as a drug delivery platform.318

Nanoparticles can be as well obtained by controlling the
biopolymer solubility through a slow addition of an
antisolvent.319 A chemically modified alginate with a
hydrophobic photosensitizer enabled the formation of
nanoparticles with a hydrophobic core and hydrophilic
shell.319 This formation was triggered by an addition of
doxorubicin, forming the hydrophobic particle core, and
slow solvent-exchange by exchanging a polar organic
solvent with water. Algal nanocelluloses are intrinisc
nanopaticles of rod-lke or nanofibrillar shape, and can be
following plant nanocellulose protocols. The rheology of
nanocellulose makes it especially useful for 3D printing
and injectable cell delivery systems.133,321

Figure 6. Properties of algae-extracted polysaccharides at different scales that impact the biomedical performance and interaction with biological
systems.
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■ BIOMEDICAL APPLICATIONS OF
HYDROGEL-FORMING ALGAE POLYSACCHARIDES

Algae-extracted hydrogel-forming polysaccharides have an
historical use in biomedical applications: agarose gel electro-
phoresis, agar as bacteria culture media, and alginate-based
wound dressings. But with the rise of algae culture, the discovery
of new polysaccharides and the development of a chemical
modification of an existing polysaccharide, we expect that new
biomedical applications for these materials will be considered in
the future. To carefully evaluate a polysaccharide as a candidate
material for a dedicated biomedical application, one must
evaluate specific properties, which influence the interactions of
polysaccharides with biological systems. Considering hydrogel-
forming polysaccharides as a multiscale system, it is important to
understand the type of interaction at each chemical and
structural level (Figure 6).
First, it is important that a given polysaccharide is compatible

with conventional sterilization methods. During extraction,
processing, and preparation for its final use, the biomaterials
might gather biological contaminants. Sterilization of the
polysaccharide can be challenging, as γ-radiation and ethylene
oxide treatments can induce unwanted cross-linking and
depolymerization, and steam sterilization in an autoclave can
cause a hydrolysis of the polysaccharide. Hence, it is crucial to
carefully select a suitable sterilization method for a given
polysaccharide. The discussed methods kill bacteria and viruses,
but they do not remove endotoxins, which can induce a severe
immune response of implanted materials leading to a fever and
the rejection of the implanted materials from the body.
Originating from Gram-negative bacteria, endotoxins, also
called lipopolysaccharides, are macromolecules made of lipids
and polysaccharides, and they can be detected by Limulus
amebocyte lysate tests.322 Because of their chemical nature, it is
extremely challenging to remove them from a polysaccharide,
and usually, processes involving several acidic and basic washing
steps are needed.323

Once a sterile material is obtained, its cytotoxicity can be
characterized. One of the sources of cytotoxicity originates from
impurities present in the polysaccharide. Molecules such as
heavy metal or low-molecular-weight polysaccharides can be a
potential source of cell toxicity. Usually, the cellular toxicity is
assessed by astetrazolium-based, trypan blue, alamar blue,
lactate dehydrogenase, and neutral red uptake assays.324

Beyond the polysaccharide purity, its chemical structure
ultimately determines the interaction with biological systems.
Protein adsorption plays a significant role, as it dictates the
interaction of the hydrogel with living tissue and the immune
system. In this regard it is important to consider not only the
type of adsorbed protein but also the folded structure.325−327

The surface chemistry of the polysaccharide can be chemically
altered to control protein adsorption. A selective introduction of
cell-adhesion peptides such as the integrin binding sequence
arginylglycylaspartic acid (RGD) protein enables, for example, a
controlled cell attachment onto the polysaccharide.328 The
sorption of proteins can be studied in model systems via surface
plasmon resonance or microgravimetry measurements, which
enable as well a subsequent studying of the protein structure by
analyzing the adsorbed protein on the polysaccharide surface by
AFM.329,330

If a hydrogel is injected, implanted, or used in the body as part
of a medical device, the algae-extracted material can be in
contact with blood. So its hemocompatibilitya measure of the

thrombotic response of a material in contact with bloodis
critical.331 Some functional groups of polysaccharides allow the
control of its hemocompatibility. For instance, it as has been
shown that sulfated polysaccharides such as carrageenan332 or
chemically sulfated agarose can have antithrombic properties.255

During the lifetime of a hydrogel in the human body, the
polysaccharide can degrade into oligomeric or monomeric
products. These moieties can induce cytotoxic reactions or
interact with proteins through electrostatics or hydrophobic
interactions. As mammalian cells usually lack the suitable
enzymes to break down these polysaccharides, degradation
mainly occurs through an unspecific hydrolysis of the glycosidic
bounds.333,334 Only enzymes obtained from bacteria or fungi
such as agarase, alginase, or cellulase can specifically
depolymerize agarose, alginate, or cellulose, respectively.
Polysaccharides can be rendered more degradable by oxidative
treatments, introducing defects and hydrolytically labile units in
the polymer backbone.335

Not only the surface chemistry plays a major role in governing
the polysaccharide interaction with its surrounding environment
but also the topographical structure, the pore structure, and pore
interconnectivity. As an example, the roughness of the hydrogel
can be sensed by tissue cells, which can alter their behavior as a
function of the roughness.336,337 In addition, to enable
homogeneous in-growth and cell proliferation in a hydrogel a
pore size of several 100 μm is required.228,338 Apart from the
size, also the presence of an interconnected, open-porous
hydrogel structure is viable for tissue engineering, as it allows a
diffusion of nutrients, gases, and cellular waste substances.339

However, one must consider the influence of such a porous
structure on the mechanical properties of the resulting hydrogel.
In tissue engineering, the matrix stiffness and elasticity of the
hydrogel should represent the targeted tissue, as cells can feel
and respond to their environment.237,340 The human tissue
elasticity varies between tens of pascals and several gigapascals
from soft brain to hard bone tissue.334 This broad range of
mechanical properties highlights the necessity of adapting the
hydrogel’s mechanical properties to the targeted tissue
implantation. Fine-tuning the hydrogel mechanical properties
can be achieved through a chemical modification of the
polysaccharide chains.
Considering this advanced knowledge on the relationship

between a chemical structure of the polysaccharide and the
behavior at the biological interface, algae-extracted hydrogel-
forming polysaccharides possess an untapped potential in
diverse biomedical applications.

■ CHALLENGES AND OPPORTUNITIES FOR
BIOMEDICAL APPLICATION OF
POLYSACCHARIDES

Naturally occurring polymers offer several advantages over
synthetic polymers, especially when it comes to a predictable
property profile, for instance, gelling behavior, rheological
properties, and biodegradation. While their biological origins
ensure a narrow molecular weight distribution and well-
conserved chemical composition, this latter trait is highly
dependent on the geographical source of the polysaccharide, the
extraction process, and postmodification. For example, the
source of alginate can alter its composition, that is, high G versus
high M content.341 Similar challenges are also envisioned with
other marine polysaccharides such as carrageenan and agarose.
But one bottleneck in the utilization and the industrial
exploitation of marine algae-derived polysaccharides is the lack
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of physical parameters to describe the relationship between the
molecular weight of these polysaccharides and their rheological
properties. An empirical and semiempirical framework for
understanding structure−property−function relations in macro-
molecules should allow for a rapid optimization of process
parameters to achieve specific property profiles. In polymer
science, the ‘K’ and ‘α’ parameters of the Mark−Houwink−
Sakurada (eq 1) equation provides a basis for relating the
viscosity of a polymer in a solvent at a given temperature to its
molecular weight.

η[ ] = αKM (1)

[η] is the intrinsic viscosity (mL/g) commonly referred to as the
Staudinger Index, M is the viscosity molecular weight (g/mol),
and K and α are the Mark-Houwink parameters.
With the exception of alginate, one of the most well-studied

polysaccharides, where K = 2 × 10−3 and α = 0.97, at 25 °C, in a
solution of 0.1 M sodium chloride, such a deep characterization
of marine-derived polysaccharides is virtually absent.342 In a
biomedical application, the molecular weight (MW) and MW
distribution are important considerations, as they can have
unintended consequences on the biocompatibility, processing,
and reproducibility of hydrogel properties. Since polysaccharide
sources and extraction processes can impact the MW, a rapid
and reliable way to qualify a polysaccharide and control the MW
at the source will be vital to the development of marine-algae-
derived polysaccharides as a reliable raw material for biomedical
applications. Toward this objective, the development of
analytical methods and representative polymer standards for
determiningmolecular weights is essential. Currently, pullulan, a

polysaccharide produced by a fungal action on starch, is used as a
molecular weight standard. Since pullulan is not a charged
polysaccharide (almost neutral), its solution behavior does not
accurately represent the conformation of algae-derived poly-
saccharides, which are typically negatively charged. Since many
of the polysaccharides such as alginate and agarose are thought
to undergo degradation in vivo through oxidative processes, the
molecular weight will have a pronounced effect on the solubility
of oxidized polysaccharide chains, and this can influence tissue
clearance and excretion and skew the biocompatibility of these
polysaccharides. These challenges in establishing clear struc-
ture−property−function (both physical and biological) rela-
tionships within a polysaccharide class sourced under diverse
cultivation conditions can pose regulatory and clinical trans-
lation challenges. Finally, the endotoxin burden inherent to
natural polymers can be a challenge. While endotoxin removal is
not a significant consideration for food technology and other
consumer product applications, it is a critical factor in the clinical
translation of algae-derived biomaterials and, therefore, needs to
be integrated into the purification step. All these aspects of
sourcing and purification must be incorporated within a
comprehensive framework of characterization to allow for the
processing of these polysaccharides into biomedical applica-
tions.

■ EXPANDING THE CURRENT POLYSACCHARIDE
LIBRARY AND THEIR APPLICATIONS

The current increase of algae farming has been focusing on the
potential of algae for carbon dioxide fixation, fuel production, or
as a food source, but there is a real potential for algal

Figure 7. Proposed life cycle of hydrogel-forming polysaccharides derived from algae culture: their extraction, characterization, and processing into
materials for biomedical application. If required a prior chemical modification can be integrated to tune their properties toward a dedicated processing
and biomedical application.

Figure 8. Implementation of the valorization of hydrogel-forming polysaccharides for high-value-added applications into existing supply chains for
food and industrial applications from algae.
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polysaccharide hydrogels in high added-value applications in the
fields of biology and medicine. One challenge in the develop-
ment of such applications is the requirement of a reliable supply
chain from the sea to the patient (Figure 7).
This starts with a controlled environment for the algae growth

in a natural reserve or in a land culture to ensure a low
contamination of the algae and to reduce seasonal variations of
the polysaccharide compositions. Followed by extraction
processes, which are compatible with industrial manufacturing,
an efficient isolation of pure polysaccharides is enabled. This
requires an appropriate quality control to characterize the algae
in terms of contaminants, purity, and chemical structure. Once
isolated and purified, the polysaccharide can be either directly
processed into a biomaterial or chemically modified to tailor its
properties before processing, thus enabling a broader application
range.
While animal-derived biomaterials, such as collagen, remain

the main source of protein-based hydrogels, algal hydrogel-
forming polysaccharides represent a viable, nonanimal alter-
native and can be efficiently processed into high added-value
biomaterials with low impurity levels and batch-to-batch
reproducibility. Nowadays, there are established processes and
an available industrial supply chain to expend the library of
hydrogel-forming polysaccharides from algae. Research on new
algae species and the development of novel extraction processes
could further support the growth of this industry by opening new
opportunities beyond the well-established ones of alginate and
agarose. A high potential for valorization (Figure 8) could be
found in the cellulose content in algae. Indeed, algal cellulose
can be further processed into high-purity nanocelluloses,148

which can be used, for example, as an artificial extracellular
matrix and rheology modifier in bioinks.12,343

Parallel with the development of an algae industry for carbon
dioxide fixation, additional uses of the produced algae will have
to be found. While mass markets such as algae-based industrial
chemicals and food will be a major part of the equation, these
require high production capabilities. Smaller algae producers
with access to high-quality water will have the opportunity to
produce materials to support the high added-value chain of
biomaterials. This industry, however, requires the production of
high-purity polysaccharides in a reproducible composition and
with low seasonal variations between harvests. This can be
achieved with the development of an advanced algae culture,
such as an inland production, which can lead to a high-quality
polysaccharide. In addition to high reproducibility, an inland
production allows extensions of algae culture to many areas with
no or limited sea access (Figure 7).344

Taking this into account, the market of hydrogel-forming
polysaccharides from algae has the potential to grow and
develop further in different regimes. An ongoing important task
is the proceeding research on new and optimized extraction
methods, which can allow us to extract polysaccharides with
superior properties, for example, polysaccharides with a higher
molar mass or in higher purity, or to increase further the
extraction yields. Moreover, because of the huge varieties of
algae species, many types of polysaccharides fractions with yet
unknown compositions and properties are still available with
undeveloped potential. Currently, algal polysaccharides are
primarily exploited on their own, although they have strong
synergistic effects in the natural algae matrix; these properties
can be further investigated to obtain materials with hitherto
unattainable mechanical properties. Supported by the current
knowledge in chemistry and material science of algal hydrogel-

forming polysaccharides, this growing industry is expected to
further advance and lead to the development of new biomedical
applications.
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Hag̈g, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with
Nanocellulose−Alginate Bioink for Cartilage Tissue Engineering
Applications. Biomacromolecules 2015, 16 (5), 1489−1496.
(137) FAO. The State of World Fisheries and Aquaculture 2020:
Sustainability in Action; Food & Agriculture Organization of the United
Nations, 2020.
(138) Hafting, J. T.; Critchley, A. T.; Cornish, M. L.; Hubley, S. A.;
Archibald, A. F. On-Land Cultivation of Functional Seaweed Products
for Human Usage. J. Appl. Phycol. 2012, 24 (3), 385−392.
(139) Buschmann, A. H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.;
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