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Abstract: Nitrogen-doped porous carbon (NPC) materials were successfully synthesized via a
Zn-containing metal-organic framework (Zn-MOF). The resulting NPC materials are characterized
using various physicochemical techniques which indicated that the NPC materials obtained at different
carbonization temperatures exhibited different properties. Pristine MOF morphology and pore size
are retained after carbonization at particular temperatures (600 ◦C-NPC600 and 800 ◦C-NPC800).
NPC800 material shows an excellent surface area 1192 m2/g, total pore volume 0.92 cm3/g and displays
a higher CO2 uptake 4.71 mmol/g at 273 k and 1 bar. Furthermore, NPC600 material displays good
electrochemical sensing towards H2O2. Under optimized conditions, our sensor exhibited a wide
linearity range between 100 µM and 10 mM with a detection limit of 27.5 µM.

Keywords: metal-organic framework; nitrogen-doped porous carbon; carbonization; tuning pore
size; CO2 capture; H2O2 electrochemical sensor

1. Introduction

Porous carbon materials have been regarded as significant porous materials because of their
distinctive properties such as pore size, extraordinary surface area and good electrochemical
activities [1–3]. They have extensive applications in many fields including catalysis, biosensors,
fuel cells and supercapacitors [4–11]. In this sense, 3D porous carbon-based structures are promising
to numerous applications, such as contamination removal, gas sorption/separation, and electrode
materials [2,12,13]. In particular, CO2 capture purpose nitrogen-doped porous carbon (NPC) materials
were used, because of its stability, low cost and performance [14,15]. For CO2 capture, the pore size of
porous material plays a significant role, ultramicropores of ~4 Å to ~8 Å are predominantly suitable for
CO2 sorption [16,17]. The preparation of porous carbon materials has been synthesized in a known
way such as template and activation method [18,19]. Generally, template progression devours a larger
quantity of organic or inorganic template and the synthesizing processes are complicated. Activation
methods such as KOH and NaOH can afford a high surface area but needed a huge amount of activation
agents. To avoid such complication, recently metal-organic framework (MOF) materials have gained
tremendous attentions to prepare the porous carbon materials through single step carbonization
method. For instance, the recently reported porous carbon material derived from Zn-MOF, having
ultramicropore size (~4 Å to ~8 Å) showed excellent CO2 capture properties [20]. Since MOFs have
gained tremendous attention due to their diverse structures with tunable pore shapes, sizes, volumes,
and surface chemistry. Therefore, MOFs have prospective applications in gas storage/separation,
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electronic devices, chemical sensors, catalysis, and biomedical applications [21–26]. The multifunctional
MOFs are often chosen to synthesis porous carbon materials; MOF-templated straightforward synthesis
provided the high-quality nanoporous carbon with a well-ordered pore size and significant surface area.
The morphology of nanoporous carbon can be tuned by optimizing the carbonization method (such as
temperature, time, and atmosphere) [1,27,28]. Recently, MOF-derived metal/metal oxide embedded
porous carbon materials [29,30] are used in the electrodes for electrochemical sensors [31,32]. But,
maintaining the pristine MOF morphology of the resulting porous materials from the carbonization
process is a difficult task due to the shrinkage of framework/decomposing organic ligand during
carbonization, therefore, a systematic study is necessary [33].

Additionally, hydrogen peroxide (H2O2) is a toxic oxidizing agent, being used in various fields
such as biomedical science, environmental science, food, textile and chemical industries [34–36].
Therefore, H2O2 determination is of practical importance for both environmental and industrial
purposes. It has been well established that Zn based material modified electrodes are used for H2O2

detection [37,38].
Therefore, herein, we reported the preparation of NPC materials from {Zn2(BDC)2(DABCO)}

(Zn-MOF) [11] at various temperatures under a N2 atmosphere (Scheme 1). The properties of
the resulting NPC materials such as morphology, pore size, pore-volume, CO2 uptake and H2O2

electrochemical sensing were investigated.
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2. Methods

2.1. Materials

Zn(NO3)2·6H2O, (98%) and H2BDC, (98%) were bought from Sigma-Aldrich (Burlington, MA,
USA), DMF, (≥99.8%) was purchased from Merck (Darmstdt, Germany), (DABCO, 98%) was purchased
from Alfa Aesar (Lancashire, UK). All other compounds used throughout this study were of an
analytical grade. The electrochemical experiments were performed using a three-electrode system-CHI
model 824B workstation with a screen printed carbon electrode (SPCE)/chemically modified SPCE as a
working electrode, Ag/AgCl (in 3 M KCl) as a reference electrode, and Pt wire as an auxiliary electrode.
SPCE was purchased from Zensor R&D (Taichung, Taiwan). A phosphate buffer solution (0.1 M, pH 7
PBS) was prepared by mixing 0.1 M, NaH2PO4, and Na2HPO4. To compare the various electrodes
performance, 5 mM of FeCN solution used as a probe. Briefly, the FeCN solution was prepared using
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5 mM of K3[Fe(CN)6] and K4[Fe(CN)6], and 0.1 M, KCl used as a supporting electrolyte. For H2O2

detection, 100 mM of H2O2 prepared from 9.8 M of H2O2 (30 wt%).

2.2. Preparation of Zn-MOF, {Zn2(BDC)2(DABCO)}

The Zn-MOF was prepared [39] by, a mixture of Zn(NO3)2·6H2O (5.41 mmol, 1.609 g), H2BDC
(5 mmol, 0.83 g), DABCO (2.5 mmol, 0.28 g) in DMF (60 mL) was taken out into a Teflon-lined
autoclave and heated to 120 ◦C, 2 days later cooling down to room temperature. The Zn-MOF was
washed with DMF and dried at room temperature overnight. Further this material was used for the
carbonization process.

2.3. Preparation of NPC Materials

The NPC materials were prepared through a single-step carbonization method [31]. The 0.400 g
of Zn-MOF was transferred into a silica crucible boat and then placed in a furnace chamber. The NPC
materials obtained at target temperatures (500, 550, 600, 700, 800, or 900 ◦C) under an N2 atmosphere
for a 5 h duration. The resulting materials obtained at 500, 550, 600, 700, 800, and 900 ◦C are assigned
as NPC500, NPC550, NPC600, NPC700, NPC800 and NPC900 respectively.

2.4. Electrode Preparation

Prior to electrode modification, the bare SPCE was precleaned electrochemically by potential
cycling between −1 and +1 V vs. Ag/AgCl for 6 cycles in 0.1 M pH 7 PBS. NPCT modified SPCE
(SPCE/NPCT) was prepared by the following procedure: 10 µL of 2000 ppm (2 mg mL−1) respective
NPCT dispersed in acetonitrile suspension was drop coated on precleaned SPCE, and allowed for
dry on the hot plate at 40 ◦C for 15 min. The NPCT prepared by carbonization under the increasing
temperature of 500, 550, 600, 700, 800 and 900 ◦C. The corresponding modified electrode designated as
SPCE/NPC500, SPCE/NPC550, SPCE/NPC600, SPCE/NPC700, SPCE/NPC800, SPCE/NPC900, respectively.

2.5. Characterization

The purity of MOF and NPC materials were investigated by powder x-ray diffraction (PXRD)
using a Bruker D8 advance instrument (Billerica, MA, USA) equipped with CuKα radiation (λ= 1.54178
Å). The morphology of MOF and NPC materials were observed by high-resolution scanning electron
microscopy (HR-SEM, JEOL JEM-7600F instrument, Akishima, Japan). The NPC materials morphology
was characterized by transmission electron microscopy (TEM, using a JEM-2010 instrument, Tokyo,
Japan) at a voltage of 200 KV. The synthesized NPC materials were also recorded with a Raman spectra
on a CCD detector (Stanford Computer Optics Inc., Berkeley, CA, USA) using a He-Ne laser with an
excitation wavelength of 632.8 nm. The Zn element presence was investigated by inductively coupled
plasma-mass spectrometry (ICP-MS, Japan Agilent 7500ce, Tokyo, Japan). The elemental analysis (C,
N, O) was executed by an elementar vario EL III CHN-OS elemental analyzer (Germany). N2 gas
adsorption, CO2 gas adsorption of all materials were measured using micrometrics (Norcross, GA,
USA) and the gas sorption analysis purpose, the materials were dried at 120 ◦C for 12 h under vacuum.

3. Results and Discussion

3.1. Structure, Morphology, and Composition of NPC Materials

Synthesized Zn-MOF structure and porous properties was checked by PXRD, SEM and N2 gas
sorption measurements (Figure 1a–d). As expected, the synthesized MOF showed a well-defined
crystallinity and surface area of 1700 m2/g, and good agreement with the literature [40]. The pore
size of Zn-MOF was calculated by the NLDFT method, it reveals two micropores (0.75 and 1.4 nm)
(Figure 1d). The SEM images revealed the particle shapes of Zn-MOF was a mixture of the cube, brick,
and rod-like shapes (Figure 2c).
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Figure 1. (a) PXRD patterns of as-synthesized Zn-MOF, (b) SEM image of Zn-MOF (c) N2 sorption
analysis and (d) NLDFT pore size distribution profile.

The MOF was further exploited to a one-step direct carbonization method to produce the NPC
materials. The detailed preparation method is given in Section 2.3. The morphology, crystallinity and
surface area of NPC materials were examined by PXRD, SEM, TEM, Raman analysis, N2 gas sorption
isotherms, ICP-MS, and elemental analysis.

The PXRD patterns of the NPC500–700 samples showed the diffraction peaks for the formation
of ZnO nanoparticle (Figure 2a). The 2◦ peaks at 31.7 (100), 34.4 (002), 36.2 (101), 47.4 (102), 56.6
(110), 62.9 (103), 65.5 (200), 68.0 (112) and 69.1 (201) that are lattice planes of ZnO [41]. The NPC500,
NPC550, NPC700 morphologies show the shrinking phenomenon of Zn-MOF during carbonization at
this particular temperature (Figures S1 and S2). While the morphology retained from pristine MOF,
brick, and rod shape at 600 ◦C (Figure 2d,e and Figure S3). The PXRD pattern of the NPC800 sample
showed two broad peaks of graphitic carbon at 23 (002) and 44◦ (101) (Figure 2b) [7]. The absence of
ZnO at higher carbonization temperature revealed when the temperature is close to its boiling point of
ZnO (907 ◦C) is reduced to Zn and evaporate.

Furthermore, the SEM revealed the morphology partially retained the pristine MOF with distorted
graphitic carbon structures (Figure 2f,g and Figure S4), TEM images noticeably show the presence of
an abundant interconnected and oriented multilayer graphene domains can be observed (Figure 3a,b).
Further, by increasing the temperature to 900 ◦C, the PXRD pattern indicated a mixture of graphite
oxide (GO) and graphitic carbon. A broad peak at 2θ �12 (0 0 1) the reflection of graphite oxide, 23◦

and 44◦ crystallographic planes of graphitic carbon, which possess the amorphous carbon structure.
SEM (Figure 2h and Figure S5) and TEM (Figure 3c,d) images (900 ◦C) shown are revealed the pristine
MOFs have fully or partially cracked the shapes and the shrinkage of the whole framework.
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Further, synthesized NPC materials were characterized by Raman spectroscopy for the degree of
graphitization. The spectrum analyzed range between 1200 cm−1 to 1700 cm−1 bands were fitted with
the spectra, 1180 cm−1 (A1 band), 1340 cm−1 (D band), and 1600 cm−1 (G band) [42]. Figure S6 shows
significantly broadened D and G bands. Gaussian fitting was used to separate the A1, D, G band and
fitted after baseline subtraction. The ID/IG ratio increased while increasing the temperature, indicating
the formation of disorder with a low degree of graphitization of NPC materials was obtained. The
ID/IG ratio between D and G bands revealed the degree of graphitization in carbon-related materials.
Temperature 500–700 ◦C carbonized materials obtained a higher degree of graphitization, due to the
ZnO present in the carbon material. Because there is still a definite chemical interaction between ZnO
and N atoms, the redshifts of the D bands by approximately 15 cm−1 to �1326 were observed [43].
Further, as we increased the temperature (800 and 900 ◦C), ZnO-N adducts were not detected and were
also evidenced by PXRD. As the ratio is higher, it could be a low degree of graphitization, particularly
those materials carbonized at ≥800 ◦C (see Table 1). The G band shifted to higher frequencies by
approximately 6 cm−1 due to the nitrogen present in the NPC materials [44]. Chemical compositions of
NPC were studied by ICP-MS and elemental analysis (Figure S7). The zinc contents were investigated
by ICP-MS, increasing carbonization temperature results the decreasing zinc percentage are 51.7%
(600 ◦C), 43.72% (700 ◦C), 4.95% (800 ◦C), 0.26% (900 ◦C) and an appreciable amount of nitrogen
(1.96–2.98 wt%) based on elemental analysis.
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Figure 3. TEM images of (a) NPC800 at the 200 nm scale, (b) NPC800 at the 50 nm scale, (c) NPC900 at
the 200 nm scale and (d) NPC900 at the 50 nm scale.

Table 1. Surface and porous properties of the NPC samples.

Sample ID/IG
SBET

a

(m2/g)
Vtotal

b

(cm3/g)
Vmicro

c

(cm3/g) Pore Size (nm) CO2 uptake d

(mmol/g) (wt %)

NPC500 0.92 273 0.18 0.09 (50) 0.75, 1.4, 2.1~3 2.85 (12.54)
NPC550 0.98 287 0.20 0.091 (45) 0.75, 1.4, 2.1~3 1.20 (5.28)
NPC600 1.01 289 0.22 0.094 (42) 0.75, 1.4, 2.1~3 1.24 (5.46)
NPC700 1.07 296 0.22 0.10 (45) 0.89, 1.4, 2.1~3 1.71 (7.52)
NPC800 1.24 1192 0.92 0.39 (42) 0.75, 1.4, 2.1~3 4.71 (20.72)
NPC900 1.25 303 0.45 0.06 (13) 1.4, 5-10 2.51 (11.04)

a SBET surface area was examined in the P/P0 range of 0.01 to 0.1, which gave the best linearity. b Total pore volume
at P/P0 = 0.99. c Micropore volume (≤ 2 nm) and the values in asides are the percentage of the micropore volume
relative to the total pore volume (Vmicro/Vtotal). d CO2 uptake at 273 K and 1 bar and the values in asides are weight
percentage (wt%).

3.2. Porous Property and CO2 Uptake of NPC Materials

The textural properties of these NPC materials were evaluated by the N2 sorption analyzer.
The Figure 4a–c represented the N2 uptake isotherm and corresponding pore sizes of the NPC
materials. Table 1 represents the NPC material’s surface area, pore volume and pore size. The N2

sorption curves of the NPC materials possess type-I isotherms that steeply climb in the low-pressure
range (P/P0 = 0−0.10), suggesting that micropores were dominant [45]. In the high-pressure range
(P/P0 = 0.40−1.00), there were decent increases in the adsorption in all samples and a slight hysteresis
loop between the sorption curves, which revealed that mesopores were also present in the materials.
The surface area and total pore volume of the NPC500–700 materials is nearly equal to 273, 287, 289, 296
m2/g and 0.18, 0.20, 0.22, 0.22 cm3/g correspondingly (see Table 1).
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sorption isotherm at 273 K and 1 bar of NPC materials.

Whereas the BET surface area of the NPC800 material has 1192 m2/g and a total pore volume 0.92
cm3/g. The majority of the pores of NPC500–800 materials are 0.75, 1.4 nm retained from the pristine MOF
(Figure 4c), while there are mesopores around 2.1–3 nm, which specifies the occurrence of mesopores
in the NPC materials (Figures S8–S13). While the NPC900 materials show a lesser surface area (303
m2/g), pore volume (0.45 cm3/g) indicates framework shrinkage and fragmentation throughout the
high-temperature carbonization process. The total pore volume of NPC800 material has a better
percentage than the NPC500–700 and NPC900 materials. It is noted that the NPC800 material reached 42%
of micropores, whereas, the percentage of Vmicro/Vtotal decreased significantly to 13% in the NPC900

sample. CO2 sorption is investigated for the NPC materials at 273 K at 1 bar (Figure 4d). NPC800

demonstrated a higher CO2 capture of 4.71 mmol/g than NPC500 (2.85 mmol/g), NPC550 (1.20 mmol/g),
NPC600 (1.24 mmol/g), NPC700 (1.71 mmol/g) and NPC900 (2.51 mmol/g) at 273 K and 1 bar. Such a
micro-mesoporous structure of NPC800 material provides a fast diffusion of CO2 into the inner pores
material. NPC800 material showed CO2 capacity value closely matches/ greater than those of the
carbon-related materials (see Table S1).

3.3. Comparisons Voltammetric Behavior of Various SPCE/NPC Modified Electrode in FeCN

CV analysis was executed to study the electrochemical behavior of SPCE and SPCE/NPCT

modified electrodes in 5 mM FeCN under a potential window from –0.2 to +0.6 V. As can be seen
in Figure 5, bare SPCE exhibit a well-defined reversible redox peak at E◦ = +193 mV with a peak
to peak potential difference (∆Ep = Epa − Epc) value of 126 mV, which is the characteristic peak
for Fe2+/Fe3+ interconversion [46,47]. After SPCE/NPCT modification, relatively higher/lower redox
current responses were noticed with a ∆Ep value of about 561, 235, 125, 112, 137 and 140 mV,
while the relative current change (∆Ia) was recorded for SPCE/NPC500, SPCE/NPC550, SPCE/NPC600,
SPCE/NPC700, SPCE/NPC800, SPCE/NPC900 of about −99, −88, −29, −12, +83 and +113 µA, respectively.
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The observation is due to the semiconductor Zn moieties existing up to a carbonization temperature of
700 ◦C that results in a decrease in FeCN signal. In contrary, carbonization at 800 and 900 ◦C produced
relatively smaller Zn moieties with NPC and hence an increase in signal. This result suggests that the
semiconductor Zn content decreased with increasing carbonization temperature. In other words, the
FeCN current response is inversely proportional to the Zn content. The obtained results coincide with
the elemental analysis, ICP-MS and PXRD results.
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3.4. Detection of H2O2 at SPCE/NPCT

The surface area and porous defective sites have an important role in the electrochemical sensors.
Therefore, H2O2 sensing applicability was tested for SPCE/NPC500, SPCE/NPC550, SPCE/NPC600,
SPCE/NPC700, SPCE/NPC800, SPCE/NPC900, respectively. Figure 6 shows electro catalytic reduction
CVs of H2O2 at various SPCE/NPCT electrodes. CV measurements were done in 0.1 M, pH 7.4 PB
solution under the potential sweeping from 0 to −1.2 V at a scan rate of 100 mV s−1. During the
cathodic segment, H2O2 reduction peak [48] was noticed at ~−0.7 V for SPCE and for SPCE/NPCT the
same reduction peak was noticed with lower over potential (~−0.4 V). Among the various electrodes,
detection response are clearer and more explicit at SPCE/NPC600. These results evidently exposed that
the SPCE/NPC600 electrode exhibited better electrocatalytic H2O2 reduction than other electrodes.
Therefore, SPCE/NPC600 was chosen for further studies.
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3.5. Flow Injection Analysis (FIA) Detection of H2O2 at SPCE/NPC600

The above observation was further utilized for amperometric FIA analysis of H2O2. The H2O2

reduction current increased linearly with increasing concentration, in which H2O2 was electrochemically
reduced at −0.4 V by applying a potential, and thus yielded quantitative current responses
corresponding to the content of H2O2 (Figure 7). A wide linearity range between 100 µM and
10 mM with a R2 value of 0.9865 and a limit of detection (LOD) 27.5 µM were obtained. In order to
access the repeatability of a SPCE/NPC600 modified electrode, 12 repeated injections of 0.5 mM H2O2

were performed and a RSD value of 4.13% was obtained. Compared to a few other Zn based H2O2

sensors (Table S2), the present method exhibited a wide linear range along with a specific sensitivity of
108.7 µA mM−1 cm−2.
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4. Conclusions

Herein, we reported the synthesized NPC materials at various carbonization temperatures at a
constant time under a N2 atmosphere. NPC materials surface, morphology, chemical composition,
porous properties where characterized by PXRD, SEM, TEM, Raman spectroscopy, ICP-MS, elemental
analysis, and 77 K N2 sorption isotherms. Pristine MOF pore size was tuned to the porous carbon
material, such an ultramicropore, micropore and mesopore combined in unique material and interaction
between ZnO to NPC to give the pathway to synthesize the effective electrochemical property and
CO2 sorption materials. These combinations in NPC800 exhibited a higher CO2 uptake of 4.71 mmol
g−1 compare to other NPCT materials. NPC600 displayed a good electrochemical reduction towards
H2O2. Under optimal conditions, our sensor exhibited linearity that ranged from 0.1–10 mM, which
confirmed its sensitive response to H2O2 over a wide range of concentrations. The detection limit was
determined to be 27.5 µM (S/N = 3)

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/2/264/s1,
Figure S1. SEM image of (a) NPC500 and (b) NPC550. Figure S2. SEM image of NPC700 (a,b). Figure S3. SEM
images of NPC600 (a–d). Figure S4. SEM image of NPC800 (a–d). Figure S5. SEM image of NPC900 (a–d). Figure
S6. Raman spectra of the obtained NPC materails. (a) NPC500, (b) NPC550, (c) NPC600, (d) NPC700, (e) NPC800 and
(f) NPC900. Figure S7. Relative atom percentage at different carbonization temperature (600–900 ◦C). Figure S8.
NLDFT pore size distribution profile for NPC500. Figure S9. NLDFT pore size distribution profile for NPC550.
Figure S10. NLDFT pore size distribution profile for NPC600. Figure S11. NLDFT pore size distribution profile for
NPC700. Figure S12. NLDFT pore size distribution profile for NPC800. Figure S13. NLDFT pore size distribution
profile for NPC900. Table S1. Comparison of CO2 uptake with previously reported carbon related materials and
MOF-derived carbon materials at temperature 273K in 1 bar. Table S2. Comparison of Zn electrode-based H2O2
sensors with previously reported ZnO/carbon related materials.
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