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Abstract: The existence of multiple copies of genes is a well-known phenomenon. A gene family
is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on
a limited number of completely sequenced and annotated genomes it was found that size of gene
family and size of genome are positively correlated. Additionally, it was found that several atypical
microbes deviated from the observed general trend. In this study, we reexamined these associations
on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches.
We applied ranking methods in such a way that genomes with lower numbers of gene copies would
have lower rank. Until now only simple ranking methods were used; we applied the Kemeny
optimal aggregation approach as well. Regression and correlation analysis were utilized in order
to accurately quantify and characterize the relationships between measures of paralog indices and
genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found
that, in general, all paralog indexes positively correlate with an increase of genome size. As expected,
different groups of atypical prokaryotic genomes were found for different types of paralog quantities.
Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for
further research of evolution through gene duplication.

Keywords: number of paralogs; comparative genomics; combinatorial optimization; Mycoplasmas;
Halophiles; Orientia; Mycobacterium leprae; genome size

1. Introduction

The existence of significant gene redundancy—or, in other words, the existence of multiple copies
of protein-coding genes—has been known for a long time. The availability of numerous prokaryotic
complete genome sequences confirmed this and provided data to examine various possible factors
affecting attributes of gene-families [1–4]. There are several very fundamental questions related to the
origin and variability of gene copy number. In this study, we do not pretend to contribute anything
substantial to discussions around above-mentioned fundamental questions. Our work is specifically
concerned with association between number of gene copies and genome size. As a rule, we use the
term “gene copy” in the study; however, sometimes, we use the term “paralogs” as shorthand for
“members of a gene family” or, simply, gene copies. In literature, one can find different usages of the
term “paralog” [3,5]. Walter Fitch introduced this essential term [6] bearing in mind the following:
paralogs are homologous genes that have diverged from each other because of genetic duplication.
We hope that the occasional use of the term will not confuse the reader.

Strictly, a gene family is a set of several similar genes, formed by duplication of an original gene.
In this study, for all practical purposes, a gene family is a subset of protein-coding genes belonging both
to the same clusters of orthologous groups (COG) [7–10] and to the same genome. Our admittedly
oversimplified approach has obvious limitations, yet, statistically it works as well as other more
rigorous methods of paralog characterization.
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Gene-families (see our operational definition above) are of variable size and of varying degree of
similarity among their members. We believe that many aspects of gene-family’s attributes and origins
require further study. In this study, we concentrate on the gene-family’s attributes, rather than their
origins. Specifically, we do not try to distinguish effects of different types of gene duplication and
horizontal gene transfer (HGT), since the relative contribution of gene duplication and HGT to genome
expansion and variability is unknown [11–14].

One of the major associations related to gene-family size is that the latter correlates well with
a genome size [11,15,16]. Pushker et al. [4] determined these correlations for 127 eubacterial genomes,
updating the earlier work of King Jordan et al., which was done on a more limited dataset [3].

Gene duplication and HGT are the processes that can change the size of numerous gene-families,
which is manifested as a discriminating attribute even between different strains of microbes.
Expansion of gene-families represents an increased cost for a prokaryote. So, what is the evolutionary
driving force behind retention of a gene duplicate? A plausible answer to the question has been
proposed: the adaptation to altered environments. The duplicated genes may serve as genetic reservoir
for coping with fluctuating environmental conditions such as altered salinity or thermal stress [17].
For the gene copy to avoid deletion, it must represent a positive response to environmental stress, e.g.,
by just increasing gene dosage as a response to higher demand [11,18]. When the selective pressure is
removed, the paralogs may be lost again [17].

What is the role of phylogeny in the process? Pushker et al. [4] wrote: “The relative contribution
of these genes [paralogous genes] in each genome seems to be independent of phylogenetic affiliation”
referring in support of the statement to [3]. Actually, King Jordan et al., wrote: “ . . . the graph topology
recovered from the data on lineage-specific gene expansions reflects a combined effect of phylogenetic
relationships, common patterns of gene loss, and horizontal transfer” [3]. A big evolutionary question
is whether gene duplication is a random or regulated process. There is an additional question: if a new
paralog must evolve to provide a new selectable function, by which gradual evolutionary process
would the copy be preserved?

Our study has several goals: (i) to confirm that number of gene copies positively correlates with
genome size and to measure the correlation using the biggest available dataset of prokaryotic genomes;
(ii) to present quantitative descriptions of gene-family size genome size association; (iii) to use boxplot
analysis for outlier detection; and (iv) to find taxa that have atypical associations between gene-family
size and genome size, which make them good candidates for further genomic studies.

2. Methods

2.1. COGs Database and Input for Ranking

Here we used a very simple approach to consideration of paralogs: a gene family is a set of
protein-coding genes from the same genome and from the same cluster of orthologous groups. In other
words, we used the database of clusters of COGs [7–10] in order to prepare an input matrix of
numbers of gene copies, from which estimates of gene-family extension level (GFE level) are calculated.
Historically, information about completely sequenced and annotated prokaryotic genomes was
stored at ftp://ftp.ncbi.nih.gov/genomes/, including tables of protein features, called PTT files.
On 2 December 2015, the collection was moved to ftp://ftp.ncbi.nih.gov/genomes/archive/old_
refseq/Bacteria/. More than 2000 prokaryotic genomes belong to this frozen collection; however,
only part of the collection was COG-annotated. So, only those complete and COG-annotated genomes
that were included in NCBI dataset were considered. There are 1370 Bacterial and 114 Archaeal
complete and COG-annotated genomes in our dataset. Proteins of these genomes are distributed
among about 5600 COGs.

We created a combined matrix from this dataset of 1484 prokaryotic genomes. Rows and columns
correspond to genomes and COGs respectively. We indexed genomes, thus, the ith genome corresponds
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to the ith row of the matrix. Every COG has its NCBI index. Datum in entry (i,j) is the number of genes
from the ith genome belonging to the jth COG.

The goal was to rank genomes in such a way that genomes with lower number of paralogs would
have lower rank. Meaning of the expression “lower number of paralogs” is rather undefined and
can be interpreted in several ways. Even defining an optimal ranking is a nontrivial task. In our
review [19] we described several approaches to find a nearly optimal ranking using methods from the
field of combinatorial optimization. Until now, rank aggregation methods have not been applied to
the problem.

2.2. Kemeny Rank Aggregation Approach

The rank aggregation problem may be formulated as follows: given K partial rankings of N
fixed elements, the objective is to find a complete ranking that minimizes the sum of “distances”
between itself and each given partial ranking. So, in other words, the ranking aggregation problem
is to find a “consensus” ranking which reflects the characteristics of given rankings. In particular,
the optimal ranking is called Kemeny optimal rank aggregation approach [20,21] when the distance is
defined as a Kendall tau distance. Genome ranking assigns each genome to a rating vector

á
x which

most accurately minimizes the sum of tau distances:

xτ “ min
x

«

K
ÿ

k“1

dτ

´

á
x , rk

¯

ff

(1)

where K is a number of all COGs and where given a rating vector
á
x and an “individual”

ranking rk related to COG k, dτ is a Kendall tau distance between them. Kendall tau distance
between two permutations is the total number of pairs of elements for which the orders in
two permutations disagree.

Informally, the rank aggregation problem is to combine many different rank orderings on the
same set of objects in order to obtain the “consensus” ordering. In our case, one may say that every
COG proposes its own (partial) ordering of genomes, and finding the function xτ (solving Equation (1))
provides the “optimal” ordering. Rank aggregation has been studied in many disciplines, most
extensively in the context of social choice theory, where there is a rich literature dating from the latter
half of the eighteenth century. By the definition, a Kemeny optimal ranking xτ minimizes the total
number of pairwise disagreements within the sum (1) and maximizes sortedness.

Kemeny optimal aggregation has the property of eliminating noise from various different
ranking schemes. Furthermore, Kemeny optimal aggregations are essentially the only ones that
simultaneously satisfy natural and important properties of rank aggregation functions, called neutrality
and consistency in the social choice literature, and the so-called Condorcet property [22]. Indeed,
Kemeny optimal aggregations satisfy the extended Condorcet criterion.

It is known that finding a Kemeny optimal ranking is NP-hard [23,24]. This motivates the
problem of finding a ranking that approximately minimizes the number of disagreements with the
given input rankings. Given that Kemeny optimal aggregation is useful, but computationally hard,
how do we compute it? The sorting procedure, similar to a procedure described in [25], serves as
such approximation.

2.3. Ranking Methods

There are different methods to measure number of gene copies (we would call these GFE measures,
which are the estimates of a level of gene-family extensions). Genome GFE levels are of interest to us since
inter-species variation of genome GFE levels are strongly associated with genome ranking according
to number of paralogs. Ranking (or ordering) of objects may be performed in many different ways.
Finding an optimal ordering is a nontrivial task. In our review [19] we described several approaches to
find a nearly optimal ranking using methods from the field of combinatorial optimization. In this study,
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we apply four ranking methods: (i) according to an average number (ave); (ii) according to a fraction
of paralogous gene families (p.i.); (iii) according to the sorting procedure (rank); and (iv) an index of
multi-paralogous families (mp).

2.3.1. Average Ranking Method

If Ai,j is the value of jth descriptor of the ith object, the average ranking method works in this way:
for each object i the average of all its descriptor values are calculated, which determines the rank of
object i relative to other objects. All missing values are ignored. In our case, the objects are genomes,
the descriptors are COGs and the descriptor values are the quantities of gene copies.

avei “
1
K1

K
ÿ

j“1

Aij (2)

where K is a number of all COGs, Ai,j is a number of members in jth COG and ith genome, and K1 is
a number of gene families in ith genome (number of Ai,j’s greater than zero).

2.3.2. Paralog Index

The number of gene-families of size larger than one (non-singletons) divided by the total number
of gene-families is called “paralog index” (p.i.).

p.i.i “
P
K1

(3)

where P is an amount of non-singletons, and K1 is a number of gene families in ith genome.

2.3.3. Index of Multi-Paralogous Families

The number of gene-families of size larger than two divided by the number of gene-families with
sizes more than one is called “multi-paralog index” (mp).

mp “
P2

P
(4)

where P is an amount of non-singletons, and P2 is an amount of gene families with more than
two copies.

2.3.4. Sort Ranking

We used a procedure similar to a heuristic S-ranking procedure described in [25]. The procedure
was applied to an input matrix to rearrange the rows. While we associated a genome with a row
in the matrix, the criterion by which adjacent rows (genomes), g1 and g2, were swapped, is as
follows: comparing two rows, we considered only gene families present in both genomes, g1 and g2,
and counted which row in a pair has larger values more frequently. In other words, if a genome
associated with a row i has bigger gene-families than a genome associated with a row i + 1,
then these rows would be swapped. We note that this procedure would not necessarily lead to
the optimal ordering. Moreover, the resultant ranking depends on an initial ordering of the objects
(genomes). Therefore, we performed 10 runs of the S-ranking procedure starting from randomly chosen
orderings and calculated rating vectors

á
x (Equation (1)) for each run. After 10 runs, we calculated

an averaged rank and its standard deviation for each genome. The standard deviations appeared to be
small enough to justify the heuristic S-ranking procedure.
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2.4. Regression Analysis and Outlier Detection

The relationship between genome sizes and levels of genomic GFE was investigated via the
application of correlation and regression analysis. Correlation analysis estimates the statistical
significance of the association, whereas regression analysis provides an equation, which precisely
describes the relationship. Moreover, this description of the association by equation has predictive value.

In the model selection, two information-based criteria, Bayesian information criterion (BIC) and
Akaike information criterion (AIC), were employed to determine the superior model. These criteria
balance between goodness of fit and number of parameters in a combined fashion [26]. Minimal scores
of AIC determine the best model from a class of models, therefore when fitting a curve to a set of data
points, the model with the lowest AIC is chosen. Here, polynomial functions with degrees varying
from 1 to 10 were fitted to the data.

A standard method for detecting outliers is boxplot analysis [27]. The notion of a quartile is
an essential part of this method. Let us recall the definition of a quartile. Given a sorted list of numbers,
the median is a value which divides the data into two parts so that half of numbers are smaller than the
median and half are greater than the median. Similarly, quartiles Q1–Q4 split the data into four parts.
The second quartile, Q2, is the median [28].

In boxplot analysis the first, second (median) and third quartiles are calculated. From these
quantities the interquartile range (IQR), where IQR = Q3 ´ Q1, is computed, along with two additional
values: upper whisker = min(max(x), Q3 + 1.5 ˆ IQR) and lower whisker = max(min(x),
Q1 ´ 1.5 ˆ IQR). All these quantities are represented in a plot which consists of a box with added “T”
shaped lines above and below. The box represents the first and third quartile and the T shaped lines
are the upper and lower whiskers. The median is represented as a horizontal line within the box.

Outliers are defined as values outside the range defined by the whiskers. Here, we call these
outliers atypical genomes. Once a model is fitted to the data, atypical genomes are determined by
applying boxplot analysis on the residuals that is the difference between original (response) and the
fitted values. These atypical genomes are marked in the relevant figures as crosses. Analysis was
performed with R statistical computing environment [29].

2.5. Correlation between GFE Measures

When a set of variables are related, estimating the correlation between a pair of variables using
standard methods, e.g., Kendall’s tau, is uninformative since standard correlation methods ignore
the knowledge that the specific pair of variables are correlated with other variables. Partial and
semi-partial correlation methods are modifications of the standard methods, which take into account
correlations to other variables. Partial correlation is used when a pair of variables, say x and y, are both
correlated with a variable z. The coefficient expresses the residual correlation between variables x and
y after eliminating the correlations between variables x and y with variable z. Figures 1–4 show that all
measures of paralog indices are correlated with genome-size.

Therefore, we estimated the correlation between these indices by calculating Kendall’s tau (partial)
correlation coefficient using ppcor R package [30].

3. Results

3.1. Number of Paralogs is Correlated with Genome Size

Here we examine associations between gene-family size and genome size using different measures
of number of paralogs in order to analyze the universality of the trend and to highlight factors possibly
influencing deviations from the common trend. In addition, in some cases we examine associations
between gene-family size and number of genes.
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3.1.1. Percentage of Paralogous Gene Families is Correlated with Genome Size

We divided all protein-coding genes into two categories: singletons and appearing in more than
one copy, i.e., belonging to paralogous families. The number of paralogous families divided by the
total number of gene families is called “paralog index” (p.i.). Pushker et al. [4] applied a closely
related measure to 127 eubacterial genomes. (Pushker et al. used the following definitions: p.i. is
a percentage of paralogs in the genome (genes with at least one local BLAST hit using the cut-offs)
among all genes; ave is an average size of paralogous families (singletons are excluded).) Here,
we applied p.i. to 1484 prokaryotic genomes and show the results in Figure 1a, where paralog
index is plotted vs. genome sizes. Correlation between paralog index and genome size is clearly
seen and the values of correlation coefficients are as follows: Spearman correlation is equal to 0.896,
Pearson correlation is equal to 0.866 and Kendall rank correlation is equal to 0.723. We considered
the latter correlation coefficient as the most relevant when analyzing ranking results; therefore, it was
chosen for herein analysis. Actually, we see that the association of paralog index with genome size is
different for small genomes as compared with larger genomes. A “break point” is located somewhere
around 2.2 Mbp. The linear regression equation for small genomes is approximately y « 0.1x, while for
larger genomes it is y « 0.03x + 0.15. The paralog index for smaller genomes grows faster with
an increase of genome size compared to larger genomes. We can see that the data follow different linear
trends over different regions of the data, so one can use piecewise linear regression, modeling the
regression function in “pieces”. We preferred to apply the polynomial regression approach to all four
measures of “genome GFE”.

The presented polynomial regression lines were chosen based on AIC criterion (see Materials
and Methods). The regression polynomial function is 0.25 + 2.69x ´ 0.71x2 + 0.47x3 ´ 0.12x4. There are
outliers among both small and larger genomes. Interestingly, all outliers related to p.i. are located under
the regression line, which means that outliers have a smaller fraction of paralogous gene-families
than would be predicted by regression analysis. There are 16 outliers including M. leprae and 6 Vibrio
genomes (see Table 1).
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Table 1. Atypical genomes according to a paralog index measure 1. 

Rank p.i. Size (Mb) Atypical Genomes
34.8 0.072 1.516 Ehrlichia ruminantium Welgevonden 
38.3 0.094 2.127 Orientia tsutsugamushi Boryong 
106 0.120 2.279 Treponema pallidum SS14 
379 0.158 3.168 Prevotella melaninogenica ATCC25845 
207 0.166 3.268 Mycobacterium leprae Br4923 
208 0.166 3.268 Mycobacterium leprae TN 
611 0.178 3.286 Brucella abortus bv 19941 
769 0.198 3.939 Vibrio cholera M662 
763 0.194 4.033 Vibrio cholera O1 biovar ElTor N16961 
385 0.182 4.171 Sodalis glossinidius morsitans 
820 0.204 4.236 Vibrio cholera MJ1236 

Figure 1. (a) Dimension of fraction of paralogous families is plotted versus genome size. Input dataset
consists of 1484 prokaryotic genomes. Kendall rank correlation between p.i. and genome size is equal
to 0.72. Regression polynomial function is 0.25 + 2.69x ´ 0.71x2 + 0.47x3 ´ 0.12x4. Regression is found
to be statistically significant (F statistic = 1790.059, p-value < 2.2 ˆ 10´16). Green line shows the fitted
model and black lines delimit confidence interval at level of 0.95. Atypical genomes are determined by
boxplot analysis on the residuals (see text for details) and are marked by red crosses; (b) The same as
(a) showing only genomes of species from the Vibrio genus.
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There are 15 Vibrio genomes in our dataset. They are shown in Figure 1b. We can see that they all
make a cluster, while 6 Vibrio genomes are outliers and 9 genomes are “almost” outliers.

Table 1. Atypical genomes according to a paralog index measure 1.

Rank p.i. Size (Mb) Atypical Genomes

34.8 0.072 1.516 Ehrlichia ruminantium Welgevonden
38.3 0.094 2.127 Orientia tsutsugamushi Boryong
106 0.120 2.279 Treponema pallidum SS14
379 0.158 3.168 Prevotella melaninogenica ATCC25845
207 0.166 3.268 Mycobacterium leprae Br4923
208 0.166 3.268 Mycobacterium leprae TN
611 0.178 3.286 Brucella abortus bv 19941
769 0.198 3.939 Vibrio cholera M662
763 0.194 4.033 Vibrio cholera O1 biovar ElTor N16961
385 0.182 4.171 Sodalis glossinidius morsitans
820 0.204 4.236 Vibrio cholera MJ1236

1483 0.193 4.494 Candidatus Cloacamonas acidaminovorans Evry
787 0.211 4.532 Aliivibrio salmonicida LFI1238

1072 0.225 5.008 Vibrio vulnificus MO624O
1281 0.231 5.166 Vibrio parahaemolyticus RIMD2210633
1293 0.234 5.969 Vibrio harveyi ATCCBAA1116

1 p.i.—paralog index, Rank—is an averaged rank calculated for multiple runs of the S-ranking procedure.
Genomes are sorted by ascending size of genome for easier comparison with Figure 1.

3.1.2. Average Number of Paralogs Correlate with Genome Size

In Figure 2, average size of a gene family (Equation (2)) in a given genome is plotted vs. the size
of that genome. Correlation between average number of all gene copies in all COGs and genome size
is clearly seen with the Kendall rank correlation equal to 0.767. Interestingly, unlike in Figure 1, here in
Figure 2 we observe similar behavior between small and larger genomes. Ranking of objects based on
average value across all nonzero attributes is known to be an oversimplified ranking method. Figure 2
is very noisy, indeed. If for p.i. only 16 genomes were detected as outliers, which is about 1% of all
the examined genomes, for ave 67 genomes were detected as outliers, which is a larger fraction of the
analyzed genomes (~4.5%). Thus, only a partial list of the outliers is shown in Table 2. (The complete
list of the ave outliers is in the Supplementary materials Table S1.) There are individual representatives
of different taxa among these outliers, including Pirellula, Bordetella, Burkholderia, etc.; however,
we decided to show in Figure 2b only two highly represented groups, Mycobacterium genus and
Halobacteria class (see also, Table S1).

Some genomes of Mycobacterium genus and Halobacteria have smaller average gene-family
sizes than would be predicted by the regression polynomial function but, interestingly, all outliers of
these two groups appear above the regression line (Figure 2b). From Table 2 we can make another
interesting observation: all four Rhodococcus genomes are among the outliers. We hypothesize that an
explanation of an incidence of Rhodococcus occurring in the group of outliers would be the same as
for Mycobacteria, because Rhodococcus genus is closely related to Mycobacterium genus.

Table 2. Partial list of atypical genomes according to average number of paralogs 1.

Rank Ave Size (Mb) Atypical Genomes

246.8 1.521 0.853 Onion yellows phytoplasma OYM uid58015
. . .

1225.1 1.915 2.809 Halalkalicoccus jeotgali B3 uid50305
1233.4 1.936 2.821 Halogeometricum borinquense DSM
1235.3 2.008 2.848 Haloferax volcanii DS2 uid46845
1091.1 1.878 2.914 Halophilic archaeon DL31 uid72619
1240.8 2.067 3.420 Haloarcula marismortui ATCC 43049 uid57719
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Table 2. Cont.

Rank Ave Size (Mb) Atypical Genomes

1306.5 2.071 3.668 Halopiger xanaduensis SH6 uid68105
1260.9 2.036 3.752 Natrialba magadii ATCC 43099 uid46245
1419.5 2.378 3.889 Haloterrigena turkmenica DSM 5511

. . .
948.4 2.228 4.644 Mycobacterium JDM601 uid67369
1074.7 2.277 4.830 Mycobacterium aviumparatuberculosis K10
1211.8 2.293 5.067 Mycobacterium abscessus uid61613
1074.9 2.495 5.475 Mycobacterium avium 104 uid57693
1275.8 2.399 5.548 Mycobacterium gilvum Spyr1 uid61403
1303.6 2.491 5.620 Mycobacterium gilvum PYRGCK uid59421
1306.9 2.483 5.705 Mycobacterium MCS uid58465
1320.9 2.567 5.737 Mycobacterium KMS uid58491
1319.4 2.582 6.048 Mycobacterium JLS uid58489
1449.2 2.938 6.988 Mycobacterium smegmatis MC2155 uid57701

. . .
1477.8 3.463 10.237 Amycolatopsis mediterranei U32 uid50565

1 Rank—is an averaged rank calculated for multiple runs of the S-ranking procedure; ave—average number
of paralogs.
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these two groups appear above the regression line (Figure 2b). From Table 2 we can make another 
interesting observation: all four Rhodococcus genomes are among the outliers. We hypothesize that 

Figure 2. (a) Genomic average size of gene-families versus genome size. Kendall rank correlation
between average family size and genome size is equal to 0.77. Green line shows the fitted model and
black lines delimit confidence interval at level of 0.95. Atypical genomes are determined by boxplot
analysis on the residuals (see text for details) and are marked by red crosses. Regression is found to be
statistically significant (F statistic = 176.698, p-value < 2.2 ˆ 10 ´16). Regression polynomial function
is 1.66 + 13.92x + 0.82x2 + 0.3x3 ´ 0.47x4 ´ 0.02x5 + 0.87x6 + 0.41x7; (b) Showing genomes of the
species from the Mycobacterium genus (black rectangles and rectangles with crosses mark atypical
genomes) and genomes of the species from the Halobacteria class (red circles and circles with crosses
mark atypical genomes).

3.1.3. Ranking of Prokaryotic Genomes Based on Gene-Family Size Confirms Correlation with
Genome Size

As we described in Materials and Methods, we used a sorting procedure to rank genomes
according to their family sizes. In Figure 3, genome rank is plotted vs. size of that genome. This ranking
method results in genome ordering close to Kemeny optimal [31]. Correlation between average number
of all gene copies in all COGs and genome size is clearly seen for Kendall rank correlation (0.78).
There are 46 outliers of the regression model constructed for rank measure. They are placed in
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Supplementary Materials Table S2. Twenty-four out of these 46 outliers belong to the Archaea kingdom;
half of these 24 Archaea belong to Halobacteria class and 5 of the remaining 12 Archaea are from
Crenarchaeota. A partial list of the outliers is shown in Table 3.

We recognized some genomes of Mycobacterium genus as outliers of the regression model
constructed for ave measure. None of them appear in Table S2. However, Mycobacterium leprae,
which was not among outliers presented in Table S1, appears in Table 1 and Table S2. Halobacteria
were among ave measure outliers in Table S1, and there are 12 Halobacteria in Table S2 as well. We show
Halobacteria data in Figure 3b.Life 2016, 6, 30 9 of 18 
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Figure 3. (a) Genome ranking versus genome size for the same genomes. Ranking of prokaryotic
genomes is performed applying a sorting procedure to the complete input matrix. Kendall rank
correlation between a genome rank and its genome size is equal to 0.78. Green line shows the fitted
model and black lines delimit confidence interval at level of 0.95. Atypical genomes are determined by
boxplot analysis on the residuals (see text for details) and are marked by red crosses. Regression is
found to be statistically significant (F statistic = 1672.68, p-value < 2.2 ˆ 10´16). Regression polynomial
function is 741.36 + 14769.57x ´ 3783.31x2 ´ 641.64x3 + 880.83x4 ´ 344.26x5 + 277.53x6; (b) Shows
(magnifies) the genomes of the species from the Halobacteria class.

Table 3. Partial list of atypical genomes according to S-Rank.

Rank Size (Mb) Atypical Genomes

622.8 1.591 Candidatus Korarchaeum cryptofilum OPF8
. . .

803.4 2.001 Halobacterium salinarum R1
811.5 2.014 Halobacterium NRC1

1225.1 2.809 Halalkalicoccus jeotgali B3
1233.4 2.821 Halogeometricum borinquense DSM11551
1235.3 2.848 Haloferax volcanii DS2
1091.1 2.914 Halophilic archaeon DL31
1186.8 3.261 Halorubrumlacus profundi ATCC 49239
1240.8 3.420 Haloarcula marismortui ATCC 43049
1235.0 3.484 Haloarcula hispanica ATCC 33960
1306.5 3.668 Halopiger xanaduensis SH6
1260.9 3.752 Natrialba magadii ATCC 43099
1419.5 3.889 Haloterrigena turkmenica DSM 5511

. . .
1057.6 7.750 Trichodesmium erythraeum IMS101
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3.2. Fraction of Larger Gene-Families

In parallel to a paralog index (Figure 1), we calculated another simple measure of GFE. It is
relative frequency of larger gene families:

mp “
number of gene families with more than two gene copies

total number of non ´ singletons

In Figure 4, mp fraction is plotted vs. genome size. Interestingly, there is a striking shape-similarity
between Figures 1 and 4. In Figure 4, we see that association of mp with genome size is different
for small genomes as compared with larger genomes (like it was for paralog index—see Figure 1).
In the case of mp, a “break point” is located somewhere around 2.3 Mbp, similar to p.i. Small genomes
produce a smear cloud of points with multiple outliers, while for larger genomes a linear regression
line y « 0.02x + 0.32. The regression polynomial function is 0.4 + 3.13x ´ 1.17x2 + 0.81x3 ´ 0.44x4

+ 0.23x5 ´ 0.01x6. There are outliers among both small and larger genomes but mainly among
the smaller ones. Among larger genomes there are a few genomes of Neisseria and Sulfolobus.
Neisseria outliers have a smaller fraction of multiple paralogous gene families than would be predicted
by regression analysis, while Sulfolobus show the opposite effect. Altogether, there are 29 outliers
including 6 Phytoplasmas and 8 Mycoplasmas (see Table 4 and Table S4). Mycoplasmas are shown
in Figure 4b. It seems that there is no correlation between genome size and mp for Mycoplasmas.
For some of them, mp indices may be predicted pretty well by the regression polynomial function,
and some of them are outliers. The latter are listed in Table 4.

Table 4. List of atypical genomes according to mp 1.

Rank mp Size (Mb) Atypical Genomes

31.2 0.32 0.580 Mycoplasma genitalium G37
166.6 0.34 0.602 Candidatus Phytoplasma Mali
21.9 0.00 0.706 Candidatus Blochmannia floridanus
246.7 0.49 0.707 Aster yellows witches broom phytoplasma AYWB
11.5 0.04 0.792 Candidatus Blochmannia pennsylvanicus BPEN
183.6 0.31 0.799 Mycoplasma synoviae 53
31.8 0.39 0.816 Mycoplasma pneumoniae M129
246.8 0.49 0.853 Onion yellows phytoplasma OY M
167.2 0.48 0.880 Candidatus Phytoplasma australiense
192.8 0.37 0.948 Mycoplasma bovis Hubei 1
199.5 0.41 0.964 Mycoplasma pulmonis UAB CTIP
191.8 0.34 0.978 Mycoplasma fermentans JER
297.6 0.37 1.007 Mycoplasma agalactiae
186.2 0.45 1.119 Mycoplasma fermentans M64
77.1 0.09 1.161 Candidatus Ruthia magnifica Cm Calyptogena magnifica

420.9 0.45 1.317 Thermosphaera aggregans DSM 11486
411.0 0.48 1.580 Staphylothermus hellenicus DSM 12710
358.7 0.44 1.667 Gardnerella vaginalis ATCC 14019
481.4 0.46 1.796 Streptococcus thermophilus CNRZ1066
196.2 0.20 1.887 Haemophilus influenzae PittGG
156.9 0.21 2.145 Neisseria meningitidis alpha14
158.0 0.22 2.153 Neisseria meningitidis 053442
154.3 0.23 2.154 Neisseria gonorrhoeae FA 1090
160.0 0.22 2.184 Neisseria meningitidis Z2491
166.2 0.24 2.272 Neisseria meningitidis MC58
105.6 0.24 2.279 Treponema pallidum SS14
859.3 0.54 2.702 Sulfolobus islandicus Y G 57 14

1131.5 0.55 2.992 Sulfolobus solfataricus P2
1483.0 0.33 4.494 Candidatus Cloacamonas acidaminovorans Evry

1 Mp = <number of gene-families with more than two gene copies>/<total number of non-singletons>.
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4. Discussion

4.1. Number of Gene Copies Is Correlated with Genome Size

Correlation between gene-family size measured by paralog index and number of genes was
discovered many years ago [2]. Huynen and van Nimwegen showed that an increase in the number of
genes leads not only to an increase in the number of gene copies, but also to a relative increase of the
number of large gene families over the number of small families. They obtained these results comparing
complete genomes of six bacteria (E. coli, H. influenzae, H. pylori, M. genitalium, M. pneumoniae,
and Synechocystis sp. PCC6803) and two Archaea (M. jannaschii and M. thermoautotrophicum).
Huynen and van Nimwegen wrote [2] “as more genomes become available; it will be possible to
analyze how general the observed trend is”.

In early 2000s, the following rule was stated several times on growing number of sequenced
prokaryotic genomes: The number of paralogous genes and families are positively correlated with
an increase in genome size [3,4,11,15,16]. Pushker et al. stated that “the relative contribution of
paralogous genes in each genome seems to be independent of phylogenetic affiliation and, for a limited
dataset, appears to depend on genome size” [4].

Our calculations, performed on much larger dataset, confirmed the above-mentioned rules,
in general. In all mentioned above publications from 2000s, only the simplest ranking methods were
applied to the problem. We decided to apply Kemeny optimal aggregation, which is one of the
most adequate ranking methods [20,21]. This method produced ordering of genomes different from
the simpler methods; however, all measures highly correlate. The correlation levels are moderate,
yet highly significant (p-values < 2.2 ˆ 10´16), therefore it is likely that these different measures
highlight the same underlying core phenomenon. This phenomenon is so strong that even the
averaging method, often giving untruthful results, is rather comparable with the valid Kemeny
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method, in this case. Regarding atypical genomes, which are method-dependent ones, we propose to
put more trust into the results produced by the latter technique (Figure 3, Table 3).

4.2. Atypical Genomes

We detected some genomes as outliers via the application of a boxplot analysis. We referred to
these genomes as atypical in a sense that they are “far” from the trend found in Figures 1–4. They were
marked by red crosses and are listed in their respective complete and partial lists of atypical genomes
(Tables 1–3, 5 and 7, Tables S1 and S4). Notably, certain taxa are omnipresent or, in other words, they are
atypical with respect to all three measures of GFE (e.g., Candidatus Cloacamonas acidaminovorans
Evry, Pirellula and Orientia). Other taxa are almost omnipresent (e.g., Mycobacteriaceae family,
Halobacteria class). The Mycoplasmas are the predominant family with regard to mp index
(Table 4). Likewise, genomes of the Neisseria family are atypical, also with respect to mp index.
Taxonomy statistics of outliers (i.e., species combined in taxa with the corresponding number of species
within each taxon) were calculated (see Table S4).

Let us compare our outliers with the outliers found by our predecessors. Huynen and
van Nimwegen [2] found an outlier studying a rather small sample of eight prokaryotes: M. pneumoniae,
showed a relatively high frequency of large gene families. Pushker et al. [4] identified several genomes
with atypical mp values: Mycoplasma pneumoniae, Mycoplasma penetrans, and Mycoplasma gallisepticum.
Our results also show that Mycoplasmataceae is worth a separate discussion, which is below.
Pushker et al. [4] also mentioned the following outliers: Mycobacterium leprae, Pirellula sp.,
Shigella flexneri, Bordetella pertusis, B. parapertussis, and B. bronchiseptica. Our results only partly
confirmed these observations. M. leprae is discussed below in a separate subsection devoted to
Mycobacteriaceae family. Likewise, a separate subsection is devoted to Pirellula. Shigella flexneri is not
an outlier (Tables S3 and S4). Yet two members of the Bordetella species were found as outliers for the
average number of gene copies, B. bronchiseptica RB50 and B. petrii (Table S1).

4.2.1. Mycoplasmas

In Table 5, we show gene-family sizes of Mycoplasmataceae. In column titled 1, we present number
of singletons, in columns 2 and 3, amounts of gene-families of two and three copies, correspondingly.
Mycoplasmas have small genomes with amounts of COG-annotated proteins (NC) varying from
~250 to 700 proteins. Fraction of singletons “1”/NC is more or less invariant at about 70%–80%.
mp measures relative frequency of gene-families with more than two copies per family: mp = <number
of gene-families with more than two gene copies>/<total number of non-singletons>. For Mycoplasma
fermentans M64, for example, mp is equal to 0.45, while an expected value is about 0.26. There are
383 ingletons, 35 gene families composed of two copies each, 11 gene families of 3 gene copies,
and 18 families with more than three gene copies. mp = (29 = 11 + 18)/(64 = 35 + 11 + 18). Total number
of non-singletons is equal to 64 and this is expected number of paralog families (M. fermentans is not
an outlier for the measures p.i., ave and rank), while 29 is a surprisingly high number of gene-families
with more than two gene copies. We do not have an answer to the question “Why M. hyopneumoniae
has a low mp index while M. bovis Hubei has a high one” (study in progress).

Pushker et al. [4] estimated Mycoplasma gallisepticum as an atypical genome according to an average
number of gene copies but it is not in our list of outliers (Table S1). Our calculations of ave show that
M. gallisepticum has an average number of gene copies equal to 1.2, which is close to an expected value.
Probably, differences both in calculations of an average number of gene copies and of outliers result
in dissimilar outcomes. Pushker et al. [4] also identified two Mycoplasmas with atypical mp values:
Mycoplasma pneumoniae and Mycoplasma penetrans. These two genomes appear in Table 4 as well.
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Table 5. Distribution of gene-family sizes of Mycoplasmataceae 1.

Genome Name Np NO NC 1 2 3 >3 mp

M. agalactiae PG2 742 267 475 335 42 10 4 14/56
M. agalactiae uid46679 813 291 522 332 42 15 10 25/67
M. arthritidis 158L3 1 631 214 417 347 20 3 3 6/26

M. bovis Hubei 1 801 279 522 346 37 11 11 22/59
M. bovis PG45 765 239 526 354 43 9 7 16/59

M. capricolum ATCC 27343 812 236 576 390 58 10 7 17/65
M. conjunctivae 692 272 420 323 39 0 4 4/43

M. crocodyli MP145 689 199 490 380 37 6 4 10/47
M. fermentans JER 797 247 550 388 38 8 12 20/58
M. fermentans M64 1049 459 590 383 35 11 18 29/64

M. gallisepticum R low 763 274 489 357 43 4 6 10/53
M. genitalium G37 475 91 384 330 15 4 3 7/22

M. haemofelis Langford 1 1545 1258 287 230 16 2 1 3/19
M. hominis ATCC 23114 523 145 378 315 21 1 4 5/26
M. hyopneumoniae 232 691 254 437 331 39 1 3 4/43

M. hyopneumoniae 7448 657 214 443 333 38 1 4 5/43
M. hyopneumoniae J 657 186 471 344 44 2 4 6/50
M. hyorhinis HUB 1 658 194 464 339 36 7 2 9/45

M. leachii PG50 882 316 566 398 50 9 8 17/67
M. mobile 163K 633 183 450 370 26 6 2 8/34

M. mycoides capri LC 95010 922 303 619 400 55 6 14 20/75
M. mycoides SC PG1 1017 325 692 397 55 15 16 31/86
M. penetrans HF 2 1037 379 658 447 54 10 14 30/84

M. pneumoniae M129 648 203 445 359 19 6 6 12/31
M. pulmonis UAB CTIP 782 222 560 387 36 8 17 25/61

M. putrefaciens KS1 650 176 474 379 34 4 3 7/41
M. suis Illinois 845 592 253 209 14 0 2 2/16
M. suis KI3806 794 553 241 212 11 1 1 2/13
M. synoviae 53 659 180 479 357 33 10 5 15/48

U. parvum serovar 3 ATCC 27815 609 196 413 346 25 1 2 3/28
U. parvum serovar 3 ATCC 700970 614 173 441 360 29 3 2 5/34

U. urealyticum serovar 10 ATCC 33699 646 230 416 342 25 3 2 5/30
1 NP—number of proteins; NO—number of ORFans; NC—number of COG-annotated proteins;
M.—Mycoplasma; U.—Ureaplasma.

4.2.2. Mycobacterium

General considerations suggested that large genetic diversity should exist among M. leprae
strains, however, comparative genomics revealed that genetic variation was found to be exceptionally
rare [32,33]. All indices for two strains of M. leprae are practically identical, so, we would use a term
“species” instead of discussing the two genomes separately. M. leprae is an outlier in two categories:
p.i. is equal to 0.17, while the expected value is about 0.25; rank is equal to 207, while the expected
value is about 740; ave is equal to 1.32, which is not so close to expected 1.55, but it is only
an “almost outlier”. Interestingly, in the two categories in which M. leprae is an outlier, all other
members of this genus are absent. In the category ave, 10 non-tuberculosis Mycobacteria are outliers
(Figure 2b) but ave is the noisiest and less reliable index of GFE; thus we would consider only M. leprae
as a paralog-atypical species. In the context of mycobacterial species, Mycobacterium leprae has the
smallest genome as a result of massive reductive evolution. The differences in the total number of
protein-coding genes and number having homolog genes between M. leprae and all other Mycobacteria
are striking (Table S5). Actually, all Mycobacteria but M. leprae have rather similar genomic characters.
There were several attempts to explain this well-known observation (see [34] and references therein),
but still the very special reduced evolution of M. leprae requires additional studies to give a plausible
explanation. Despite over a century of research we still lack a clear understanding of the pathogenesis
and physiology of this pathogen. Even basic epidemiologic and genomic questions are yet to be
resolved completely. Reasonable speculation would say that reductive evolution results in low level
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of paralogization; but evolution has worked on M. leprae by controversial means: low number of
gene copies from one side and having the largest proportion of pseudogenes in comparison to other
prokaryotes from the other side [32]. About 50% of the M. leprae genome is seemingly devoid of
function [32,35]. Comparative genomics of M. leprae is a challenging task.

4.2.3. Halophiles

Sanchez-Perez et al. [36] proposed a very reasonable hypothesis of environmental adaptation.
The idea is that the original and paralog (i.e., copy) gene share the same function, yet,
the paralog gene is expressed under abnormal environmental conditions (They named these
kinds of paralogs ecoparalogs). One example is the hyperhalophilic bacterium Salinibacter ruber.
This bacterium has halophilic proteins that have their optimal activity and stability at high salinity.
Sanchez-Perez et al. also found examples of ecoparalogs in other prokaryotes. We are investigating
whether ecoparalogization is the main reason for majority of Halophiles having enlarged gene families
(work in progress). Comparative genomics is the right instrument for this kind of analysis.

4.2.4. Pirellula

A marine bacterium Pirellula appears as an outlier both for ave and S-rank measures (Tables S1
and S2). We are not the first to recognize this species as an outlier. Already Pushker et al.
have mentioned, “Pirellula has an enormous genome with a surprisingly low relative number of
paralogs” [4]. An appearance of Pirellula in Tables S1 and S2 and absence from Table 1 is due to
an overrepresentation of small gene families and the absence of large ones. Pirellula is a marine
bacterium and Pushker et al. suggested that the reason for the reduced gene-family size might be
the homogeneity of the marine environment. For instance, Pirellula has a greatly reduced number of
transcriptional regulators [37]. There are four genomes even bigger than Pirellula with “a surprisingly
low relative number of paralogs”. Trichodesmium, also called sea sawdust, are found in tropical and
subtropical ocean waters. Hahella chejuensis is a marine microbe. Haliangium ochraceum is a species
of moderately halophilic Myxobacteria. Myxococcus fulvus is a species from the Myxococcaceae family.
From these five genomes (Table 6) Pirellula and Trichodesmium are rank-outliers and, as such, appear in
Table S2 as well. Both are marine bacteria.

Table 6. Partial list of atypical genomes according to average number of gene copies.

Rank Ave Size (Mb) Atypical Genomes

861 1.827 6.196 Pirellula staleyi DSM_6068_uid43209
1341 2.024 7.215 Hahella chejuensis KCTC_2396_uid58483
1058 1.961 7.750 Trichodesmium erythraeum IMS101_uid57925
1411 2.370 9.004 Myxococcus fulvus HW_1_uid68443
1319 2.349 9.446 Haliangium ochraceum DSM_14365_uid41425

The idea that “Gene duplications in prokaryotes can be associated with environmental
adaptation” [38] looks very reasonable. In Halophiles, environmental adaptation results in expanded
gene-families, while in big marine bacteria it results in reduced gene-family size.

4.2.5. Orientia tsutsugamushi

Orientia tsutsugamushi (OT), an obligate intracellular bacterium belonging to the family
Rickettsiaceae of the subdivision alpha-Proteobacteria, is the causative agent of scrub typhus,
or Tsutsugamushi disease. The complete genome sequences of two OT strains were obtained and
COG-annotated [39,40]. Both strains have a single circular chromosome and possess no plasmid.
The chromosomes are very similar in size (2,008,987 bp in Ikeda and 2,127,051 bp in Boryong) with
almost identical average G + C contents (30.5% in both strains). The numbers of rRNA and tRNA genes
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are identical. The numbers of protein-coding genes and pseudogenes, the coding content, and the
repeat content were identified by Nakayama et al. [41].

OT appears as an outlier in all three paralog measures. Orientia tsutsugamushi Ikeda has
a surprisingly high average number of gene copies (1.83 instead of expected 1.36). Orientia tsutsugamushi
Boryong has a surprisingly low paralog index (0.09 instead of expected 0.2) and low rank (38 vs. 480)
(Table S6, Figures 1–3). Genomic analysis of the two OT strains revealed that extensive reductive
genome evolution as well as explosive and comprehensive amplification of repetitive sequences have
occurred in OT. In both strains, repetitive sequences occupy nearly half the genome [40,41].

Nakayama et al. [40,41] defined OT paralogs as the genes whose products exhibited at least
90% amino acid sequence identity over 60% of the alignment length. According to this definition,
they found 1196 repeated genes that were classified into 85 OT paralogous gene families. Extensive gene
decay has taken place in many Boryong-repeated genes as in those of Ikeda. We used a rather different
gene copy definition and our results are 772 paralogous genes that were classified into 115 OT
paralogous gene families.

Analyzing Table S6 we can conclude that all parameters excluding genome size are pretty
similar among all Rickettsiaceae. Our hypothesis regarding OT being an outlier is that in the
case of OT, genome size is not a relevant genomic characteristic because of very large number of
repetitive sequences.

4.3. Ranking Methods

The objective of the study was to find associations between characteristics of genomic gene family
sizes and other genomic attributes, like genome size. We believe that the ranking of genomes according
to a gene family size, followed by the calculation of coefficients of association between genome rank
and genome property, is a reasonable approach in revealing hidden driving factors. The goal is to
rank genomes in a way such that genomes with lower number of gene copies would have lower rank.
In this study we used different methods to rank genomes (see Methods): according to (i) an average
number (ave); (ii) a fraction of paralogous gene families size (p.i.); (iii) the sorting procedure (rank);
and (iv) a fraction of multi-paralogous families (mp).

In order to compare different methods of ranking, Kendall tau rank correlation coefficients
were calculated. Since all measurements of “GFE levels” of a genome are correlated with a genome
size (Figures 1–4), the partial correlation was calculated (that is controlling for effects of genome size
on the estimated correlations). The coefficients are shown in Table 7.

Table 7. Pairwise partial Kendall correlation between all ranking methods 1.

p.i. Ave Rank mp Genome Size

p.i. 0.57 0.57 0.46 0.72
ave 0.57 0.61 0.52 0.77

rank 0.57 0.61 0.38 0.78
mp 0.46 0.52 0.38 0.66

1 All correlations were controlled for genome size and are statistically significant (p-value < 2.2 ˆ 10´16).

Should these three indexes inevitably correlate? Not necessarily. In Table 8 we show an example
of imaginary data to illustrate different estimates of the levels of paralogization.

Genome sizes sort out the genomes in the order of B, A, C; p.i. – A, C, B; ave – B, C, A; rank – A,
B, C; mp – B, C, A. p.i., ave and rank characterize differently the distribution of gene-family sizes
in the three genomes A, B, C. In our fictitious example none of the indices gives the order B, A, C,
the order of genome sizes. We would not say that only one of the indices is correct but, instead,
we propose to consider all three estimates of GFE. Each estimate produces its own set of outliers,
which we discussed above, and only several genomes belong to intersection of outliers’ sets: Candidatus
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Cloacamonas acidaminovorans Evry, Pirellula and Orientia are omnipresent; Mycobacterium leprae and
many Halobacteria appear in two subsets.

Table 8. The indices of GFE of fictional data.

Genome ORFans
COGs p.i. Ave Rank Mp

1 2 3 4 5

A 10 1 1 1 1 16 0.2 4 1 1.0
B 8 1 1 2 2 4 0.6 2 2 0.3
C 20 1 1 1 6 6 0.4 3 3 0.7

5. Conclusions

In earlier works it was found that number of paralogs and size of genome are positively correlated.
This result was achieved using the simplest methods of estimation of genomic number of paralogs.
In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic
genomes and using several ranking approaches including the Kemeny optimal aggregation approach.
We found that for all measures of GFE associations between a measure and a genome size follow
different approximately linear trends over different genome sizes. Until now, only linear regression
models were applied to the model of gene-family size–genome size association. We preferred to apply
the polynomial regression approach to all four measures of “genome GFE”. The polynomial regression
lines were chosen based on AIC criterion. For more rigorous description, boxplot analysis was used
for outlier detection.

We confirmed that number of gene copies positively correlates with an increase of genome size.
As expected, different groups of atypical prokaryotic genomes were found for different types of
gene-family-size quantities. We confirmed that M. leprae has a substantially lower number of gene
copies than would be expected from its genome size. We found that the majority of the members of
Mycoplasmataceae possess a surprisingly high number of gene-families with more than two gene
copies. We obtained sound reasoning for the speculation that in Halophiles, environmental adaptation
results in expanded gene families, while in big marine bacteria it results in the reduced gene family size.

All the above-mentioned results were obtained by applying different measures of genomic number
of gene copies. We propose to use all four estimates of GFE because they may mirror different aspects of
GFE. Kendall tau partial rank correlation coefficients were calculated between different measurements
of “GFE levels”. They are all pairwise correlated and separately correlate with genome size, and all
these correlations were found to be statically significant.

In summary: we not only demonstrated that previously found associations between genome size
and characteristics of gene-families were corroborated on a considerably larger dataset of prokaryotic
genomes; we also utilized additional ranking methods for more accurate descriptions of these
associations and highlighted atypical microbes and whole taxonomic groups. Our results show
that examination of gene-duplication history in these taxa may provide especially valuable insights
into the underlying evolutionary processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-1729/6/3/30/s1:
Complete table of results, Table S1: Complete list of atypical genomes according to average number of gene
copies, Table S2: Complete list of atypical genomes according to S-Rank, Table S3: GFE indices of Shigellas,
Table S4: Taxonomy of outliers, Table S5: Distribution of gene-family sizes of Mycobacteriaceae, Table S6:
Orientia tsutsugamushi and Rickettsia.
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Abbreviations

The following abbreviations are used in this manuscript:

COG Cluster of Orthologous Groups of proteins
HGT Horizontal Gene Transfer
GFE gene-family extension
Mbp millions of base pairs
OT Orientia tsutsugamushi
p.i. the number of protein-coding gene families having more than one copy divided by the total number

of COG-annotated protein-coding gene families
ave average size of protein-coding gene families, including singletons
mp the number of protein-coding gene families having more than two copies divided by the number of

protein-coding gene families having more than one copy
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