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Summary
Background Although air pollution has been frequently linked to a range of cardiometabolic diseases, its association
with the onset, progression, and prognosis of cardiometabolic multimorbidity (CMM) has never been studied.

Methods We conducted this prospective analysis based on the UK Biobank cohort. CMM was defined as the coexis-
tence of at least two cardiometabolic diseases, including type 2 diabetes, ischemic heart disease and stroke. Multi-
state model was used to analyze the association between air pollution and the trajectory of CMM.

Findings 410,494 middle- and old-age participants were included. During a median follow-up of 12.0 years, 56,877
participants developed first cardiometabolic disease (FCMD), 8616 developed CMM, and 22,423 died. The risks of
transitions from baseline to FCMD, from FCMD to CMM, and transitions from baseline and FCMD to all-cause
mortality increased by 3% (2%, 5%), 3% (1%, 6%), 5% (2%, 7%) and 2% (�1%, 6%), respectively, per interquartile
range increase of fine particulate matter. The corresponding increases were 3% (2%, 5%), 6% (3%, 9%), 4% (2%,
7%) and 6% (2%, 10%), respectively, for nitrogen dioxide. Older participants, males, and individuals with excessive
alcohol drinking and lower economic levels were more likely to experience these risks.

Interpretation Air pollution exposures could play important roles in almost all transition phases of CMM develop-
ment. Our results highlight clean air as an upstream approach to mitigate both initiation and progression of CMM,
especially in vulnerable populations.
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Introduction
Cardiometabolic multimorbidity (CMM) refers to the
co-presence of at least two cardiometabolic diseases
(CMDs), typically including type 2 diabetes (T2D),
ischemic heart disease (IHD), and stroke.1�3 Compared
to single CMDs occurring on their own, combination of
multiple CMDs has been found to be associated with
multiplicative increase in mortality risk and a substan-
tial reduction in life expectancy.3 What makes this issue
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even worse is the aging of population. In 2019, there
were 703 million persons older than 65 years over the
world and by 2050, the number of elders is projected to
double to 1.5 billion.4 CMM is an issue of great public
concern in an era of aging. It was reported that the prev-
alence of CMM was several-fold higher among popula-
tion aged 60 years and older than population aged
40 years and older.5 Thus, the identification of potential
risk factors of CMM is of great importance to alleviate
the health burden and promote healthy aging. Several
studies suggested that obesity and lack of physical activ-
ity were important risk factors of developing CMM.1,6

However, very few studies have considered the impacts
of environmental exposures such as ambient air pollu-
tion on the development of CMM.
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Research in context

Evidence before this study

Cardiometabolic multimorbidity (CMM), which refers to
the co-presence of at least two cardiometabolic dis-
eases (CMDs) typically including diabetes, ischemic
heart disease, and stroke, has become a rising public
health challenge in an era of aging. Air pollution has
been frequently linked to the incidence or mortality for
a range of single CMDs. We searched PubMed and Goo-
gle Scholar for studies on the association between air
pollution and CMM, published up to August 31, 2022,
using the terms “air pollution”, “fine particulate matter”,
“fine particles”, “PM2.5”, “nitrogen dioxide”, “oxynitride”
and “NO2 in combination with “cardiometabolic multi-
morbidity”, “multimorbidity”, “comorbidity”, “cardiome-
tabolic disease”, “cardiovascular diseases”, “diabetes”
and “stroke”. We found that most previous studies have
focused on single CMDs when investigating the adverse
effects of air pollution. Only one study in China has
assessed the association between PM2.5 and CMM, report-
ing an increased risk of CMM associated with PM2.5 expo-
sure (HR, 95% CI: 1.03, 1.03�1.04). The relationship
between air pollution and CMM was largely unknown.
Moreover, no studies have evaluated the role of air pollu-
tion in the onset, progression and prognosis of CMM.

Added value of this study

The present study was based on 410,494 middle- and
old-age participants from the UK Biobank, a large, pro-
spective cohort. We explore the impacts of air pollution
on the trajectory of CMM. We found that air pollution
exposure increased the risk of almost all phases of CMM
progression, including developing first cardiometabolic
disease (FCMD), transition from FCMD to CMM, and
death from baseline and FCMD. The effects of air pollu-
tants on disease-specific transitions differed by sub-
types of FCMD (diabetes, ischemic heart disease, and
stroke). In addition, older participants, males, and indi-
viduals with excessive alcohol drinking and lower eco-
nomic levels were more likely to experience these risks.

Implications of all the available evidence

Our study demonstrates the role of long-term exposure
to air pollution in almost all transition phases of CMM
progression. Our findings suggested that clean air
might be helpful for the primary and secondary preven-
tion of CMM and for reducing the societal burden of
aging. Taking CMM into consideration when assessing
air pollution-related disease burden and developing
health protection strategies is highly proposed in the
future. The chronic disease state may be monitored
more frequently for participants living in polluted areas.
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Ambient air pollution has been recognized as the
fourth leading risk factor and the largest environmental
risk factor of all-cause mortality globally.7 As two of the
most important air pollutants, particulate matter with
an aerodynamic diameter � 2.5 µm (PM2.5) and nitro-
gen dioxide (NO2), have been linked to increased mor-
bidity and mortality of single CMDs in numerous
epidemiological studies.8,9 However, their potential
effects on the development of CMM are largely
unknown. Furthermore, air pollution may theoretically
play roles in all key stages of CMM including transitions
from a disease-free state to single CMD, subsequently to
CMM, and finally to death. Nevertheless, previous stud-
ies only focused on the adverse effects of air pollution
on one of these transitions (mainly from health to single
CMD), which would underestimate the disease burden
attributable to air pollution. To the best of our knowl-
edge, no previous studies have evaluated and compared
the effects of air pollutants on the incidence, progress,
and prognosis of CMM simultaneously, which would
have significant implications in the evidence-based pre-
vention and intervention. In addition, premature death
from other causes than CMDs may mask the risk of
CMD and CMM,10 resulting in a competing risk from
death when evaluating the association between air pol-
lution and CMM.11 However, no prior studies had taken
competing risk into consideration, which may lead to
overestimation of the estimates.12,13

In this study, we sought to evaluate the impacts of
PM2.5 and NO2 on the trajectory of CMM, including the
transitions from free of CMD to first cardiometabolic
diseases (FCMD), then to CMM and further to mortality
in the UK Biobank, a large, prospective cohort.14 We fur-
ther compared the associations across transition paths
by different FCMD. We also examined modification
effects of sociodemographic characteristics to identify
potential vulnerable populations.
Methods

Study participants and outcome identification
During 2006�2010, the UK Biobank cohort recruited
over 500,000 middle- to old- age participants in 22
assessment centers across the UK (17 in England, 2 in
Scotland and 3 in Wales), covering populations with dif-
ferent genetic backgrounds, socio-economics and life-
styles. Information on demographics, lifestyle and
socioeconomic status was collected by questionnaires at
baseline. Physical measurements were performed as
well to obtain anthropometric data. This study was in
accordance with Declaration of Helsinki. All partici-
pants in the UK Biobank provided informed consent.
The UK Biobank was approved by the North West
Multi-Centre Research Ethics Committee (Ref: 11/NW/
0382). This work was performed under the UK Biobank
application numbers “66251” and “80741”.

In the current study, we defined CMM as copresence
of at least two of three CMDs (i.e., T2D, IHD and stroke)
in line with many previous studies.1�3 Incidence of
these events was obtained from hospital inpatient visits
www.thelancet.com Vol 84 October, 2022
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and coded according to the International Classification
of Diseases, 10th Revision (ICD 10th): T2D (E11), IHD
(I20�I25) and stroke (I60�I69). Diabetes coded as E14
(unspecified diabetes) was also assigned as T2D because
only middle- and old-age participants were recruited in
the UK Biobank cohort, and unspecified diabetes was
primarily T2D.1,15 Incident cases of all-cause death were
identified through linking to national death registries.
Details of UK Biobank have been described previously.14
Environmental data
Long-term exposures to PM2.5 and NO2 were measured
using a land use regression model developed for the
European Study of Cohorts for Air Pollution Effects
(ESCAPE).16,17 This model was developed using the
ESCAPE monitoring data from January 2010 to January
2011 and covered 36 study areas in Europe, including
the UK (Manchester and London). Model validation
results showed that this model can explain a large frac-
tion of spatial variability of air pollutants (median cross-
validation R2 = 0.77 and 0.87 for PM2.5 and NO2, respec-
tively). Given that this model only used monitoring
data collected in 2010, we mapped the model-predicted
annual averages of PM2.5 and NO2 for 2010 to the par-
ticipant’s geocoded residential address at baseline to
represent long-term exposures to PM2.5 and NO2.
Covariates
We considered age, sex, race, body mass index (BMI),
education, socioeconomic status, alcohol drinking,
smoking, physical activity, diet at baseline and recruit-
ment centers as candidate covariates, in accordance to
priori knowledges.18,19 A directed acyclic graph (DAG)
was then generated using DAGitty’s online tool (www.
dagitty.net) to determine whether a candidate covariate
should be adjusted in the models. Specifically, race was
classified into White, Asian or Asian British, Black or
Black British, Mixed and others. BMI was calculated by
dividing weight (kg) by height (m) squared. Education
was dichotomized as college degree or above, and high
school or below. Socioeconomic status was measured
using the Townsend Deprivation Index (TDI), a com-
posite score based on unemployment, overcrowded
household, non-car ownership, and non-home owner-
ship. A lower TDI value indicates a higher socioeco-
nomic level.20 Frequency of alcohol drinking was
categorized as never, at special occasions only, one to
three times a month, once or twice a week, three or four
times a week, and daily or almost daily. Self-reported
smoking status was divided into never smoking and cur-
rent/ever smoking. Being physically active was deter-
mined using the 2017 UK Physical Activity Guidelines
as having 150 minutes of moderate activity or 75 min of
vigorous activity per week. A cumulative dietary risk fac-
tors score was created using the same method as
www.thelancet.com Vol 84 October, 2022
reported in a previous study from UK Biobank.21 Briefly,
a total of 9 food items were used to create the diet score,
including processed meat, red meat, total fish, milk,
spread type, cereal intake, salt added to food, water, and
fruits and vegetables. Each food item was dichotomized
as meeting or not meeting recommendations as sug-
gested by the UK and European dietary guidelines. Par-
ticipants were given 1 point for each unhealthy category.
Finally, a diet score ranging from 0 (healthiest) to 9
(least healthy) was derived by summing the points for
each participant. A minimally sufficient adjustment set
including age, sex, race, education, TDI and recruitment
center was finally identified based on DAG (Figure S1).
Statistical analysis
We excluded participants with prevalent diabetes
(n=10,063), stroke (n=3878) or IHD (n=20,438) at base-
line. We also excluded individuals with cancer (ICD 10
code: C00�C97, n=23,967) at baseline as did in many
cohort studies investigating the health effects of envi-
ronmental risk factors on CMD.1,22 Additionally, partici-
pants with missing data on exposures and important
covariables, including PM2.5 (n=37,217), NO2 (n=6648),
race (n=2279) and TDI (n=482) were also excluded. We
included a missing category for education and physical
activity, respectively, as there were a large proportion of
missing data on them. Finally, 410,494 participants
were included in the primary analysis (Figure S2).

Participants were followed from enrollment until
death, loss to follow-up, or May 31, 2021, whichever
came first. In main analyses, PM2.5 and NO2 were intro-
duced into models as continuous variables. We also
introduced air pollutants into models as quartiles and
tested the trend by assigning the quartile number as a
continuous variable.23,24 All models were adjusted for
age, sex, race, education, TDI and recruitment centers.

In the initial analyses, we used traditional Cox pro-
portional hazards models to estimate the associations of
air pollution with FCMD, CMM and all-cause mortality.
The proportional hazards assumption was checked
using Schoenfeld residual plots and no violations were
detected. Thereafter, in main analyses, we further
decomposed these associations and explored the roles of
air pollutants in each transitional phase of CMM pro-
gression and prognosis, i.e., from baseline free of all the
three CMDs to FCMD, CMM and then to death by per-
forming multi-state models. Multi-state model is an
extension of traditional Cox proportional hazards model
that can be considered the simplest multi-state model
with only two states (i.e., from baseline to event). By
including multiple subsequent or competing events as
states of transitions, multi-state models offer a unique
advantage in investigating the influence of risk factors
on different stages of disease progression simulta-
neously, with the consideration of competing risks.11,25

In line with previous studies,1,2 five transition stages
3

http://www.dagitty.net
http://www.dagitty.net


Figure 1. Numbers (percentages) of participants in five transition stages of transition pattern A*.
Abbreviation: FCMD, first cardiometabolic disease; CMM, cardiometabolic multimorbidity;
Cardiometabolic diseases included type 2 diabetes, ischemic heart disease and stroke. CMM was defined as the occurrence of at

least two of the above-mentioned diseases;
*, transition pattern A was defined as transition from baseline to FCMD, then to CMM, and subsequently to death.
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(transition pattern A, Figure 1) were constructed as 1)
baseline to FCMD, 2) FCMD to CMM, 3) baseline to
death, 4) FCMD to death, 5) and CMM to death. The
entering date of CMM was defined as the date when the
second CMD was diagnosed. For participants entering
different stages on the same date, we calculated the
entering date of theoretically prior state as the date of
the latter state minus 0.5 day based on previous study.1

For example, for patients with first diagnosis as CMM,
the entering date of FCMD equaled the date of CMM
minus 0.5 day.

To further examine possible differential associations
of PM2.5 and NO2 with the progression by individual
first CMDs, we further split the multi-stage paths by
subtypes of FCMD, and constructed 11 transitions (tran-
sition pattern B, Figure 2). Participants who received
more than one new diagnosis of CMD on the same date
after enrollment (n=2396) were excluded for this dis-
ease-specific analysis because we could not ascertain the
temporal sequence of CMDs.

To identify subgroups susceptible to air pollution, we
conducted stratified analyses by age (< 60 vs � 60
years), sex, BMI (< 25 vs � 25 kg/m2), physical activity
(active vs inactive), smoking status (current/ever smok-
ing vs never smoking), alcohol drinking (one to three
times a month vs never or special occasions only) and
economic level (high: �6.3»�2.2 vs low: �2.2»10.6).
Effect modification by these factors was tested using the
Z-statistic from the formula proposed by Altman et al.26

as:

Z � statistic ¼ Coef2 � Coef1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE21 þ SE22
� �q

Where Coef2 and Coef1 were coefficients, i.e., the log-
hazard per unit increment in air pollutants, of two sub-
groups; SE1 and SE2 were standard errors for Coef1 and
Coef2. P value was obtained by looking up the Z score
on a standard normal distribution (N (0,1)). |Z score|
> 1.96 would be considered significant (i.e., P < 0.05).
We also evaluated interactions by incorporating multi-
plicative interaction terms of air pollution and some
demographic characteristics into models.

We considered several sensitivity analyses to evaluate
the robustness of the results for transition pattern A. (1)
To further examine the influence of patients who
reached multiple disease states on the same day, we
tried several different analytical strategies, including 1)
calculating the entering date of the prior state using
additional four different time intervals instead of
0.5 day, i.e., 0.5-year, 1 year, 3 years and 5 years; 2)
excluding participants who entered different states on
the same date; and 3) adding a transition from baseline
directly to CMM.1 (2) To exclude possible influence of
delayed diagnosis of an existing cardiometabolic condi-
tion at baseline, we repeated the analysis after excluding
participants with FCMD diagnosed within two years
since enrollment. (3) We also excluded participants who
relocated during follow-up, identified by comparing the
residential addresses provided at enrollment and during
the follow-up. (4) To test the influence of unspecific dia-
betes on the results, we redefined T2D as E11 instead of
E11 and E14. (5) We also explored a broader definition of
CMDs by including more cardiac (ICD 10: I00�I99)
and metabolic (diabetes: E10�E14; obesity: E66; dyslipi-
demia: E78) outcomes. (6) In addition, we further
adjusted for BMI, alcohol drinking frequency, smoking
status, physical activity, and diet in models to be in
keeping with priori knowledges and many previous
studies.18,19 (7) We also additionally included partici-
pants with cancer at baseline to test the robustness of
the results.

All analyses were conducted in R (version 3.6.3). The
multi-state models were constructed using the “mstate”
www.thelancet.com Vol 84 October, 2022



Figure 2. Numbers (percentages) of participants in eleven transition stages of transition pattern B*.
Abbreviation: T2D, type 2 diabetes; IHD, ischemic heart disease; CMM, cardiometabolic multimorbidity;
Cardiometabolic diseases included type 2 diabetes, ischemic heart disease and stroke. CMM was defined as the occurrence of at

least two of the above-mentioned diseases;
*, transition pattern B was defined as baseline to one of specific cardiometabolic diseases, then to CMM, and subsequently to

death.
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package. The hazard ratios (HRs) were estimated per
interquartile range (IQR, µg/m3) increase in PM2.5 and
NO2 in all analyses. All statistical tests were two-sided.
P-values < 0.05 were considered statistically significant
in all analyses.
Role of the funding source
The funders of this study had no role in the study
design, in the collection, analysis, or interpretation of
the data, or in drafting the manuscript.
Results

Descriptive analysis
TaggedPThe mean age of the included participants was 56.1 years
(standard deviation: 8.1 years) at enrollment. Approxi-
mately 55.4 % of them were females. The median con-
centrations of PM2.5 and NO2 at residential address
were 9.9 (IQR: 9.3�10.6) µg/m3 and 26.1 (IQR:
21.3�31.2) µg/m3, respectively. During a median fol-
low�up of 12.0 years (IQR: 11.2�12.8 years; total per-
son-years (PYs) 4,626,805), a total of 56,877 (13.9%)
www.thelancet.com Vol 84 October, 2022
participants developed at least one CMD (122.9/10,000
PYs). Among those with at least one CMD, 8,616
(15.1%) further developed CMM (153.2/10,000 PYs). A
total of 22,423 deaths were identified during follow-up.
Among them, 7045 (31.4%) died with experiencing
FCMD, and 1919 (8.6%) died after CMM (Figure 1).
When further dividing FCMD into specific CMDs,
20,451 (37.5%) participants had T2D, 25,005 (45.9%)
had IHD, 8975 (16.5%) had stroke, and 2814 (13.8%),
2466 (9.8%), and 940 (10.5%) of them developed
CMM afterwards, respectively (Figure 2). Compared
with survivors free of CMDs during follow-up, those
who experienced one or more CMDs were older and
had higher BMI, lower economic level, lower education
level, and higher smoking rate (Table S1). Compared to
the overall cohort, participants who received more than
one new diagnosis of CMD on the same date were more
likely to be older, males, smokers, non-Caucasians,
obese, and with lower economic levels (Table S2).
Multi-state analysis
Results from traditional Cox proportional hazards mod-
els showed significantly positive associations of air
5



Figure 3. Associations of air pollutants with morbidity transitions among 410,494 participants, stratified by potential
modifiers.

(a) Associations of PM2.5 with transition from baseline to FCMD;
(b) Associations of NO2 with transition from baseline to FCMD;
(c) Associations of PM2.5 with transition from FCMD to CMM;
(d) Associations of NO2 with transition from FCMD to CMM.
Abbreviation: HR, hazard ratios; CI, confidence interval; PM2.5, particulate matter with an aerodynamic diameter � 2.5 µm; NO2:

nitrogen dioxide; FCMD, first cardiometabolic disease; CMM, cardiometabolic multimorbidity.
Associations were expressed as HR (95% CI) per interquartile range increase in PM2.5 (1.3 mg/m3) and NO2 (9.9 mg/m3).
P-value < 0.05 (Z-test) indicated significant modifications.
Cardiometabolic diseases included type 2 diabetes, ischemic heart disease and stroke. CMM was defined as the occurrence of at

least two of the above-mentioned diseases.
Models were adjusted for age, sex, race, education, Townsend Deprivation Index and recruitment centers.
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Case HR (95% CI) P-value

PM2.5

Baseline! FCMD 56,877 1.03 (1.02, 1.05) < 0.001

FCMD! CMM 8616 1.03 (1.01, 1.06) 0.020

Baseline! Death 13,459 1.05 (1.02, 1.07) < 0.001

FCMD! Death 7045 1.02 (0.99, 1.06) 0.139

CMM! Death 1919 1.00 (0.95, 1.07) 0.897

NO2

Baseline! FCMD 56,877 1.03 (1.02, 1.05) < 0.001

FCMD! CMM 8616 1.06 (1.03, 1.09) < 0.001

Baseline! Death 13,459 1.04 (1.02, 1.07) 0.001

FCMD! Death 7045 1.06 (1.02, 1.10) 0.001

CMM! Death 1919 1.04 (0.97, 1.11) 0.230

Table 1: Associations between air pollutants and transitions
from baseline to FCMD, CMM, and then death.
Abbreviation: HR, hazard ratio; CI, confidence interval; FCMD, first cardi-

ometabolic disease; CMM, cardiometabolic multimorbidity; PM2.5, partic-

ulate matter with an aerodynamic diameter � 2.5 µm; NO2: nitrogen

dioxide.

Cardiometabolic diseases included type 2 diabetes, ischemic heart disease

and stroke. CMM was defined as the occurrence of at least two of the

above-mentioned diseases.

Associations were presented as HR (95 CI%) per interquartile range

increases in concentrations of PM2.5 (1.3 mg/m
3) and NO2 (9.9 mg/m3) for

the transitions among 410,494 participants.

Models were adjusted for age, sex, race, education, Townsend Deprivation

Index and recruitment center.
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pollution with FCMD, CMM and all-cause mortality
(Table S3). By using multi-state models, we further
observed different roles of air pollution in each transi-
tion stage of the CMM trajectories (Table 1). Both PM2.5

and NO2 could increase the risk of transition from base-
line to FCMD, as well as the risk of transition to CMM.
The risk estimates per IQR increase in air pollutant con-
centrations for transition from FCMD to CMM [HR
(95% CI): 1.03 (1.01, 1.06) for PM2.5; 1.06 (1.03, 1.09)
for NO2] were similar to estimates for transition from
baseline to FCMD [1.03 (1.02, 1.05) for PM2.5; 1.03 (1.02,
1.05) for NO2]. For transition to death, PM2.5 was associ-
ated with mortality from baseline [HR (95% CI): 1.05
(1.02, 1.07)], but not from FCMD [1.02 (0.99, 1.06)] or
CMM [1.00 (0.95, 1.07)]. NO2 was significantly associ-
ated with death from baseline and FCMD but not death
from CMM. The corresponding HRs (95% CIs) associ-
ated with each IQR increase in NO2 were 1.04 (1.02,
1.07), 1.06 (1.02, 1.10) and 1.04 (0.97, 1.11), respectively.

Exposure to PM2.5 and NO2 showed differential asso-
ciations with disease transition by specific FCMDs (i.e.,
T2D, IHD, and stroke). Specifically, for transition from
baseline to FCMDs, PM2.5 and NO2 had the strongest
association with stroke [HR (95% CI): 1.05 (1.02, 1.08)
for PM2.5; 1.08 (1.04, 1.11) for NO2], followed by T2D
[1.04 (1.02, 1.06) for PM2.5; 1.04 (1.02, 1.06) for NO2]
and IHD [1.02 (1.01, 1.04) for PM2.5; 1.01 (0.99, 1.03)
for NO2]. For transition from FCMD to CMM, partici-
pants who were first diagnosed with T2D were more
www.thelancet.com Vol 84 October, 2022
likely to develop CMM induced by higher PM2.5 and
NO2 exposure, although the 95% CI for PM2.5 included
the null [HR (95% CI): 1.05 (1.00, 1.10) for PM2.5; 1.07
(1.02, 1.13) for NO2]. No significant associations were
found between PM2.5 and NO2 and transitions from
IHD or stroke to CMM. For transitions from FCMD to
death, both PM2.5 and NO2 were associated with transi-
tion to death from IHD [HR (95% CI): 1.05 (1.01, 1.10)
for PM2.5; 1.09 (1.04, 1.15) for NO2] but not from T2D
and stroke (Table 2).

The above associations remained in models using
quartiles of exposures (Table S4). Compared to those in
the lowest quartiles of exposures, participants in the
highest quartiles had increased risk of transitions from
baseline to FCMD, from FCMD to CMM, and transi-
tions from baseline and FCMD to all-cause mortality.
The corresponding HRs (95% CIs) were 1.09 (1.06,
1.12), 1.09 (1.02, 1.17), 1.08 (1.03, 1.14) and 1.06 (0.98,
1.14), respectively for PM2.5, and were 1.07 (1.04, 1.10),
1.12 (1.04, 1.20), 1.08 (1.02, 1.14) and 1.12 (1.04, 1.21),
respectively for NO2.
Effect modification and interaction
We observed significant effect modification of PM2.5

and NO2 by age, alcohol drinking, economic levels and
sex on one or more transitions (Figure 3; Figure S3).
The older groups had higher risk of developing FCMD
in association with exposure to PM2.5 and NO2. Exces-
sive alcohol drinking amplified the impacts of air pollu-
tants on the transitions from baseline to FCMD, and
from FCMD to death. Individuals with lower economic
levels had a higher risk of death from baseline associ-
ated with exposure to PM2.5 and NO2. Males were more
vulnerable to death from FCMD associated with PM2.5

compared to females. The conclusions from multiplica-
tive interaction models were generally consistent with
those from stratified analyses (Table S5). Specifically,
alcohol drinking, smoking and male have synergistic
effects, while BMI, physical activity and economic levels
have antagonistic effects with PM2.5 and NO2 for at least
one transition from baseline to FCMD, then to CMM,
and finally to mortality.
Sensitivity analyses
Results from sensitivity analyses remained relatively
robust by considering the influence of participants who
were diagnosed with multiple CMDs on the same day,
excluding participants with CMD events occurred
within the first two years of follow-up, excluding partici-
pants who were relocated during the follow-up, redefin-
ing T2D by excluding unspecific diabetes, additionally
including participants with cancer at baseline, and
extending the set of covariate adjustment. When a
broader definition of CMDs was applied, we obtained
robust associations of PM2.5 and NO2 with all
7



Case PM2.5 NO2

HR (95% CI) P-value HR (95% CI) P-value

Baseline! FCMD

Baseline! T2D 20,451 1.04 (1.02, 1.06) < 0.001 1.04 (1.02, 1.06) < 0.001

Baseline! IHD 25,055 1.02 (1.01, 1.04) 0.008 1.01 (0.99, 1.03) 0.216

Baseline! stroke 8975 1.05 (1.02, 1.08) < 0.001 1.08 (1.04, 1.11) < 0.001

FCMD! CMM

T2D! CMM 2814 1.05 (1.00, 1.10) 0.075 1.07 (1.02, 1.13) 0.009

IHD! CMM 2466 1.03 (0.98, 1.08) 0.290 1.06 (1.00, 1.12) 0.054

Stroke! CMM 940 1.01 (0.93, 1.10) 0.780 0.99 (0.90, 1.09) 0.882

Baseline! Death 13,459 1.05 (1.02, 1.07) < 0.001 1.05 (1.02, 1.07) < 0.001

FCMD! Death

T2D! Death 1766 0.98 (0.92, 1.05) 0.574 1.02 (0.95, 1.09) 0.676

IHD! Death 3287 1.05 (1.01, 1.10) 0.021 1.09 (1.04, 1.15) 0.001

Stroke! Death 1992 1.00 (0.94, 1.06) 0.973 1.03 (0.96, 1.10) 0.404

CMM! Death 1496 0.98 (0.92, 1.05) 0.627 1.01 (0.94, 1.09) 0.786

Table 2: Associations between air pollutants and transitions from baseline to single CMD, CMM, and then death.
Abbreviation: HR, hazard ratios; CI, confidence interval; FCMD, first cardiometabolic disease; CMM, cardiometabolic multimorbidity; PM2.5, particulate matter

with an aerodynamic diameter � 2.5 µm; NO2: nitrogen dioxide; CMD, cardiometabolic disease; T2D, type 2 diabetes; IHD, ischemic heart disease.

Cardiometabolic diseases included T2D, IHD and stroke. CMM was defined as the occurrence of at least two of the above-mentioned diseases.

Associations were presented as HR (95 CI%) per interquartile range increases in concentrations of PM2.5 (1.3 mg/m
3) and NO2 (9.9 mg/m3) for the transitions

among 408,098 participants.

Models were adjusted for age, sex, race, education, Townsend Deprivation Index and recruitment center.
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transitions except for the transition from baseline to
death, which turned insignificant (Table S6).
Discussion
In this large-scale, prospective UK Biobank cohort, we
examined the impact of air pollution on the whole
course of CMM, from onset, progression, to prognosis.
We found that PM2.5 and NO2 played roles in multiple
transition stages, including from baseline to FCMD,
FCMD to CMM and baseline to death. Exposure to NO2

additionally increased the risk of transition from FCMD
to death. When disease-specific transitions were consid-
ered, the impacts of air pollution within certain transi-
tion stages varied depending on disease types.
Specifically, the strongest effects of air pollution were
observed on stroke for the transition from baseline to
FCMD, on T2D for the transition from FCMD to CMM,
while on IHD for the transition from FCMD to death.
In addition, we identified several subgroups susceptible
to one or more CMM transitions.

The adverse effects of air pollution on some transi-
tions of CMM observed in the current study were gener-
ally consistent with prior studies which reported the
associations between air pollution and single disease
stage of CMM. For example, numerous epidemiologic
studies have linked air pollution to increased risks of
morbidity of single CMDs in general population, which
were consistent with the increased risk for the transition
from baseline to FCMD found in the current study.8,9

Moreover, a number of studies also reported an
increased risk of PM2.5-related CVD in people with
diabetes,27,28 indicating the role of PM2.5 in the transi-
tion from FCMD to CMM. However, these studies
merely focused on single disease stage, and failed to
evaluate the effects of air pollution on different transi-
tion stages of the whole course of CMM, i.e., from
CMD-free to FCMD, then to CMM and further to death.
In addition, these studies did not consider the compet-
ing risk of from death. As air pollution is a well-known
risk factor of mortality from CMDs and other
causes,29,30 simply regarding participants who died
from baseline or FCMD during follow-up as censored
might result in a deviation of the morbidity risk related
to air pollution. To address these issues, we applied the
multi-state model, a model considering both competing
risk and the transitions of various disease stages. To our
knowledge, the multi-state model has only been used to
explore the role of several risk factors in the progression
of CMM, including lifestyle, clinical and behavioral
factors,1,2 but not environmental factors. More studies
with multi-state models in investigating the chronic
health effects of air pollution are warranted to validate
our findings.

We found that the associations between air pollution
and the incidence of FCMD and later the transition to
CMM differed by specific types of diseases. Our data
suggested the effects of both PM2.5 and NO2 on the tran-
sitions from health to FCMD were strongest for stroke,
followed by T2D and IHD. Several pooled analyses also
suggested smaller estimates for the associations of
PM2.5 with IHD morbidity compared to stroke.19,31 For
www.thelancet.com Vol 84 October, 2022
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example, Alexeeff et al. reported an increased risk of 8%
(�1% to 18%) for incident myocardial infarction and
13% (11% to 15%) for incident stroke per 10 µg/m3

increase of PM2.5 in a meta-analysis.31 In terms of tran-
sitions from specific CMDs to CMM, we found that the
risks of air pollution were only significant for partici-
pants who were first diagnosed with T2D but not for
those who were first diagnosed with IHD and stroke.
This might be explained by that IHD and stroke are
more likely to cause disability,32,33 resulting in reduced
outdoor activities, which may lead to potential misclassi-
fication of exposure and underestimation of effects.34

The smaller sample size may also limit the power to
detect the associations, if any, between air pollution and
transitions from IHD or stroke to CMM.

We found that both PM2.5 and NO2 were signifi-
cantly associated with risk of transition to death from
IHD, but not from stroke and T2D. The lack of associa-
tions between air pollution and death from stroke and
T2D seems to be not consistent with some previous
studies that indicated significant, and even stronger
associations of air pollution with mortality among popu-
lation with pre-existing conditions than general
population.35,36 The inconsistency may be explained by
the insufficient statistical power resulting from the
much smaller sample size of cases with pre-existing
conditions in the present study than in previous
studies.35,36 Additionally, the findings obtained from
previous studies cannot be compared directly to our esti-
mates due to the distinct analytic strategies and statisti-
cal models. Traditional Cox regression models in prior
studies evaluated effects of air pollution on rough transi-
tion from pre-existing conditions to mortality. Neverthe-
less, the multi-state model used in our study
decomposed the rough transition into several continu-
ous and mutually exclusive phases, and had the advan-
tage of assessing the independent effects on each
transition phase. Besides, the potential interaction
between medications and air pollution may also account
for the null associations. Previously, several epidemio-
logic and experimental studies have reported that medi-
cations commonly prescribed to patients with T2D and
stroke may mitigate the detrimental effects of air pollu-
tion, such as metformin and aspirin.37,38

We identified potential vulnerable sub-populations
to the impacts of air pollution on CMM transitions,
which is of importance to develop evidence-based plans
for CMM prevention and intervention. We observed
increased susceptibility to air pollutants among the
older population and persons with excessive alcohol
drinking, which may result from unbalanced immune
system, disturbed metabolism and worse health condi-
tion of them.2,39,40 A lower economic level was found to
amplify the mortality risk in relation to air pollution in
our study, possibly due to poorer health care. The pro-
nounced impacts of PM2.5 among males were also
observed in many environmental epidemiological
www.thelancet.com Vol 84 October, 2022
studies,41,42 which may be explained by the fact that
males are more likely to have unhealthy lifestyles such
as alcohol drinking in the UK Biobank cohort (Table
S7).

Our findings had significant public health implica-
tions. First, we identified significant associations
between air pollution and CMDs. Although the HRs
associated with air pollution are smaller than some con-
ventional risk factors of CMDs, the disease burden
attributable to air pollution is very high because of ubiq-
uitous exposures to air pollution in the world.7 Second,
by using multi-state model, we observed that air pollu-
tion had non-negligible impacts on the transition from
CMD-free to FCMD that had been well characterized in
previous researches,8,9 as well as on the transition fur-
ther to CMM that had not been considered previously.
In view of the excess risk of morbidity and mortality of
CMM related to air pollution, we proposed to take CMM
into consideration when assessing air pollution-related
disease burden and developing health protection strate-
gies. Third, as a global public health challenge, popula-
tion aging is a global phenomenon, which is always
accompanied by an increased burden of chronic dis-
eases especially CMDs43 and decreased disability-
adjusted life-years. Our results suggested the important
role of clean air in prolonging healthy life span of the
elderly and reducing the societal burden of aging. Lastly,
we found stronger impacts of air pollution on CMM
progression among participants with excessive alcohol
drinking. Presumably, reduced alcohol drinking is
potentially helpful in mitigating the risk of CMM in
association with exposure to air pollution.

Our study presents several strengths. The major
strength is the use of multi-state models rather than
conventional Cox proportional hazards models, which
enables us to explore the impacts of air pollution on dif-
ferent stages of the whole course of CMM and rule out
the competing risk from death. Furthermore, the large
sample size of the UK Biobank provided substantial
power and allowed to further investigate all transitions
of specific CMDs. Additionally, the prospective nature
of the analysis has a clear temporal order between air
pollution exposure and CMM incidence, thus potential
reverse confounding can be reduced. Finally, the wide
range of individual-level information on lifestyle and
sociodemographic characteristics collected in the UK
Biobank makes it possible to investigate the potential
modifiers.

Our study also has some limitations. First, as PM2.5

data were only publicly available in 2010 in the UK Bio-
bank, we used annual average concentrations of air pol-
lutants in 2010 as a proxy for long-term exposure in line
with most air pollution studies in the UK Biobank
cohort.44,45 Although we may reasonably assume that
the spatial contrasts in air pollution concentrations
did not change substantially during recruitment
(2006�2010) and follow-up in UK, the exposure
9
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measurement misclassifications could not be fully
excluded. Second, the changes in exposure levels due to
residential relocation were not captured, but their
impacts were very small according to our sensitivity
analysis. Third, we didn’t perform two-pollutant analy-
ses due to the very high correlation between PM2.5 and
NO2 (correlation coefficient: 0.85) and thus the possible
independent effects need to be clarified in further inves-
tigations. Finally, UK Biobank mainly includes Cauca-
sians from developed countries with relatively low air
pollution exposures and high levels of access to health-
care, limiting the generalizability of the study findings
to population with other genetic backgrounds, high
exposure levels and relatively low socioeconomic levels.

In conclusion, using data from a large, prospective
cohort, we found that long-term exposures to PM2.5 and
NO2 were associated with elevated risks of transitions
from a disease-free state to single CMD, CMM, and
death, suggesting the importance of reducing air pollu-
tion exposures in the primary and secondary prevention
of CMM. Older participants, males, and individuals
with excessive alcohol drinking and lower economic lev-
els were more susceptible to air pollution-related CMM
progression, further highlighting the significance of
clean air action in vulnerable sub-populations.
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