Submitted 13 January 2021
Accepted 24 June 2021
Published 18 August 2021

Corresponding author
Tanja Pyhdjarvi,
tanja.pyhajarvi@helsinki.fi
Academic editor
Michael Wink

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.11781

() Copyright
2021 Cervantes et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Atlas of tissue-specific and
tissue-preferential gene expression in
ecologically and economically significant
conifer Pinus sylvestris

Sandra Cervantes"?, Jaana Vuosku' and Tanja Pyhdjarvi'-?

1 Department of Ecology and Genetics, University of Oulu, Oulu, Finland

2 Biocenter Oulu, University of Oulu, Oulu, Finland

? Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki,
Helsinki, Finland

ABSTRACT

Despite their ecological and economical importance, conifers genomic resources are
limited, mainly due to the large size and complexity of their genomes. Additionally,
the available genomic resources lack complete structural and functional annotation.
Transcriptomic resources have been commonly used to compensate for these
deficiencies, though for most conifer species they are limited to a small number of
tissues, or capture only a fraction of the genes present in the genome. Here we
provide an atlas of gene expression patterns for conifer Pinus sylvestris across five
tissues: embryo, megagametophyte, needle, phloem and vegetative bud. We used a
wide range of tissues and focused our analyses on the expression profiles of genes at
tissue level. We provide comprehensive information of the per-tissue normalized
expression level, indication of tissue preferential upregulation and tissue-specificity
of expression. We identified a total of 48,001 tissue preferentially upregulated and
tissue specifically expressed genes, of which 28% have annotation in the Swiss-Prot
database. Even though most of the putative genes identified do not have functional
information in current biological databases, the tissue-specific patterns discovered
provide valuable information about their potential functions for further studies, as
for example in the areas of plant physiology, population genetics and genomics in
general. As we provide information on tissue specificity at both diploid and haploid
life stages, our data will also contribute to the understanding of evolutionary rates of
different tissue types and ploidy levels.

Subjects Genetics, Genomics, Molecular Biology, Plant Science, Forestry
Keywords Pinus sylvestris, RNA-seq, Tissue-specific gene expression, Conifer, Transcriptomics,
Megagametophyte, Needle, Bud, Embryo, Phloem

INTRODUCTION

Conifers, a clade within the gymnosperms, represent a group of plants with significant
economic and ecological relevance (Farjon, 2008). Several coniferous trees, for example in
Pinus and Picea genera, are among the most important sources of wood and timber
(San-Miguel-Ayanz et al., 2016; Food and Agriculture Organization of the United Nations,
2020). Conifers dominate boreal forests worldwide and can form large forested areas
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hosting a variety of ecosystems. Furthermore, conifer forests are one of the major
ecosystem services providers and they are crucial for carbon sequestration (Bonan, Chapin
& Thompson, 1995; DeAngelis, 2008; San-Miguel-Ayanz et al., 2016; Boonstra et al., 2016).
Despite their importance, genomic resources for conifers, and gymnosperms in general,
lag behind in availability compared to angiosperms. Although several contributions
have been made recently to fill this gap (Nystedt et al., 2013; Birol et al., 2013; Zimin et al.,
20145 Stevens et al., 2016; Mosca et al., 2019), conifer genome annotation remains a
challenge, with both structural and functional annotations being far from perfect (Wegrzyn
et al., 2014; Canias et al., 2019). Conifer genomics resources are limited due to the large
size of their genomes, ranging from 8 to 70 Gbp (Zonneveld, 2012) and to the large number
of repetitive elements (approximately 80%) within them (Nystedt et al., 2013; Neale

et al., 2014; De La Torre et al., 2020). Proper and complete annotation of the conifer
genomes has also been complicated by the presence of long introns (Nystedt et al., 2013;
Wegrzyn et al., 2014), which prevents the routine use of common annotation software.
Moreover, analyses of ortholog genes across different species indicate that there are
several gene groups which are unique to conifers or conifer species specific, with no
well-defined homologs in any of the angiosperm plant models (Nystedt et al., 2013;
Wegrzyn et al., 2014; Neale et al., 2014; Baker et al., 2018).

Transcriptomic resources have been particularly important for research in conifers and
other non-model species, as a strategy to compensate for the challenges associated with
efficient genome assembly and annotation (Carias et al., 2019; Wegrzyn et al., 2020). As the
biological functions can not be directly inferred from nucleotide sequences, reference
transcriptomes and gene expression studies are useful in the identification and annotation
of genes (Raherison et al., 2012; Wegrzyn et al., 2014; Merino et al., 2016; Little et al., 2016;
Carias et al., 2017). Transcriptome information can also be used in conifers that lack
reference genomes, as this information can be used in the design of reduced genome
representation targets (Rellstab et al., 2019; Tyrmi et al., 2020). In addition to this,
RNA-seq analyses allow the identification of expression patterns and expression levels,
which are essential components of evolutionary genomics studies. For example, selective
constraints in genes can be inferred from their expression patterns, as both breadth
and expression level are known determinants of evolutionary rates (Wright et al., 2004;
Slotte et al., 2011). Selective constraints are also expected to differ between haploid and
diploid tissues which differ in the relative rate of expression, as tissue specificity and
ploidy has potentially drastic effects on the dynamics of for example, purifying selection
(Otto, Scott & Immler, 2015).

Here we give a first glimpse of the expression patterns of tissue preferentially
upregulated (PUR) and tissue specifically expressed genes across five organs (embryo,
megagametophyte, needle, phloem and vegetative bud, hereafter called tissues, but see
discussion) of Pinus sylvestris. P. sylvestris is a widely distributed conifer of large economic
and ecological importance in Northern Eurasia (Pyhdjdrvi, Kujala ¢ Savolainen, 2020).
P. sylvestris is one of the main sources of timber and raw material for the pulp and
paper industry in Europe and is a dominant species in boreal forests, with an estimated
coverage area of 145 millions hectares (Pyhdjirvi, Kujala ¢ Savolainen, 2020). P. sylvestris
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is also a suitable model to answer evolutionary and genetic questions, especially
regarding gymnosperm reproductive biology, its evolution and genetic consequences.
For example, in conifers the maternal nuclear haplotype of an embryo is identical to the
megagametophyte’s nuclear haplotype (Williams, 2008), which makes it possible to
separate expression of paternal and maternal haplotypes and alleles in the embryo (Verta,
Landry & MacKay, 2016).

Despite its importance and potential, P. sylvestris still lacks a reference genome, and
currently there are limited genomic resources for this species (see however Wachowiak
et al., 2015; Merino et al., 2016; Li et al., 2017; Hollbacher et al., 2017; Ojeda et al.,

2019; Perry et al., 2020). To date, the few transcriptomic studies of P. sylvestris have been
based on a small number of tissue types such as needles or seed tissues (Wachowiak et al.,
2015; Merino et al., 2016). Identification of tissue preferentially upregulated and tissue
specific genes is relevant because (1) understanding the patterns of expression across
different kinds of tissues can aid to elucidate the organization of transcriptomes (Raherison
et al., 2012). (2) Knowing the different profiles of expression across tissues can set the
ground for evolutionary analysis, as it is known from studies in mammals and angiosperms
that the evolution of gene expression differs across tissues and organs (Brawand et al.,
2011; Yang & Wang, 2013). Ultimately this knowledge will help to gain a deeper
understanding of the determinants and main factors that affect the rate of adaptive
evolution and the dynamics at the genome level.

In this study we (1) provide a comparative transcriptomic resource for P. sylvestris
describing the expression level in five different tissues, (2) identify genes that are tissue
preferentially upregulated and tissue specifically expressed in each of the five tissues,

(3) provide quantitative measures of tissue-specific expression for each gene per tissue
combination, and (4) conduct gene ontology enrichment analysis for each tissue type.
Our results are important for future studies in comparative conifer genomics, plant
physiology, population genetic analyses, evolutionary genetic studies, further gene
expression analyses, and aid in the annotation of present and forthcoming conifer genome
sequences.

MATERIALS AND METHODS

Plant material and RNA sequencing

We used the RNAseq data (trimmed reads, BioProject PRINA531617) previously used
to assemble multiple reference transcriptomes of P. sylvestris by Ojeda et al. (2019).

The plant material was obtained during the growing season of 2016 (May 26th-27th) and
consisted of needles, phloem, vegetative buds and seeds from six non-related adult
Pinus sylvestris trees. We used data from trees growing in a natural forest population to
ensure that the observed patterns of tissue preferential expression and specificity were
robust to genotypic and environmental variation. The material was collected at the
Punkaharju Intensively Studied Site (ISS) in Southern Finland (Table S1). Samples were
collected in collaboration with Natural Forest Research Institute Finland LUKE that has an
agreement on the forest research use with the owner Metsdhallitus (The Finnish Forest
Administration). In Finland P. sylvestris is not endangered and Finland does not regulate
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its genetic resources under Nagoya Protocol so CITES was not applied and prior informed
consent was not needed. The samples were collected and identified by Tanja Pyhéjéarvi.
There is no voucher available for the specimens.

Relevant experimental procedures of Ojeda et al. (2019) are briefly summarized here.
Megagametophyte and embryo tissues were obtained by dissecting mature seeds collected
from the same mother trees from which the vegetative tissues were obtained. Seeds were
stored in the dark at 4 °C until germination was induced by exposure to moisture and
continuous light for 48 h. Total RNA was extracted from needle, bud and phloem using the
Spectrum Plant Total RNA Kit (Protocol B; Sigma, Kawasaki, Kanagawa, Japan), followed
by mRNA capture with the NEBNext® Poly(A) mRNA Magnetic Isolation Module
(New England Biolabs Inc., Ipswich, MA, USA). For embryo and megagametophyte,
mRNA was directly extracted from the whole tissues with Dynabeads mRNA Direct Micro
Kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA concentration was quantified
with Qubit RNA HS Assay kit (Thermo Fisher Scientific, Waltham, MA, USA). The quality
and integrity of the RNA was visually assessed with a 2100 Bioanalyzer using the RNA
6000 Pico kit (Agilent, Santa Clara, CA, USA). A total of 30 libraries were prepared by
using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England
Biolabs Inc., Ipswich, MA, USA). Sequencing (2 x 150 bp) was conducted with an Illumina
NextSeq 500 at the Biocenter Oulu Sequencing Centre (Oulu, Finland).

Transcript quantification and abundance matrices construction

We followed the Trinity Post-Transcriptome Assembly Downstream Analyses pipeline
(Trinity v.2.6.6) (Haas et al., 2013, https://github.com/trinityrnaseq/trinityrnaseq/wiki/
Trinity-Transcript-Quantification) to generate quantification files at isoform level, and raw
counts and normalized count matrices at putative-gene level (hereafter referred as gene
level matrices). For transcript quantification we used the trimmed reads from Ojeda

et al. (2019) and as reference we used the Trinitygy;qeq transcriptome reported in the same
work (Data S1). We chose the non-reduced redundancy Trinitygyigeq transcriptome as
reference (instead of the redundancy reduced assembly) to avoid mapping of reads

from different paralogous genes to the same contig. P. sylvestris has a large amount of
paralogous and repetitive regions, and with this we reduced the amount of false mapping
across paralogs due to sequence similarity.

To obtain independent transcript abundance estimates of each of the six individuals
in each of the five tissues we used Salmon 0.9.1 (Patro et al., 2017) as implemented in
the Trinity pipeline, with the —-SS_lib_type (strand specific) and -trinity_mode options.
The —trinity_mode option generated a transcript-to-gene map that allowed the estimation
of counts from isoforms to generate counts at a putative gene level during the count matrix
generation step. Before any further analysis, we checked for the presence of possible
contaminants by searching contigs that had hits to the keywords ‘alveolata’, ‘metazoa’,
‘fungi’, ‘bacteria’, and ‘archaea’. We search for exact matches to these keywords from the
results of a translated blast (BLASTX) of the transcriptome annotation file (Ojeda et al.,
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2019; Ojeda, 2020). We then combined our list of putative contaminants with the
contaminants and organelles contigs lists reported in Ojeda et al. (2019), and excluded
them from the isoform quantification files and the gene_trans_map. Contaminants
were removed after the transcript quantification stage to avoid the false mapping of
contaminant reads to non-contaminant contigs in the reference transcriptome.

We built three count matrices at the gene level based on the clean independent
transcript quantification estimates with the script abundance_estimates_to_matrix.pl from
the Trinity pipeline. For this, we generated a gene level raw counts matrix (Table S2),
which was then used to construct a transcript per million length normalized gene count
matrix (TPM escalated matrix) (Table S3). The TPM escalated matrix accounts for
differences in isoform lengths that otherwise could inflate FDR due to differential
transcript usage (Soneson, Love ¢ Robinson, 2015). Finally, the TPM escalated matrix
was used to construct a gene counts matrix normalized using the Trimmed Mean of M
values (TMM) method (Table S4), which accounts for differences in the distribution of
transcript expression that could lead to an increase in false positive rates, and decrease the
power to detect truly differentially expressed genes (Robinson ¢ Oshlack, 2010). Before
doing the differential expression analyses and the estimation of tissue specificity, we
evaluated the quality of our samples by doing a principal component analysis (PCA) and a
Pearson correlation matrix using the gene raw count matrix, according to the Trinity
QC samples and biological replicates pipeline (https://github.com/trinityrnaseq/
trinityrnaseq/wiki/QC-Samples-and-Biological-Replicates). The intention of these
analyses was to look for the presence of batch effects or sample outliers, and to verify that
biological replicates clustered within each tissue type and not among sampled individuals.

Differential expression analysis and identification of tissue
preferentially upregulated genes

Differentially expressed genes (DEG) and preferentially up-regulated genes (PUR) were
identified using the Trinity Differential Expression and Sample-Specific Expression
pipelines (Bryant et al., 2017, https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-
Differential-Expression). Briefly, we first identified DEG using the gene raw counts matrix
with edgeR 3.28.0 (Robinson, McCarthy & Smyth, 2010; McCarthy, Chen & Smyth, 2012).
The differential expression analysis was based on pairwise comparisons of each of the
five tissues, using the six samples per tissue as biological replicates, then for each pair
of DEG identified we obtained their associated false discovery rate (FDR). Next, we
obtained a normalized mean value of expression for each tissue by averaging and log2
transforming the counts for each gene across the six replicates for each tissue on the TMM
gene matrix. Afterwards, pairwise comparisons of the averaged log2 counts values per
tissue were done and a logFC was assigned to each gene. DEG with a maximum FDR
of 0.05 for differential expression, and with positive logFC in each pairwise comparison of
the averaged log2 TMM normalized counts was then classified as PUR. A summary of
pairwise expression differences between tissues based on the logFC of the log2 transformed
gene counts in the TMM matrix is provided in Data S2.
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Tissue-specific expression

As an alternative approach to quantitatively assess the tissue-specific expression of the
genes we calculated the T index based on the TMM gene counts matrix. The T index ranges
between 0 for widely expressed genes and 1 for exclusively tissue-specific genes (Yanai
et al., 2005). As the T index considers tissue specificity independently of the level of
expression, we set as “not expressed” genes with expression values <1 from our TMM
matrix in order to exclude genes with low support for true expression and low signal to
noise ratio. To do this, we first log2 transformed the matrix in order to normalize the
distribution of the expression values. We set all negative values in the matrix to zero, as this
represented values <1 before log2 transformation. We excluded contigs that had no
expression values or that had expression in just one out of the 30 samples. Then, the t
index was computed separately for each gene across all tissues and replicates following
according to the following equation (Yanai et al., 2005; Kryuchkova-Mostacci ¢ Robinson-
Rechavi, 2017, https://github.com/severinEvo/gene_expression/blob/master/tau.R):

N
>im (1 —Xi) X, Xi

=== ; = ——— where max(x;) 1<i<N
max(x;)

N-1
where N represents the number of tissues, x; is the mean expression in tissue i and X; is the
expression level in tissue i normalized by the maximum mean expression among all tissues.

Singular enrichment analysis

To further characterize the gene expression in the five tissues, we identified the biological
pathways for both tissue-specific and tissue preferentially upregulated gene sets with
independent singular enrichment analysis (SEA) (Huang, Sherman ¢ Lempicki, 2009; Du
et al., 2010). First, we retrieved the UniProt IDs corresponding to our putative genes
from the blastx field from our reference annotation file (Ojeda et al., 2019). Then we
uploaded the list of UniProt IDs to the uniprot retrieve/ID mapping tool (https://www.
uniprot.org/uploadlists/) and restricted the result to GO terms only. We repeated this
procedure with the genes used as a background list for the SEA: all the contigs in the gene
raw counts matrix for the PUR genes (Data S3), and all the contigs in the filtered TMM
matrix in the case of the tissue-specific genes (Data 54).

Of the 715,398 putative genes in the raw counts matrix used for the differential
expression analysis, 17,227 have a unique UniProt ID and represent 108,947 GO terms.
The background list for the tissue-specific genes data set consisted of 177,075 contigs of
which 14,079 have a unique annotation and represent 90,198 GO terms. For both data sets
only uniquely annotated genes and their corresponding GO terms (Data S5-514) were
used for running the singular enrichment analyses to avoid inflating the number of GO
terms falsely, and creating a bias in the analysis.

We used the GO terms along the UniProt IDs as input for the SEA using the agriGO
(http://systemsbiology.cau.edu.cn/agriGOv2/index.php) platform (Du et al., 2010; Tian
et al, 2017). We used the custom background list option, applied a hypergeometric test as
statistical test method with a minimum of five mapping entries per term, and Hochberg
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FDR as multi-test adjustment method with a significance level of 0.05. As the significant
enrichment of child terms can inflate the enrichment significance of parental terms, after
the SEA we used REVIGO (Supek et al., 2011, http://revigo.irb.hr/) to reduce the
redundancy of the GO terms and highlight the unique and non-dispensable terms per
tissue for both PUR and tissue-specific genes. We used the list of enriched GO terms found
in the SEA and their respective p-value as input, selected the small output setting for
redundancy, the whole UniProt as database and SimRel as measure of semantic similarity.

RESULTS AND DISCUSSION

Transcript quantification and abundance matrices construction

We mapped a total of 707,063,773 trimmed and adapter removed reads from five different
tissues (embryo, megagametophyte, needle, phloem and vegetative bud) and six biological
replicates (six different genotypes) per tissue type to P. sylvestris TRINITY gyigeq
transcriptome (Ojeda et al., 2019). On average 23,568,792 reads originated from each
tissue, ranging from 29,591,629 reads for needle to 20,469,80 reads for phloem. On average
76% of the reads per replicate were successfully mapped to the reference (Table S5).
After mapping 1,307,500 contigs had aligned reads at the isoform level. Of those,
119,882 contigs were removed from the downstream analyses as they were identified as
contaminants (Data S15). The final set consisted of 1,187,460 contigs at isoform level
and were used to construct raw counts and normalized matrices at gene level for
downstream analyses (see Materials and Methods section). The total number of putative
genes with expression signal in the gene level matrices was 715,398, much higher than
the number of annotated genes in any conifer (Nystedt et al., 2013; Neale et al., 2014;
Gonzalez-Ibeas et al., 2016). This magnitude, albeit probably an overestimate, is typical
to transcriptome studies (Little et al., 2016). This is likely a result of single genes being
present in multiple fragments, isoforms split into multiple genes, and different alleles
originating from heterozygous material identified as separate genes during assembly
and classification as genes by Trinity (Ojeda et al., 2019). However, part of the genes
originate from gene families and since clustering similar genes is possible in downstream
analysis, we chose to err on the side of potentially over splitting the genes rather than
imperfectly clustering similar transcripts as a single gene, as over clustering will inherently
lead to loss of information. We believe that providing expression data with minimum
clustering will be most versatile for later use of the transcriptome and expression data in
genome annotations and other studies.

Quality assessment of biological replicates

As we used different genotypes as biological replicates, we first verified that the replicates
clustered by tissue type and not by genotype, and checked for the presence of potential
outliers in the dataset. We used the raw counts matrix data (Table S2), a principal
component analysis (PCA) and a Pearson correlation to verify this. The PCA separated the
tissue samples into five distinct clusters without any overlap, indicating that among-tissue
variation is the main factor of among-sample variation (Fig. 1). Hence, our approach
captures the differentiating gene expression profiles of the five tissues. In the PCA, the
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Figure 1 Schematic representation of the five tissues used and a scatterplot of the first two axes of the
principal component analysis (PCA) of expression. (A) Schematic representation of the five tissues
used in the transcriptome profiling of Pinus sylvestris: needle, vegetative bud, megagametophyte, embryo
and phloem. (B) Scatterplot of the first two axes of the principal component analysis (PCA). Tissue types
are denoted by colors. Tllustrations by Dorota Paczesniak.  Full-size K&l DOT: 10.7717/peerj.11781/fig-1

seed-derived megagametophyte and embryo samples clustered closest to each other,
suggesting similarity in their gene expression profiles. Also phloem and bud samples
clustered close to each other, whereas needle samples showed the most unique gene
expression profile. In the hierarchical clustering analysis, based on the correlations of gene
expression profiles, the differences among tissues are relatively shallow. But, similarly to
the PCA, all replicates are clustered according to their tissue type and not according to
their genotypes, corroborating the PCA results (Fig. S1).

Tissue preferentially upregulated and tissue-specific gene expression
We defined a gene as tissue PUR when there was a significant log fold change in the
expression value compared to the other tissues. To identify tissue PUR we first did a
differential expression (DE) analysis. For this we included all the genes in the raw

count matrix (Table S2). We decided not to apply any minimum number of counts per
gene as a filtering threshold to run the analysis, as we later applied a 5% false discovery rate
(FDR) threshold for the identification of PUR genes. Out of the 715,398 genes initially
included in the DE analysis, 198,413 genes had a maximum 5% FDR for differential
expression and were further included in the analysis to identify PUR genes. We identified a
total of 48,001 genes with tissue preferential expression, and out of the five tissues needle
has the highest number of PUR genes (Table 1)

Quantification of tissue specificity allows a powerful statistical analysis of correlation
between tissue-specific expression and for example, evolutionary rate or other dependent
or explanatory variables and factors. We identified the tissue specifically expressed
genes by calculating the T score per gene. The score ranges from zero to one, with a zero
given to genes expressed in all tissues and one given to completely tissue specific genes.
For this analysis we retained a set of 177,075 genes (Table S6) after applying the filtering
criteria described in Methods. We considered a gene as tissue specifically expressed
only if its T = 1. We identified a total of 3,899 genes with a tissue-specific pattern of
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Table 1 Genes identified as preferentially upregulated and tissue specific in five P. sylvestris tissues.
The percentage of unique UniProtKB identifiers is also shown.

Tissue preferentially upregulated genes Tissue specifically expressed genes

Total Annotated Unique (%) Total Annotated Unique (%)
Bud 8,225 2,515 30.6 693 342 49.3
Embryo 10,430 2,820 27.0 498 206 41.3
Megagametophyte 7,171 1,515 21.1 679 220 324
Needle 13,128 3,993 30.4 1,495 603 40.3
Phloem 9,047 2,603 28.7 534 202 37.8

expression. Similarly, the PUR analysis results, needle has the highest number of
tissue-specific genes (Table 1). To obtain the annotation of the genes identified as tissue
PUR and tissue specific, we retrieved the corresponding UniProtKB identifiers (Ojeda,
2020) from the Trinotate for the 715,398 putative genes in the TMM count matrix, out of
which 97,435 (14%) had a Swiss-Prot (Bairoch ¢ Apweiler, 2000) protein match based on
BLASTX (Ojeda et al., 2019). Most of the Swiss-Prot annotations (67%) originated

from Arabidopsis thaliana (65,214 genes). Other common annotation sources were
Nicotiana tabacum (9,794; 10%) and Oryza sativa (8,946; 9%). Only 1,663 genes (1.7%)
had an annotation to other Pinus species, of which 177 (10.6%) were hits to P. sylvestris,
and 608 (36.5%) genes had Swiss-Prot annotation to Picea. Note that Swiss-Prot is a
manually curated database that does not currently have a comprehensive set of annotated
gymnosperm proteins and therefore the best matches are often obtained from the model
plants such as A. thaliana. A proportion of our putative genes share the same gene
identifier (annotation) (Table 1). This probably reflects the incomplete collapse of different
isoforms in the assembled transcriptome used as reference, or the presence of gene families
(Wegrzyn et al., 2014). Also, a high number of the genes identified as PUR or tissue
specific lack annotation altogether, which is not surprising as genes with higher
tissue-specific expression have less conserved sequences and are less likely to find
orthologs among other species (Lemos et al., 2005; Raherison et al., 2012). A summary of
the 715,398 genes indicating their normalized expression level (TMM), T score, tissue
specificity status, PUR status, and annotation can be found in the Supplementary
information (Table S7).

Cursory inspection of annotations of highly expressed tissue PUR and tissue-specific
genes are congruent with some of the already known functions of the tissues. These results
confirm that our analyses capture biologically meaningful characteristics of the tissues.
For example in megagametophytes, enzymes related to seed storage lipid mobilization and
germination were upregulated and specifically expressed. Similarly, in needles, several
chlorophyll a-b binding proteins are upregulated. In embryo, multiple ribosomal proteins
and other proteins indicating active protein synthesis were upregulated. In vegetative buds,
expression of genes involved in defense against insect attack, like (—)-alpha-pinene
synthase and dirigent (Ralph et al., 2006) that take part in oleoresin synthesis, were highly
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expressed and specific to this tissue. In phloem, the two genes annotated as
metallothionein-like protein EMB30, an aquaporin and a thioredoxin-like protein were
highly expressed, similarly to Quercus suber phellem (cork) where metallothionein reacts
to oxidative stress (Mir et al., 2004) or in Pinus taeda xylem where the same proteins
were among the most highly expressed genes (Lorenz ¢» Dean, 2002).

Among the five tissues analysed, the needle had the highest number of genes with
tissue-specific expression and embryo the lowest (Table 1). Except for two genes, one in
megagametophyte and one in needle, all the genes with tissue-specific expression were
also among the PUR genes. However, as tissue specificity does not require a high
expression level, genes with T score equal to one are not necessarily the most upregulated
genes in their respective tissues. Comparison of our findings to other studies is not
straightforward as there are very few transcriptomic studies in P. sylvestris. But in
comparison to a previous study (Merino et al., 2016), where they focus on the comparison
between megagametophyte and embryo tissues at different developmental stages, we
identified less megagametophyte and embryo specifically expressed genes. One of the
reasons for this difference could be that the identification of unique genes in Merino et al.
(2016) was based only on the comparison between embryo and megagametophyte tissues.
As the identification of tissue specific genes is contingent to the number of tissues used
for the analysis, it is expected that the higher the number of tissues used in the comparison,
the lower the number of tissue specific genes that will be identified. In contrast, we
found a higher number of tissue specific genes in embryo, bud and needle compared to a
previous study in conifers (Raherison et al., 2012), where several tissue types were used.
One notable difference between this (Raherison et al., 2012) and ours was the higher
number of tissue-specific genes for megagametophyte found in P. glauca. Raherison
et al. (2012) found the highest number of unique genes in the megagametophyte in
comparison to other tissues analyzed. The low number of megagametophyte specific genes
identified in our study could be due to the use of mature embryos as starting material as
previous research suggests that the number of unique transcripts in the megagametophyte
varies during the developmental stages of embryogenesis (Merino et al., 2016).

One caveat of our analyses is that, unlike other studies, we did not use microdissection
in order to obtain the tissue samples (Carias et al., 2017). Hence, some of the “tissues”
are a mix of tissue types. Needles, for example, include several tissues (phloem among
them) (Pongrac et al., 2019), and mature embryos contain the shoot and root meristems as
well as cotyledons (Singh, 1978). In contrast, the mature megagametophyte is a quite
uniform storage tissue consisting of cells packed with starch protein and lipids (Simola,
1974; Vuosku et al., 2015). Another limitation of the dataset is that it represents only
one point in time and space, although gene expression is a dynamic process and
quantitative and qualitative variations exist over spatial and temporal scales. Instead of
sampling across several developmental stages or across a spatial gradient our dataset
represents a wider set of tissues, which increases the power to identify tissue PUR and
tissue specifically expressed genes. The added value of the dataset lies in the unexpected
functions and connections discovered among biological pathways and genes with
previously unidentified signals of tissue-specificity or up-regulation.
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Table 2 Number of significantly enriched GO terms, and number of non-redundant terms in
P. sylvestris tissues.

Tissue preferentially upregulated genes Tissue-specific genes

Total Significant  Non-redundant Total Significant Non-redundant

Bud 15,681 452 169 2,019 137 65
Embryo 17,461 253 182 1,178 75 50
Megagametophyte 9,690 306 123 1,363 111 51
Needle 25295 401 170 3,818 169 81
Phloem 16,371 422 181 1,249 58 40

Functional characterization of tissue preferentially upregulated and
tissue-specific genes

GO enrichment analysis allows the identification of gene functions enriched with certain
functional roles. The number of enriched functions was of the same magnitude across
tissue types, ranging from 253 to 452 for PUR genes and from 58 to 169 for tissue-specific
genes (Tables S8-517). The total number of GO terms, the number of significant
enriched terms, and the number of terms after the reduction of redundancy are shown in
Table 2. Most of the genes (86%) with expression signals in our study lacked annotation
from the Trinotate pipeline. Thus, they did not contribute to functional analysis or GO
enrichment results. A summary of the most highly expressed genes per tissue, and the most
enriched, non-redundant GO terms in the biological processes category are shown in
Fig. 2. The complete lists of gene identifiers and their corresponding GO terms per tissue
and per each set of genes (Data S5-514), along with tables with the results of the SEA
showing each GO terms, its p-value, and FDR (Tables S8-517), and lists with levels of
uniqueness or indispensability for each significantly enriched term in the five tissues (Data
§16) are provided in supplementary information.

In needles the significant GO terms reflected the exposure of trees to various stresses
and interactions with other organisms, whereas in embryos, buds and the phloem the
GO terms were mainly connected to different development-related processes. In needles
the enriched biological process GO terms among tissue-specific genes were related to
immune response (GO:0006955) as well as response to stress (GO:0006950) and other
organisms (GO:0051707) such as oomycetes (GO:0002229), bacteria (GO:0042742) and
fungi (GO:0009817). Moreover, terpene synthase activity (GO:0010333), which may play a
key role in the defense against herbivores (Achotegui-Castells et al., 2013), was an enriched
molecular function among tissue-specific genes in needles, but also in embryos and
vegetative buds. For example, reactive oxygen species (ROS) related biological processes
(GO:0006800 and GO:0042743, GO:0034614) and molecular functions (GO:0004601,
G0:0004364) were enriched among the GO terms in the tissue-specific genes of embryos,
which is consistent with an active ROS protection in developing tissues. In the phloem, a
special differentiation process, syncytium formation (GO:0006949), indicating the
interconnection of phloem sieve elements to generate a transport route (Geldner, 2014)
was an enriched biological process among the tissue specific genes.
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Figure 2 Ten most significant non-redundant biological processes. Ten most significant non--
redundant biological processes and their corresponding GO-term IDs (terms chosen based on the lowest
dispensability value), and ten most highly expressed annotated genes in each of the five tissues. Genes
preferentially upregulated (PUR) in a given tissue are in bold. Illustration and design by Dorota Pac-

zesniak.
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Megagametophyte-specific genes have crucial functions in seed
germination and energy conversion

Gymnosperms are characterized by the haploid female gametophyte tissue, the
megagametophyte, which surrounds the embryo in developing and mature seeds.

The megagametophyte can be considered a functional homolog of the endosperm in
angiosperms due to its role as a nourishing tissue (King ¢» Gifford, 1997; Costa, Gutiérrez-
Marcos ¢ Dickinson, 2004). However, the megagametophyte develops from a haploid
megaspore before the fertilization (Singh, 1978) and is therefore entirely maternally
inherited unlike the diploid or triploid endosperms of biparental origin (Williams ¢
Friedman, 2002; Baroux, Spillane ¢» Grossniklaus, 2002). To give an example of

the potential uses of the dataset, we provide a more detailed description of the
megagametophyte expression profile, but leave the in-depth analysis of the other tissues
for later investigations.

Among highly expressed and up-regulated genes in the megagametophyte were malate
synthase (EC 2.3.3.9) and isocitrate lyase (EC 4.1.3.1) that are essential in glyoxylate
cycle converting lipids into carbohydrates in seeds (Ching, 1970), as well as other
glyoxysomal proteins like Acetyl-CoA acyltransferase (EC 2.3.1.16), ABC transporter and
peroxisomal fatty acid beta-oxidation multifunctional protein AIM1 (Graham, 2008).
Seed storage related genes such as 2S seed storage-like protein, 11S globulin seed storage
protein 2 and 13S globulin basic chain and some isocitrate lyase copies were completely
megagametophyte specific (t = 1). Antimicrobial and antifungal protein coding genes
were the most highly expressed among annotated megagametophyte-upregulated genes.

The enriched GO terms of biological processes and molecular functions in the
megagametophyte tissue-specific genes included seed germination and the mobilization of
nutrient reserves. Nutrient reservoir activity (GO:0045735) indicated the mobilization of
energy sources from the megagametophyte for seed germination and early seedling
growth, as well as lipid catabolic processes (e.g. GO:0016042, GO:0044242). Malate
dehydrogenase activity (GO:0016615) and heme binding (G0O:0020037), which mostly
originated from the cytochrome P450 enzymes containing heme cofactors (Xu, Wang ¢
Guo, 2015), reflected the resume of active metabolism. Also, response to ROS (GO:
0034614) and antioxidant activity (GO:0016209) suggested active metabolism and
signaling. ROS are natural by-products of metabolism and may be detrimental to seed
viability because they can cause oxidative stress. However, in the seed ROS also work as
signals which underpin the breaking of dormancy and provide protection against
pathogens (Jeevan Kumar et al., 2015). Megagametophyte cells showed responses to
hormone stimulus (GO:0032870) and the function of hormone-mediated signaling
pathways (GO:0009755) including abscisic acid (GO:0009738), auxin (GO:0009734) and
ethylene (GO:0009873) which also belong to the molecular networks regulating seed
dormancy and germination (Seo et al., 2009; Guangwu & Xuwen, 2014; Miransari ¢ Smith,
2014; Shu et al., 2016). Cellulose biosynthetic process (GO:0030244) and primary cell
wall biogenesis (GO:0009833) suggest that cell walls in the megagametophyte may
participate in water retention and give mechanical support to the germinating embryo
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(Otegui, 2007). Similarly to previous findings in P. sylvestris (Merino et al., 2016)
megagametophytes, we found enrichment for processes involved in the response to
chemical and endogenous stimuli (GO:0042221, GO:0071495 ). Merino et al. (2016)
suggested that the megagametophyte could also be involved in the regulation of the
embryo development through the induction of signaling pathways triggered by sensing
environmental signals in a similar way the angiosperms’ endosperm does (Yan et al,
2014). Altogether, our findings show that the megagametophyte is not just a reserve
nutrition for the germinating embryo, but a metabolically active tissue contributing in
multiple ways to seed germination and, thus, underline the importance of the haploid stage
in P. sylvestris life cycle.

Several enzymes widely used in allozyme-based population genetic studies ((Szmidt &
Muona, 1989) and references therein) such as aconitate hydratase (EC 4.2.1.3), malate
dehydrogenase (EC 1.1.1.37) and aspartate aminotransferase (EC 2.6.1.1) were
megagametophyte-specific and among the top 50 expressed genes in the tissue. As they
may be more prone to natural selection against recessive deleterious variants when
expressed at the haploid stage, early population genetic analyses may have bias in for
example estimates of the overall genetic diversity based on these loci as highly expressed
genes are known to be under strong purifying selection.

CONCLUSIONS

We provide a widely and interdisciplinary applicable genome-wide atlas of tissue-level
transcription patterns based on RNA-seq for economically and ecologically significant
coniferous tree P. sylvestris. Quantitative data and analysis of expression level, as well as
breadth and tissue specificity are provided for 715,398 different putative genes.

The mapping and bioinformatic analyses of gene expression are based on the most
complete and high-quality reference transcriptome of P. sylvestris available to date (Ojeda
et al., 2019). Previous transcriptome studies of P. sylvestris have concentrated on a narrow
set of tissues in each study such as wood (Paasela et al., 2017), embryo (Merino et al.,
2016), and needles (Wachowiak et al., 2015; Duarte, Volkova e~ Geras’kin, 2019) or focused
on a limited set of genes (Guseva, Biriukov ¢ Sadovsky, 2020). The present study allows
comparison across a wide set of genes expressed in the above-ground parts of adult

P. sylvestris trees growing in a natural forest.

In addition to genome sequence annotations, we foresee multiple potential uses for the
dataset. Level and breadth of gene expression are known to be linked to the evolutionary
rate and level of conservation (Lemos et al., 2005, Brawand et al., 2011, Yang ¢» Wang,
2013). By combining our data with similar data in other conifers or angiosperms it is
possible to study the evolutionary conservation of expression patterns, or the differences
in evolutionary rates across tissue-specific expression levels and gain a deeper
understanding of the determinants and main factors affecting for example rate of adaptive
evolution and dynamics at the genome level. The response of trees to a combination of
different stresses is unique and cannot be directly extrapolated from studying only
single stressors in experimental conditions (Niinemets, 2010). The transcriptome resource
for adult P. sylvestris trees growing under natural conditions, where they are
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simultaneously exposed to a number of different abiotic and biotic stresses as well as
interactions with other organisms, provides a valuable tool also for physiological studies.
Finally, un-annotated conifer genes with high expression or tissue specificity can open up
whole new research avenues, independent of the previously available knowledge based on
angiosperm model plants such as A. thaliana and Populus.
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All the supplementary files can be found at DOI 10.6084/m9.figshare.c.5264255.v1.
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