
Aging is a strong risk factor for developing primary open 
angle glaucoma (POAG) [1-7]. Schlemm’s canal (SC) inner 
wall and juxtacanalicular tissue are the main sites of aqueous 
outflow resistance [8] which are responsible for the intra-
ocular pressure (IOP) elevation in patients with POAG [8].

Senescence of SC and trabecular meshwork (TM) cells 
have been implicated in the initiation and progression of 
glaucoma [9-13]. The oxidizing species produced and accu-
mulating during cell metabolism can cause molecular damage 
to the TM cells, which could increase aqueous humor outflow 
resistance [10,14]. Further, significantly higher levels of DNA 
oxidation products were observed in the TM of patients with 
glaucoma, and the level of DNA damage strongly correlated 
with IOP elevation and visual field defects [13,15].

Hyperoxia leading to senescence is an established model 
of aging which has been widely used in aging research 
[16-18]. This model has also been investigated in the cells of 
the outflow pathway in the context of glaucoma pathogenesis 
[10,14,19,20]. This model is based on one of the most accepted 
theories of aging, stress-induced premature senescence 

(SIPS) [21]. This model provides a constant increase in reac-
tive oxygen species without the need for additional chemical 
or cellular treatments and has relatively low toxicity in that 
sustained confluence, and thus, normal post-mitotic condi-
tions were assured throughout the length of the experiment 
[22-24].

Our previous studies showed that cell senescence 
influenced cell monolayer permeability through cytoskel-
etal proteins and cell adhesion proteins in porcine angular 
aqueous plexus (AAP) cells [25]. Moreover, we demonstrated 
that senescence reduced the mechanotransduction sensitivity 
of AAP cells; specifically, the senescent cells were less able to 
respond to shear stress which should downregulate junctional 
proteins to facilitate aqueous humor drainage and maintain 
IOP homeostasis [12]. Cell senescence also altered eNOS and 
phosphorylated eNOS, and resulted in reduced NO produc-
tion [26]. However, the mechanism by which these responses 
were regulated remains unknown.

MicroRNAs (miRNAs) are highly conserved non-coding 
RNAs. They typically negatively regulate protein expression 
[27] by binding to their target sites in the 3′-untranslated 
region (UTR) of the mRNA. miRNAs are key modulators of 
cellular senescence. miRNAs are differentially expressed in 
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integrin and the downstream pathways (Src/Rho kinase, focal adhesion kinase (FAK)/NO-cGMP), and one miRNA 
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senescent cells, which further implicates them in the imple-
mentation of the senescent phenotype [28-30]. The dysregula-
tion of miRNA-governed senescence underlies age-associated 
diseases [31-33] and cancer [34]. Researchers reported the 
miRNA profile in the aqueous humor of patients with glau-
coma and identified several differentially expressed miRNAs 
[35-37]. Further, microRNAs were differentially expressed 
in the retinas of eyes with advanced glaucomatous damage 
compared with normal controls [38]. This evidence suggests 
that miRNA may be important in the pathogenesis of glau-
coma and merits further investigation. However, the miRNA 
expression profile is not known in senescent Schlemm’s canal 
endothelial cells.

This study aimed to characterize miRNA expression 
profile in senescent AAP cells, which are the porcine equiva-
lent of human SC cells. These results were further correlated 
to the protein expression profile with isobaric tags for relative 
and absolute quantification (iTRAQ) analysis to identify their 
target proteins. Bioinformatics analysis revealed the differ-
entially expressed miRNAs may regulate critical pathways 
involved in aqueous humor outflow.

METHODS

Experimental design: This study adhered to the ARVO 
Statement for Use of Animals in Research. And our research 
was proved by Laboratory Animal Management and Ethic 
Committee of Eye & ENT Hospital. Porcine AAP cells 
were isolated and cultured. Cell senescence was induced by 
hyperoxia for 2 weeks. miRNA microarray and proteomics 
analyses of normal and senescent AAP cells were performed 
to identify differential miRNAs and proteins. miRNA and 
protein data were correlated with bioinformatics analysis. 
The workflow of this study is shown in Figure 1.

Cell culture: Cell culture AAP endothelial cells were isolated, 
cultured, and characterized according to an established 
method [39]. Briefly, for each cell line, outflow tissue from 
ten porcine eyes (4- to 6-month-old pigs) was collected. The 
cells were allowed to multiply for 8 days and then treated 
with puromycin (4 µg/ml, InvivoGen, San Diego, CA) for 2 
days. The puromycin-selected cells were similar to human 
Schlemm’s canal endothelial cells in that the cells exhibited 
contact inhibition and expressed the same surface markers 
as those seen in cultured human SC cells and whole porcine 
tissue (Appendix 1). Three independent cell lines (each cell 
line came from ten porcine eyes) were used as one biological 
replicate for microarray assay or iTRAQ analysis.

Cell senescence model: Cell senescence was induced by a 
model of chronic oxidative stress [20,25]. Cells were cultured 
under normobaric hyperoxia condition (40% O2, 5% CO2) 
for 14 days in a triple-gas incubator (Smart cell, Shanghai, 
China). Control cultures were grown under physiologic 
oxygen condition (20% O2, 5%CO2) for 14 days in parallel 
with the experimental group of the same cell line. AAP cells 
were stained positive for endothelial cell specific markers 
VE-cadherin and eNOS, and senescence of AAP cells was 
confirmed with β-galactosidase staining (Appendix 1). The 
expression levels of p53 and p21 and cell cycle analysis were 
also investigated to ensure cell senescence (Appendix 1).

MicroRNA microarray assay: The miRNA microarray anal-
ysis was performed three times using three independent cell 
samples (each individual cell line came from ten porcine eyes). 
Total RNA was isolated with an miRNeasy kit (QIAGEN, 
Shanghai, China). The RNA integrity number (RIN) was 
assessed using a Bioanalyzer (Agilent 2100, Shanghai, China) 
according to the manufacturer’s instructions. It allows visual 
inspection of RNA integrity to determine the RNA quality. 
Only samples that achieved an RIN score greater than 9.5 
were used for further microarray analysis. The miRNA 

Figure 1. Experimental design and 
work flow. After the microarray and 
proteomics analysis of normal and 
senescent aqueous plexus (AAP) 
cells, bioinformatics analysis was 
performed to determine key Gene 
Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes 
(KEGG) pathways, and miRNA-
protein correlations.
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microarray analysis was performed three times. In each one 
of the biological replicates, miRNA expression was measured 
using eight technical replicates.

The miRNA microarray analyses were performed using 
different samples by LC Sciences (Houston, TX). (The 
sequences are listed in Appendix 2) Four to eight micrograms 
of total RNA samples were fluorescence labeled and hybrid-
ized overnight. Fluorescence signals were collected using a 
laser scanner (GenePix 4000B, Molecular Devices, San Jose, 
CA) and digitized (Array-Pro, Media Cybernetics, Rockville, 
MD). After the background signals were subtracted, data were 
normalized using a locally weighted scatterplot smoothing 
(LOWESS) filter, which is a preferred method for miRNA 
data sets [40]. Signals between groups were compared with 
the Student t test. To include as many miRNA candidates 
as possible, a p value of less than 0.05 without fold-change 
limitation was regarded as statistically significant.

Quantitative real-time PCR: Quantitative real-time PCR 
(qRT-PCR) of differentially expressed miRNAs was 
performed using qTOWER 2.2 (Analytik Jena, Jena, 
Germany) to validate differentially expressed miRNAs 
(p<0.05) to ensure statistical significance. RNA was extracted 
from three experimental samples and three control samples 
which were different from those used in the microarray 
analysis. cDNAs were synthesized in 40 μl reaction volume. 
The primer sequences are listed in Appendix 3. Amplifica-
tion and detection were performed on 96-well plates. Each 
10 μl Bestar™Real time PCR Master Mix (DBI, München, 
Germany) contained 5 μl 2×SYBR® Green Supermix, 1 μl 
cDNA reaction mixture, 0.5 μl reverse and sense primers, as 
well as 3 μl distilled deionized water (ddH2O). The reaction 
conditions were as follows: initial denaturation at 95 °C for 
3 min, followed by 40 cycles of 95 °C for 10 s, 58 °C for 30 
s, and finally 60 °C~95 °C,+1 °C/cycle holding time 4 s for 
melting curve analysis. The expression levels of mRNA were 
normalized to reference genes U6. Relative miRNA levels 
were calculated using the Pfaffl method [41] with the installed 
software qPCRsoft3.0. (The Pfaffl method is preferred for 
large differences between the amplification efficiency of the 
target gene and the internal gene.)

iTRAQ: iTRAQ technology is a widely used method in the 
field of quantitative proteomics with high accuracy and reli-
ability. It is an isobaric labeling method by tandem mass spec-
trometry to determine the number of proteins from different 
sources in a single experiment [42,43]. Proteomics of control 
cells and senescent cells were performed with iTRAQ, which 
detected the whole proteome in porcine proteins. iTRAQ 
analysis was performed three times.

Cell lysates were processed with radioimmunoprecipita-
tion assay (RIPA) solution. Then, the protein concentration 
was measured using the Bradford method. One hundred 
micrograms of protein from each sample was processed for 
iTRAQ labeling. Then, the proteins were denatured, reduced, 
alkylated, trypsin digested, and labeled with iTRAQ labeling 
(8-plex iTRAQ, AB SCIEX, Framingham, MA). The pooled 
iTRAQ-labeled peptides were fractionated with strong cation 
exchange (SCX) chromatography (Shimadzu LC-20AB 
HPLC Pump system) using an SCX column containing 5 
mm particles (4.66250 mm Ultremex column, Phenomenex, 
Torrance, CA).

The eluted peptides were pooled as 20 fractions, desalted 
with the Strata X C18 column (Phenomenex), and vacuum-
dried. The elute from the Nano Liquid Chromatography 
system (Shimadzu LC-20AD) was coupled to a tandem mass 
spectrometer in an LTQ Orbitrap Velos (ThermoFisher Scien-
tific, San Jose, CA), through an electrospray ionization source 
equipped with a 15 µm ID emitter tip.

Similar to previous publications ([44,45]), protein expres-
sion ratios of >1.2 or <0.83 and a p value of less than 0.05 
according to the Student t test were considered differential 
proteins. The abundance ratio was calculated using the 
unique peptide strength corresponding to each protein (the 
sum of the ion strength of the identification spectrum label) 
to calculate the average ratio. Protein coverage is the length 
of the sequence identified in the protein divided by the length 
of the total protein sequence. If the unique peptide segment 
identified in the protein met the false discovery rate (FDR) 
filtering criteria, the protein was identified. Complete experi-
mental details for iTRAQ are in Appendix 4.

Bioinformatics analysis: Differentially expressed miRNAs 
of the control and experimental groups were identified with 
the t test using TMev bioinformatics software. To get the 
gene targets of differentially expressed miRNAs, porcine 
3′-UTR sequences of mRNA were downloaded from the 
Ensemble database and complementarily linked with 
miRNA sequences. The final predicted targets and their 
corresponding proteins were determined by the intersection 
of results from three different databases (TargetScan, PicTa, 
and miRanda), which makes the prediction more reliable and 
highly accurate. Clustering analysis was routinely performed 
using the hierarchical method when the p value was less than 
0.01. Average linkage and Euclidean distance metric were 
performed in cluster analysis. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
annotations were performed against porcine proteins using 
the DAVID gene annotation tool.
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Bioinformatics analysis on the raw tandem mass 
spectrometry (MS/MS) data was performed according to 
a standard protocol (Appendix 4). Taking the amino acid 
sequences as input, differentially expressed proteins (iTRAQ) 
were further annotated with GO and Cluster of Orthologous 
Groups (COG) analysis. GO functional classifications were 
analyzed with Blast2GO software, while COG information 
was retrieved by blasting the sequences on the COG database 
[46]. To explore the biological meanings of these proteins, 
GO enrichment analysis was performed to identify GO terms 
that were statistically significantly enriched in differentially 
expressed proteins (p<0.05), and the enriched metabolic 
pathways of these identified proteins were screened via the 
KEGG database (p<0.05).

Target proteins of differentially expressed miRNAs were 
identified from the iTRAQ analysis. These differentially 
expressed proteins were further mapped to KEGG pathways, 
if more than three proteins are related to known pathways that 
are important to the pathogenesis of glaucoma.

Western blotting: Cell lysates were prepared according 
standard protocols. Briefly, cells were prepared using RIPA 
solution. After protein concentrations were measured with the 
Bradford method, equal amounts of protein (30 μg protein/
lane) were separated with 10% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE). Then the 
resolved proteins were transferred to nitrocellulose filters 
which was then blocked with 5% nonfat dry milk in Tris-
buffered saline with 0.05% Tween-20 for 2 h. Filters were 
probed using primary antibodies, ITGAV (1:1,000, Abcam), 
ITGB3 (1:1,000, Abcam) pMLC (1:1,000), sGC (1:3,000), and 
eNOS (1:1,000), followed by incubation with peroxidase-
linked secondary antibodies. GAPDH was used as a loading 
control. Four independent replicates were used for statistical 
analysis with the Student t test.

RESULTS

Differential microRNA expression in senescent AAP cells: 
We identified differentially expressed miRNAs in senes-
cent AAP cells with miRNA microarray analysis. Among 
the 407 miRNAs identified, 102 miRNAs were statistically 
significantly expressed in senescent cells compared to 
controls (p<0.05). The microarray raw data are shown in 
Appendix 5. The miRNA microarray hybrid signal ranged 
from 0 to 51,949; those that had a value greater than 500 
were further analyzed (in our experience, a low hybrid signal 
was more likely to result in false positives). The heat map of 
the miRNAs shown in Figure 2 demonstrated 17 statistically 
significantly downregulated miRNAs and 16 statistically 
significantly upregulated miRNAs (p<0.05, signal>500, n=3, 

Student t test; detailed information is listed in Appendix 6). 
Then differential miRNAs were validated with qRT-PCR, 
which confirmed 12 miRNAs (Table 1).

Target genes and proteins of differentially expressed 
miRNAs are listed in Appendix 7. GO analysis revealed 504 
GO terms with p values smaller than 0.05 with the submission 
of predicted target genes. GO terms of top-ranked classifica-
tion gene numbers are listed in Appendix 8. Some are relevant 
to aqueous outflow, for example, extracellular matrix orga-
nization (GO:0030198, p=0.0111, gene number: 33), cell–cell 
junction organization (GO:0045216, p=0.0095, gene number: 
10), focal adhesion (GO:0005925, p<0.0001, gene number: 
139), cytoskeleton (GO:0005856, p=0.0056, gene number: 
88), cell–cell junction (GO:0005911, p=0.0043, gene number: 
65), microtubule cytoskeleton (GO:0015630, p=0.0436, gene 
number: 52), adherents junction (GO:0005912, p=0.0268, 
gene number: 14), and actin binding (GO:0003779, p=0.0316, 
gene number: 92).

KEGG analysis identified 138 pathways with p values 
smaller than 0.05. The top 20 KEGG pathways ranked by 
predicted gene number are listed in Appendix 8. Some are 
possibly involved in aqueous humor drainage.

Differential protein expression in senescent AAP cells: 
iTRAQ analysis identified a total of 4,165 proteins and 
17,603 unique peptides. The top ten up- and down-expressed 
proteins are presented in Table 2, and raw data are shown in 
Appendix 9 and Appendix 10. The protein abundance distri-
bution is shown in Appendix 11. A total of 370 proteins were 
differentially expressed (p<0.05, fold change>1.2 or <0.83), 
of which 148 proteins were upregulated, and 222 proteins 
were downregulated. Protein fold-difference was expressed 
in log form with the base equaling 2. A log ratio greater than 
0 indicates upregulation; less than 0 is downregulation. Most 
of the values fell within −5 and 5 (Figure 3). GO classifica-
tion and enrichment analysis revealed the functional groups 
of differentially expressed proteins (Figure 4, Appendix 8). 
Intermediate filament (2.0%), extracellular matrix (3.8%), 
and cell–cell contact zone (1.5%) were identified. The KEGG 
pathway enrichment analysis is shown in Appendix 8. The 
COG protein analysis showed the protein distribution in 
different cell functional groups (Figure 5).

Identification of miRNA and protein pairs: Differentially 
expressed miRNA and protein pairs are presented in Table 
3. A total of seven miRNAs and 13 proteins were further 
mapped to KEGG pathways after selection. These miRNAs 
were computationally predicted to negatively or positively 
regulate their target proteins (Figure 6). Six miRNAs were 
predicted to directly target ITGA/ITGB, the two subunits of 
integrin, which could regulate IOP through the downstream 
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pathways related to focal adhesion, cytoskeleton, NO-cGMP, 

and gap junction. Western blot (WB) verification of ITGAV 

and ITGB3 show no statistically significant changes in 

Figure 7. The possible reasons are analyzed in the Discussion 

section. However, the proteins (pMLC, eNOS, and sGC) of 

the downstream pathways showed a statistically significant 

difference.

DISCUSSION

This study identified a range of differentially expressed 
miRNAs and proteins in senescent AAP cells, which are the 
porcine equivalent of SC cells. The senescence of SC cells 
was thought to contribute to the elevation of IOP [11,12]. By 
correlating the miRNA microarray data with proteomics data, 
we identified those key miRNAs whose target proteins are 
also statistically significantly altered in AAP cells. The inte-
gration and analysis of differential miRNA and proteomics 

Figure 2. miRNA expression in APP cells. Heat map of miRNAs (p<0.05, signal>500, n=3, Student t test). Seventeen miRNAs were statisti-
cally significantly downregulated and 16 miRNAs significantly upregulated.
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data may help us to better understand the responses occurring 
in SC cells under senescence.

miRNA microarray analysis identified 33 differentially 
expressed miRNAs (Appendix 6). However, the results of 
the miRNA microarray assays presented an inconsistent 

pattern within groups. Our speculation is that the difference 
between primary cells might be the possible reason for the 
inconsistency within groups. Although the variation is large, 
which may lead to omission, the detected miRNAs were 
unaffected. In addition, these miRNAs were confirmed with 

Table 1. Differentially expressed miRNAs by qPCR validation.

miRNA P value Fold change Up/downregulated
ssc-miR-146a-5p 0.0000 3.5546 Up

ssc-miR-146b 0.0000 2.5848 Up
ssc-miR-34a 0.0000 1.6304 Up
ssc-miR-99a 0.0005 1.5362 Up

ssc-miR-24–3p 0.0000 1.4731 Up
ssc-miR-181a 0.0001 1.3115 Up
ssc-miR-23a 0.0207 1.1387 Up

ssc-let-7g 0.0018 1.1241 Up
ssc-let-7d-5p 0.0129 0.9136 Down
ssc-miR-15b 0.0000 0.4996 Down

ssc-miR-129a-3p 0.0463 0.3948 Down
ssc-miR-184 0.0000 0.0590 Down

Fold changes were calculated from the normalized signal ratio of the senescent AAP cells over normal AAP cells. P values were obtained 
by Student t test (n=3).

Table 2. Top 10 differentially expressed proteins by iTRAQ.

Ensembl annotation Gene alias Fold change Up/downregulated
ENSSSCP00000011355 PNLIP 5.523 Up
ENSSSCP00000005754 ALDH1B1 5.469 Up
ENSSSCP00000024109 CTRB2 4.479 Up
ENSSSCP00000016408 CHI3L1 4.422 Up
ENSSSCP00000027363 C3 3.773 Up
ENSSSCP00000020422 CLIC4 3.483 Up
ENSSSCP00000011244 SCD 3.38 Up
ENSSSCP00000025323 TFF2 3.117 Up
ENSSSCP00000000251 KRT75 3.005 Up
ENSSSCP00000004526 ENPP1 2.966 Up
ENSSSCP00000010111 KCTD12 0.116 Down
ENSSSCP00000011028 PRXL2A 0.189 Down
ENSSSCP00000006775 APOA2 0.232 Down
ENSSSCP00000009695 FGF2 0.236 Down
ENSSSCP00000017259 GIGYF2 0.241 Down
ENSSSCP00000027528 HMOX1 0.248 Down
ENSSSCP00000023743 COTL1 0.295 Down
ENSSSCP00000024753 NUDCD2 0.34 Down
ENSSSCP00000027850 ARSA 0.352 Down
ENSSSCP00000025799 NXF1 0.377 Down
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PCR to ensure a statistically significant difference. Twelve 
were verified with PCR. All 12 miRNAs were previously 
found to be altered or participate in cell senescence. Three 
miRNAs (miR-146a [47], miR-146b, and miR-15b [30]) were 
also detected in senescent TM cells. The other nine miRNAs 
(miR-34a [48], miR-99a [49], miR-24–3p [50], miR-181a [51], 
miR-23a [52], let-7g [53], let-7d-5p [54], miR-129a-3p [55], and 
miR-184 [56]) were also found to be involved in senescence 
in other cell types.

The total differential expressed miRNAs produced a 
total of 504 GO terms and 138 KEGG pathways. Some were 
identified to regulate IOP by actin binding, cytoskeleton, 
actin binding, cell–cell junction, extracellular matrix (ECM) 
organization, focal adhesion, and so on. In SC cells, stiff-
ness [57] and junctions are related to the formation of pores. 
Reorganization of extracellular matrix [59] alters basement 
membrane permeability. The present findings are consistent 
with those of previous studies. For example, the let-7 family 
is believed to inhibit fibrosis by repressing expression of 
collagen genes [60]. miR-24-3p accelerated the migration and 
invasion of bladder cancer cells [61]. miR-15b directly targets 
tissue inhibitor of metallopeptidases 2 (TIMP2) to increase 
the migration and invasion of human lung cancer cells [62]. 
However, overexpression of miR-15b aggravates IL-1beta-
induced ECM degradation [63] in nucleus pulpous cells. In 
other words, these miRNAs were found to be involved in 
ECM regulation and cell junctions. The differential expres-
sion of 12 miRNAs was confirmed with PCR (Table 1). 
miRNA-protein pairs were identified for these miRNAs. A 
total of 4,165 proteins and 17,603 unique peptides were identi-
fied. GO and COG protein analysis further classified these 
differential proteins according to their functions. Binding, 
catalytic activity, and transporter activity were included in 

top molecular functions. The top biological processes were 
the cellular process, metabolic process, and single-organism 
process. In senescent cells, these top changes in molecular 
function and biological processes were reasonable and 
consistent with the cellular senescence hallmark [64,65]. In 
the senescent endothelial cells, signaling, biological adhesion, 
and localization might relate to alteration of the endothelial 
cell barrier and interaction with ECM.

Bioinformatic analysis further revealed that the seven 
miRNAs might regulate aqueous humor outflow in AAP 
cells through three signaling pathways which are important to 
glaucoma pathogenesis (Figure 6). The three pathways form 
a network through integrin and PKG. In the following, we 
discuss each signaling pathway in detail.

First, miR-23a, miR-146a-5p, miR-146b, and let-7g 
could regulate aqueous humor outflow by integrin/Src/Rho 
kinase/MLC/F-actin. ITGA and ITGB are direct targets of 
miR-23a, miR-146a-5p, miR-146b, and let-7g. Upon engage-
ment of integrin receptors with extracellular ligands, the 
focal adhesion kinase (FAK)-Src complex is activated. Src 
transiently inhibits RhoA activity through RhoGAP and 
GRLF1 (p190RhoGAP) [66,67]. RhoA and Rac stimulation 
can increase the transendothelial resistance of human SC 
cells, by phosphorylating MLC [68], and MLC phosphory-
lation can trigger F-actin organization which impacts focal 
adhesion and cell permeability [69]. It has also been reported 
that Rho-associated protein kinase inhibitor significantly 
decreases outflow facility by targeting junction or calcium 
ion transport of SC cells [70,71]. Rho kinase and MLC are 
important pharmaceutical targets for ocular hypertension. 
Rho kinase inhibitor (netarsudil, NDA:208254) was recently 
approved by the U.S. Food and Drug Administration (FDA) 

Figure 3. Protein abundance 
ratio distribution. Differentially 
expressed proteins (p<0.05, fold 
change>1.2 or <0.83, n=3, Student t 
test) are plotted in this scattergram. 
A total of 148 upregulated proteins 
and 222 downregulated proteins 
were observed.
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as a novel glaucoma drug to increase conventional outflow 
and treat ocular hypertension. MLC kinase inhibitor is also 
a potential new therapy for lowering IOP [72]. It might be 
possible to use their upstream miRNA to regulate outflow 
through Rho kinase and MLC.

Second, let-7d-5p and miR-184 could regulate outflow 
by integrin, FAK, PI3K, Akt, eNOS, and NO-cGMP. The 
activation of ITGA and ITGB phosphorylates FAK, which 

is upstream of the phosphatidylinositol 3-kinase (PI3K)/Akt 
signal pathway [73]. In a previous study, we showed that 
PI3K/Akt facilitates aqueous humor drainage through activa-
tion of eNOS [74], an enzyme that catalyzes the release of NO 
[75]. NO-cGMP is an important pathway for IOP regulation. 
The NO-donating prostaglandin analog latanoprostene bunod 
(LBN) was developed as a novel drug for ocular hypertension 
[76].

Figure 4. GO analysis of identified 
proteins with the iTRAQ method. 
Gene Ontology includes the cellular 
component (A), molecular function 
(B), and biological process (C). Cell 
junction and extracellular matrix 
proteins are closely related to intra-
ocular pressure (IOP) regulation 
(A). Molecular function such as 
binding, catalytic activity, trans-
duction, and antioxidant activity 
are all implicated in IOP regulation 
(B). Biological adhesion is also key 
to IOP regulation (C).
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Third, miR-24–3p could regulate aqueous humor outflow 
by IP3R, Ca2+, and PKC which indirectly controls gap junc-
tion. Gap junction is related to endothelial cell stiffness [77], 
which may affect IOP homeostasis potentially by vacuole and 
pore formation in SC cells [57,77]. Gap junction blocker (e.g., 

carbenoxolone) significantly increases outflow facility [58]. 
Activation of IP3R by miR-24–3p results in the release of Ca2+ 
from the endoplasmic reticulum (ER) [78]. The increase in 
the Ca2+ concentration activates connexins, a family of trans-
membrane proteins that constitute the gap junction channels 

Figure 5. COG analysis of differentially expressed proteins. Among the 24 terms, the top three protein function classes are general function 
prediction only, posttranslational modification, protein turnover, chaperones, and translation, ribosomal structure, and biogenesis.

Table 3. miRNA-target genes pairs.

MiRNA ID Up/down 
(miRNA) Target gene Up/down 

(protein) Regulation type

ssc-let-7d-5p Down SCD, ITGB3, KRT5, NAP1L1, ACSS2 Up Negative
    RANBP2, FNDC3B, IGF2BP2 Down Positive

ssc-let-7g Up RANBP2, FNDC3B, IGF2BP2 Down Negative
    SCD, ITGB3, KRT5, NAP1L1, ACSS2 Up Positive

ssc-miR-129a-3p Down WDR26, TM9SF3, SBDS Up Negative
ssc-miR-146a-5p Up ITGAV, NAP1L1, VBP1, VPS36 Up Positive

ssc-miR-146b Up ITGAV, NAP1L1, VBP1, VPS36 Up Positive

ssc-miR-15b Down SCD, CALU, ARL1, NEK9, ACSS2, CAB39, 
SBDS Up Negative

    ACSL4, TRPA1, SNRPA1, RRM1, GRK5, 
FNDC3B Down Positive

ssc-miR-181a Up FNDC3B, IGF2BP2 Down Negative
    SCD, ENPP1, HSD11B1, PSME4, NEK9, TM9SF3 Up Positive

ssc-miR-184 Down ITGB3, HADH Up Negative
    EPHX1, GYS1 Down Positive

ssc-miR-23a Up SKIV2L2, SF3A1 Down Negative
    ITGAV, TM9SF3 Up Positive

ssc-miR-24–3p Up GRK5, SKIV2L2, PARK7, DDX18, CYB5R1 Down Negative
    RPL35, RAB5C, ITPR3, NEK9 Up Positive

ssc-miR-34a Up ACSL4, SF3A1, TM9SF4 Down Negative
    JUP, ALCAM Up Positive
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[79]. Connexin phosphorylation can change the unitary 
conductance and open probability of gap junctions [80].

It is interesting that six out of seven miRNAs directly 
target integrin and the expression of integrin. Integrin is a 
transmembrane heterodimer with two subunits (α and β). 
It serves as a ligand binding site with various downstream 
signaling in cytoplasmic side [81]. Integrin is the binding 
site for structural adaptors (e.g., talin and tensin) which link 
directly to cytoskeleton [82]. Integrin is also the binding 
site for scaffolding adaptors (e.g., kindlin and paxillin) 
which contribute to focal adhesion [83]. As the binding site 
for catalytic adaptors, integrin interacts with Src and FAK 
which act as a signal transducer from adhesion molecules 
[84]. ECM proteins are the primary ligands for integrin; 
integrin activation can enhance ECM deposition by integrin-
mediated matrix assembly and therefore increase aqueous 
humor outflow resistance. However, an agonist of the integrin 

subtype α4β1 could increase cell–ECM detachment in SC 
cells and increase outflow facility [85].

In the present study and our previous study, although 
the downstream expression levels of proteins (pMLC, eNOS, 
and sGC) and cellular functions [11,12,26] were validated to 
be altered, the levels of ITGAV and ITGB3 were not statisti-
cally significantly changed, accompanied by the increased 
expression of some miRNAs (miR-23a, 146a-5p, miR-146b, 
and let-7g) and the decreased expression of some miRNAs 
(let-7d-5p and miR-184). As the pathway showed, the ITGAV 
and ITGB3 expression levels depended on the integrated 
results of multiple regulation. Therefore, the combined effect 
was hard to define when not only upregulated miRNAs 
were considered. As the accumulated effect of miRNAs on 
integrin in the present study remains elusive, further studies 
are needed to improve our understanding of the associations 
between these miRNAs and integrin. A limitation of this 
study is that it did not validate the effect of the miRNAs 

Figure 6. Correlation of miRNA and its corresponding regulated target proteins based on the KEGG database. Six miRNAs were predicted to 
directly interact with cell membrane protein integrin and influence aqueous humor by Src/Rho kinase and the Focal Adhesion Kinase (FAK)/
Nitric Oxide-Cyclic Guanosine (NO-cGMP) pathway. One miRNA might affect gap junction channel through the Inositol trisphosphate 
receptor (IP3R)/Protein kinase C (PKC) pathway.
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on aqueous humor outf low function, and this might be 
done in future studies. In conclusion, this study identified 
seven differentially expressed miRNAs in senescent AAP 
cells, which could contribute to IOP elevation by regulating 
three pathways responsible for cytoskeleton, focal adhesion, 
NO-cGMP signaling, and gap junction.
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Figure 7. Expression validation of proteins in the predicted pathways. Representative blot images of pathway proteins are shown. ITGAV 
and ITGB3 were not statistically changed in senescent aqueous plexus (AAP) cells (ITGAV p=0.67, ITGB3 p=0.19, n=4, Student t test), but 
ITGB3 showed a trend of higher level (A, B). pMLC, eNOS, and sGC showed statistically significant changes in this pathway (p<0.05, n=3, 
Student t test).
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