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Abstract This work reports the second part of a review
intending to give the state of the art of major metabolic
phenotyping strategies. It particularly deals with inherent
advantages and limits regarding data analysis issues and
biological information retrieval tools along with transla-
tional challenges. This Part starts with introducing the
main data preprocessing strategies of the different meta-
bolomics data. Then, it describes the main data analysis
techniques including univariate and multivariate aspects.
It also addresses the challenges related to metabolite
annotation and characterization. Finally, functional analysis
including pathway and network strategies are discussed. The
last section of this review is devoted to practical consider-
ations and current challenges and pathways to bring
metabolomics into clinical environments.

Keywords Omics .Metabolomics . Metabolome .Mass
spectrometry . Nuclear magnetic resonance . Chemometrics

Introduction

Addressing biology as an informational science is a key driver to
translate biological data into actionable knowledge. This requires
innovative tools that allow information extraction from high di-
mensional data. Bioinformatics is the field that was born to tackle
this challenge (Hogeweg 2011). Bioinformatics applies informat-
ics techniques such as applied mathematics, computer science,
and statistics to retrieve the organized biological information. In
short, bioinformatics is a management information system for a
biological system (Luscombe et al 2001). The metabolomic data
requires adapted statistical tools to retrieve as much chemical
information as possible to translate it into biological knowledge.
The major challenge is to reduce the dimensionality by selecting
informative signals from the noise. To achieve this goal, chemo-
metric tools are widely used. Chemometrics is the science of
extracting useful information from chemical systems using
data-drivenmeans (Brereton 2014). It is inherently interdisciplin-
ary, borrowing methods from data-analytic disciplines such as
statistics, signal processing, and computer science. Descriptive
and predictive problems could be addressed using chemical data.
This second part of the review intends to give the state of the art
of metabolomics data handling strategies along with their inher-
ent advantages and limits regarding data analysis issues.
Furthermore, biological information retrieval tools and their
translational challenges into actionable results are described.
Finally, practical considerations and current challenges to bring
metabolomics into the clinical environment are discussed. The
general metabolomics workflow is presented in Fig. 1.

Biological information recovery

The analytical performance improvements associated
with metabolomics platforms have led to the generation
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of complex and high-dimensional data sets. Handling
the huge amount of generated data in a smoothly
high-throughput fashion is a very important issue for
transforming the data into clinically actionable
knowledge.

Preprocessing

Targeted metabolomics aims to process data sets retrieved
from a subset of the metabolome. It contains predefined,
chemically characterized and biochemically annotated

Fig. 1 General metabolomics
workflow. Metabolomics is
divided into two main strategies.
A targeted metabolomics is a
quantitative analysis or a
semiquantitative analysis of a set
of metabolites that might be
linked to common chemical
classes or a selected metabolic
pathway. An untargeted
metabolomics approach is
primarily based on the qualitative
or semiquantitative analysis of the
largest possible number of
metabolites from diverse
chemical and biological classes
contained in a biological sample.
The generated data undergo the
data analysis step (univariate and
multivariate) and functional
analysis to get actionable
biological insight
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metabolites. The main advantages of targeted metabolomics
are that no analytical artifacts are carried throughout the
downstream analysis; only a set of selected metabolites are
analyzed. However, in untargeted metabolomics, data analysis
is quite time-consuming. Different automated processes have
been developed (Tsugawa et al 2013, 2014; Cai et al 2015)
along with commercial solutions from instrument vendors. In
contrast, the untargeted approach attempts a comprehensive
analysis of all measurable metabolites in a given sample,
including unknowns. It requires a holistic analysis of
high-dimensional raw data sets, which in turn requires
reducing the data into more computationally manageable
formats without significantly compromising the
contained chemical information. Because of noise, sam-
ple variation, or analytical/instrument factors, NMR and
MS spectra often show differences in width, position,
and peak shape. The goal of preprocessing is to correct
these differences for better quantification of metabolites
and enhanced intersample comparability. Data prepro-
cessing includes some or all of the following steps:
noise filtering, baseline correction, peak detection, peak
alignment, and spectral deconvolution. Several prepro-
cessing considerations and methods can be applied to
both NMR and MS data (Vettukattil 2015; Szymanska
et al 2016; Yi et al 2016). MS data preprocessing in-
cludes some or all of the following steps: noise filter-
ing, baseline correction, peak detection, peak alignment,
and spectral deconvolution. The order of the steps may
differ between algorithms. Noise filtering is often ap-
plied to MS data to improve peak detection. Many dif-
ferent noise filters exist, including Gaussian, Savitzky–
Golay, and wavelet-based filters (Yi et al 2016). The
aim of the peak detection and deconvolution step is to
identify and quantify the signals that correspond to the
analytes (metabolites) in a given sample. Peak detection
algorithms follow two strategies: derivative techniques
or matched filter response (Szymanska et al 2016; Yi
et al 2016). A deconvolution step is used to separate
overlapping peaks in order to improve peak detection
(Johnsen et al 2017). Furthermore, a de-isotoping step
is used to cluster the isotopic peaks corresponding to
the same chemical feature to clean the data matrix.
Alignment of the detected features across different sam-
ples aims to remove intersample shifts, and several
alignment algorithms have been developed (Smith et al
2013; Szymanska et al 2016). The data dimensionality
has to be reduced to make them applicable to instru-
ments paired with MS. Different strategies enable data
compression such as binning and the Bsearch of regions
of interest (ROI)^ methods that are the most adequate
hyphenated MS data sets. A comparison of some peak-
picking algorithms used in untargeted MS-based meta-
bolomics have been reported (Rafiei and Sleno 2015).

XCMS is an open access mass spectrometry data pro-
cessing software. It is widely used in the metabolomics
community. It was developed in response to the grow-
ing need for user-friendly software to process complex
untargeted metabolomic data (Smith et al 2006; Gowda
et al 2014). It has been designed as a solution for the
entire untargeted metabolomic workflow ranging from
the raw data processing to direct metabolite assignment
through integrated and automated METLIN database
queries. The platform has been recently upgraded with
data streaming capabilities to support high-throughput,
cloud-based data processing, and systems biology anal-
yses (Huan et al 2017). NMR data preprocessing typi-
cally includes baseline correction, alignment, and bin-
ning. Baseline correction aims to correct systematic
baseline distortion. Some spectral regions, such as that
of water, are often removed. Peak shifts due to differ-
ences in instrumental factors such as salt concentrations,
temperature, and pH changes can be corrected by alignment
procedures (Smolinska et al 2012). Binning or bucketing is a
dimension reduction method that splits the spectra into seg-
ments or bins and assigns a representative value to each bin.
However, binning can hamper spectral resolution. The typical
output of the preprocessing step is a data matrix that contains
the detected features and the corresponding intensity
(abundance) in each sample.

Normalization

As with other omics, metabolomics data have several intrinsic
characteristics, such as their asymmetric distribution (De
Livera et al 2012) and a substantial proportion of instrumental,
analytical, and biological noise (Grun et al 2014; Mak et al
2015). Thus, the goal of data normalization is to eliminate
experimental biases related to the abundance of detected fea-
tures between samples without compromising biological var-
iations. Most of the methods are inspired by previous omic
strategies (genomics and transcriptomics) that suffer from
similar experimental biases (Tebani et al 2016). Indeed, the
chemical diversity of metabolites and interindividual varia-
tions lead to changes in extraction and MS ionization yields,
making it difficult to distinguish changes of biological interest
from analytical biases (instrumentation, operators, and re-
agents). Strategies for normalization of metabolomics data
can be divided into statistical approaches and chemical ap-
proaches. Statistical approaches are based on statistical
models that define correction factors specific to each sample
from the complete data set (Li et al 2016), such as normaliza-
tion by standard deviation (Scholz et al 2004), mean global
intensity (Wang et al 2003), quantile normalization (Lee et al
2012), probabilistic quotient normalization (Dieterle et al
2006), cyclic loess (Dudoit et al 2002), QC-robust spline batch
correction (Kirwan et al 2013) or support vector regression

J Inherit Metab Dis (2018) 41:393–406 395



(Shen et al 2016). Chemical approaches are based on one or
more reference compounds (Hermansson et al 2005; Bijlsma
et al 2006; Sysi-Aho et al 2007), internal standards, or endog-
enous or exogenous compounds that are used to normalize the
entire chromatogram (single compound) or certain regions of
the chromatogram by normalizing each zone according to a
standard that is eluted in that region. Other strategies based on
the characteristics of the studied matrix, such as dry mass of
the samples, volume (e.g., 24-h urine), and osmolality. Protein
or creatinine levels can also be used (Wu and Li 2016). A
comprehensive comparison of state-of-the-art normalization
techniques was recently reported (Li et al 2016).

Transformation, centering, and scaling

Statistical methods assume that the data under analysis have a
specific type of probability distribution. Thus, the inferences
made from the data depend on the chosen distribution. If the
data under examination do not exhibit that distribution, then
the inferences could be false or misleading. Most parametric
methods in metabolomics assume that the data have a
Gaussian distribution. However, in metabolomics, MS and
NMR data are hampered by noise from different sources.
Furthermore, the feature distributions can be skewed. So,
transformations aim to correct for heteroscedasticity and
skewness before statistical analysis. This allows building of
statistically meaningful and interpretable models in metabolo-
mics. Different mathematical transformations can be used,
such as log transformation and power transformation (van
den Berg et al 2006). Multivariate analytical methods are
based on latent variable projections that extract information
from the data by projecting observations onto the direction of
the maximum variance. Hence, NMR andMS data analysis by
these methods mainly focuses on the average spectrum. This
approach may mask underlying biological variation because
more abundant metabolites will exhibit high values in the data
matrix and subsequently show large differences among sam-
ples compared to less abundant metabolites. Data scaling
methods divide each data point for a given feature by a scaling
factor that is a measure of data dispersion for that feature.
Therefore, scaling the data aims to remove the offset from
the data and focus on the biological variation regarding simi-
larities and dissimilarities of samples. There are several scal-
ing methods such as auto-scaling (unit variance scaling), in
which the mean and the standard deviation of the feature are
calculated. The aim of auto-scaling is to give equal weights to
all features, but this method is very sensitive to large devia-
tions from the sample mean. Thus, pareto scaling is the most
popular alternative in metabolomics. In pareto-scaling, each
observation in the mean-centered feature is divided by the
square root of the standard deviation. Pareto scaling is a
compromise between mean-centering and auto-scaling
(van den Berg et al 2006).

Data analysis

Univariate data analysis

Univariate statistical methods can be used in metabolomics.
Their main limitation is that they consider only one variable at
a time, which may not be convenient for high-dimensional
data. Parametric tests such as Student’s t-test and ANOVA
are commonly applied to assess the differences between two
or more groups, respectively, provided that the normality as-
sumption is verified (Broadhurst and Kell 2006). Otherwise, if
normality is not assumed, a nonparametric test such as Mann–
Whitney U test or Kruskal–Wallis one-way ANOVA can be
used. Another important issue is that applying multiple uni-
variate tests in parallel with a high-dimensional data set raises
the multiple testing problem. Since a large number of features
are simultaneously analyzed in metabolomics, the probability
of accidentally finding a statistically significant difference
(i.e., true positive) is high. Different correction methods can
be used to handle this multiple testing issue. In the Bonferroni
correction, the significance level for a hypothesis is divided by
the number of hypotheses simultaneously being tested
(Broadhurst and Kell 2006). Hence, the Bonferroni correction
is considered a conservative correction method. Less conser-
vative methods are available and are based on lowering the
false-discovery rate (FDR). Less restrictive approaches FDR-
based methods minimize the expected proportion of false pos-
itives among the total number of positives (Benjamini and
Hochberg 1995). It should be noted that potential confounding
factors such as sex, age, or diet may lead to spurious results if
not properly addressed. Furthermore, the main disadvantage
of univariate methods is their lack of feature correlations and
insights about interactions. Hence, advanced multivariate ap-
proaches are more suitable for in-depth inferences.

Multivariate data analysis

Bioinformatics a field that permits data collection, analysis,
parsing, and contextual interpretation, and it supports
decision-making on those bases. Bioinformatics can be de-
fined as conceptualizing biology in terms of molecular com-
ponents and by applying Binformatics techniques^ borrowed
from disciplines such as applied mathematics, computer sci-
ence, and statistics to understand and organize information on
a large scale (Luscombe et al 2001). The major challenge is to
reduce the dimensionality by selecting informative metabolic
signals from the highly noisy raw data. Chemometric tools are
widely used to achieve this goal. Chemometrics is defined as
the science of extracting useful information from chemical
systems by data-driven means (Brereton 2014). It may be
applied to solve both descriptive and predictive problems,
using biochemical data. In multivariate methods, representa-
tive samples are presented as points in the space of the initial
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variables. The samples can then be projected into a lower
dimensionality space based on components or latent variables,
such as a line, a plane, or a hyperplane, which can be seen as
the shadow of the initial data set viewed from its best perspec-
tive. The sample coordinates of the newly defined latent var-
iables are the scores, while the directions of variance to which
they are projected are the loadings. The loadings vector for
each latent variable contains the weights of each of the initial
variables (metabolites) for that latent variable. Unsupervised
methods attempt to reveal patterns or clustering trends in the
data that underpin relationships between the samples. These
methods also highlight the variables that are responsible for
these relationships, using visualization means. Chemometrics
methods are mainly divided into unsupervised and supervised
methods. In unsupervised methods, no assumptions are made
about the samples and the aim is mainly exploratory. In meta-
bolomics data, metabolic similarity shapes the observed clus-
tering. Principal component analysis (Hotelling 1933) is a
widely used pattern recognition method; it is a projection-
based method that reduces the dimensionality of the data by
creating components. Principal component analysis allows a
two- or three-dimensional visualization of the data. Because it
contains no assumptions on the data, it is used as an initial
visualization and exploratory tool to detect trends, groups, and
outliers. It allows simpler global visualization by representing
the variance in a small number of uncorrelated latent variables.
Independent component analysis (ICA) is another unsuper-
vised method that is a blind source separation method that
separates multivariate signals into additive subcomponents
(Bouveresse and Rutledge 2016). Its interpretation is similar
to PCA, but instead of orthogonal components, it calculates
non-Gaussian and mutually independent components (Wang
et al 2008; Al-Saegh 2015). Compared to PCA, ICA as a
linear method could provide potential benefits for untargeted
metabolomics. ICA has been successfully used in metabolo-
mics (Li et al 2012; Monakhova et al 2015; Liu et al 2016).
Other unsupervised methods, such as clustering, aim to iden-
tify naturally occurring clusters in the data set by using simi-
larity measures defined by distance and linkage metrics
(Wiwie et al 2015). A dendrogram or a heat map can be cre-
ated to visualize the similarities between samples. Commonly
used clustering methods include correlation matrix, k-means
clustering (Hartigan and Wong 1979), hierarchical cluster
analysis (Johnson 1967), and self-organizing maps
(Kohonen 1990; Goodwin et al 2014). In supervised methods,
samples are assigned to classes or each sample is associated
with a specific outcome value, and the aim is mainly explan-
atory and predictive. When the variables are discrete (e.g.,
control group versus diseased group), the task is called classi-
fication. When the variables are continuous (e.g., metabolite
concentration) the task is called regression. The main pur-
poses of supervised techniques are (i) to determine the asso-
ciation between the response variable and the predictors

(metabolites) and (ii) to make accurate predictions based on
the predictors. In metabolomics biomarker discovery, within
the modeling process, it is important to find the simplest com-
bination of metabolites that can produce a suitably effective
predictive outcome. The biomarker discovery process in-
volves two parameters, the biomarker utility and the number
of metabolites used in the predictive model. The main chal-
lenges are therefore predictor selection and the evaluation of
the fitness and predictive power of the built model. Predictor
selection aims to identify important metabolites from among
the detected ones that best explain and predict the biological or
clinical outcome. Different predictor selection techniques
have been described. Some of these suggested strategies are
based on univariate or multivariate statistical proprieties of
variables used as filters (loading weights, variable importance
on projection scores, or regression coefficients), while others
are based on optimization algorithms (Saeys et al 2007; Yi
et al 2016). Recently, another elegant method has been report-
ed that essentially combines estimation of Mahalanobis dis-
tances with principal component analysis and variable selec-
tion using a penalty metric instead of dimension reduction
(Engel et al 2017). This method was successfully applied for
inherited metabolic diseases (IMD) screening purposes.
Finally, we need goodness-of-fit metrics to assess the model
predictive power. Commonly used statistics may include root
mean square error (RMSE) for regression problems and sen-
sitivity, specificity, and the area under the receiver-operating
characteristic (ROC) curve for classification models. To have
independent test data sets, sometimes, data collection may be
expensive or hampered by limited samples such as in rare
diseases which is the case in IMD. In this case, various resam-
pling methods are used to efficiently use the available data set,
such as cross-validation, bootstrapping, and jackknifing
(Westad and Marini 2015). Regarding the supervised
methods, various techniques can be used in metabolomics.
Some of the most used techniques include linear discriminant
analysis (LDA) (Balog et al 2013; Ouyang et al 2014) and
partial least squares (PLS) methods such as PLS-
discriminant analysis (PLS-DA) (Wold et al 2001) and
orthogonal-PLS-DA (OPLS-DA) (Trygg and Wold 2002;
Manwaring et al 2013), as well as support vector machines
(Cortes and Vapnik 1995; Lin et al 2011) and random forest
(Breiman 2001; Huang et al 2015). Recently, Habchi et al
proposed an innovative supervised method based on ICA
called IC-DA. This method has been successfully applied to
analyze DIMS metabolomics data that could be useful for
high throughput screening (Habchi et al 2017). Furthermore,
new methods based on topology data analysis are drawing
interest and seem promising for data analysis because of their
intrinsic flexibility and exploratory and predictive abilities
(Liu et al 2015; Offroy and Duponchel 2016). Recently, a
new method, called statistical health monitoring (SHM), has
been adapted from industrial statistical process control; an
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individual metabolic profile is compared to a healthy one in a
multivariate fashion. Abnormal metabolite patterns are thus
detected, and more intelligible interpretation is enabled
(Engel et al 2014). This approach has been successfully ap-
plied in IMD investigations (Engel et al 2017). The aim of
metabolomics studies and the data analysis strategy are highly
interdependent. Moreover, multivariate and univariate data
analysis pipelines are not mutually exclusive, and they are
often used together to enhance the quality of the information
recovery. For further details on data analysis techniques and
tools used in metabolomics, the reader may refer to recent
reviews on this issue (Gromski et al 2015; Ren et al 2015;
Misra and van der Hooft 2016).

Metabolite annotation and characterization

The identification of the discriminant metabolites is an impor-
tant step in metabolomics. The introduction of high-resolution
mass spectrometers and accurate mass measurements that fa-
cilitate access to the chemical formula of the detected peaks
has considerably accelerated this step. The combined use of
quadrupole ion traps for sequential fragmentation experiments
provides additional structural information needed to identify
metabolites of interest. However, MS using soft ionization
techniques such as electrospray methods, exhibits high vari-
ability in the fragmentation profiles generated on different
devices due to the lack of standardized ionization conditions,
thus limiting the construction of universal spectral data banks
such as those obtained by electron ionization or NMR (Cui
et al 2008). This issue could be addressed using standardized
ionization conditions such as electron based ionization tech-
niques that are highly reproducible across MS systems world-
wide and across different vendors. Indeed, inMS, one or more
chemical formulas can be generated if high-resolution instru-
ments are used, which provides a first element for carrying out
an interrogation of the existing databases. The acquisition of
fragmentation spectra at this stage enables us to discriminate
the responses obtained previously on the basis of the produced
ions or neutral losses, characteristic of chemical groups. Given
the importance of the identification step, standardization ele-
ments have been proposed to harmonize metabolite identifi-
cation data. Thus, identification standards have been defined
within the framework of the Metabolomics Standards
Initiative according to the available information on the metab-
olite to be characterized (Sumner et al 2007). Computational
tools such as CAMERA (Kuhl et al 2012), ProbMetab (Silva
et al 2014), AStream (Alonso et al 2011), and MetAssign
(Daly et al 2014) have been developed for metabolite annota-
tion. These methods mainly use m/z, retention time, adduct
patterns, isotope patterns, and correlation methods for metab-
olite annotation. However, inMS the detectedm/z ion andMS
database matching is insufficient for unambiguous

charcterization. Although retention time prediction are still
used to improve identification confidence, complementary or-
thogonal information is required for reliable assignment of
chemical identity, such as retention time matching and molec-
ular dissociation patterns compared to authentic standards
(Sumner et al 2007). For reliable characterization, a solution
may be in a multidimensionnal framework based on orthogo-
nal information integration, which may include accurate mass
m/z, chromatographic retention time, MS/MS spectra patterns,
CCS, chiral form, and peak intensity. Furthermore, hybrid
strategies, including pathway network and analysis methods,
could enhance metabolite characterization through different
metrics integration, including data-driven network topology,
chemical features correlation, omics data, and biological da-
tabases. Such a multidimensional approach may permit the
chemical characterization by merging both extended chemical
information and biological context. The Human Metabolome
Database (HMDB) was first introduced in 2007 and is cur-
rently the most comprehensive, organism-specific
metabolomic database. It contains NMR and MS spectra,
quantitative, analytical, and physiological information about
human metabolites. It also contains associated enzymes or
transporters and disease-related properties. The HMDB is a
fully searchable database with many built-in tools for viewing,
sorting and extracting metabolites information features. In ad-
dition, the HMDB also supports the direct identification of
potential diagnostic biomarkers based on their accurate mass,
mass spectra or NMR spectra. Hence, the HMDB is a valuable
support for translational metabolomics to support biomarker
discovery. Perhaps, the HMDB (Wishart et al 2013) is one of
the most valuable databases for IMD investigations. Other
databases are presented in Table 1.

Functional analysis: translating information
into knowledge

One of the fundamental difficulties in pathophysiological
studies is that diseases might be caused by various genetic
and environmental factors and their combinations. In addition,
if a disease is caused by a combinatorial effect of many fac-
tors, the individual effects of each component might be low
and thus hard to unveil. So, considering systems approaches to
get deeper and informative biological insights is appealing.
Any biological network can be pictured as a collection of
linked nodes. The nodes may be genes, proteins, metabolites,
diseases, or even individuals. The links or edges represent the
interactions between the nodes: metabolic reactions, protein–
protein interactions, gene–protein interactions, or interactions
between individuals. The distribution of nodes ranges from
random to highly clustered. However, biological networks
are not random. They are collections of nodes and links that
evolve as clusters; therefore, biological networks are referred
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to as scale-free, which means that they contain few highly-
connected nodes called hubs. The core idea of the biological
network theory is the modularity structure. Three distinct
modules can be defined: topological, functional, and disease
modules (Barabasi et al 2011). A topological module repre-
sents a local subset of nodes and links in the network; in this
module, nodes have a higher tendency to link to nodes within
the same local neighborhood. A functional module is a collec-
tion of nodes with similar or correlated function in the same
network zone. Finally, a disease module represents a group of
network components that together contribute to a cellular
function whose disruption results in a disease phenotype. Of
note, these three modules are correlated and overlap.
Computational biology is gaining increasingly more space in
modern biology to embrace this new network perspective. It
can be divided into two main fields: knowledge discovery (or

data-mining) and simulation-based analysis. The former gen-
erates hypotheses by extracting hidden patterns from high-
dimensional experimental data. However, the latter tests hy-
potheses with in silico experiments, yielding predictions to be
confirmed by in vitro and in vivo studies (Kitano 2002). Thus,
pathway and network analysis strategies rely on the informa-
tion generated by metabolomics studies for biological infer-
ence (Thiele et al 2013; Cazzaniga et al 2014). Both ap-
proaches exploit the interrelationships contained in the
metabolomic data. Network modeling and pathway-mapping
tools help to decipher the roles of metabolite interactions in a
biological disturbance (Cazzaniga et al 2014). Biological da-
tabases are important for mapping different metabolic path-
ways (Table 1). Conceptual framework of pathway analysis is
illustrated in Fig. 2. Indeed, pathway analysis or metabolite set
enrichment analysis (MSEA) are methodologically based on

Table 1 Biological databases and functional analysis tools

Tools Websites References

Biological databases

KEGG (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/kegg (Kanehisa et al 2016)

HumanCyc (Encylopedia of Human Metabolic Pathways) http://humancyc.org (Romero et al 2005)

MetaCyc (Encyclopedia of Metabolic Pathways) http://metacyc.org (Caspi et al 2008)

Reactome (A Curated Knowledgebase of Pathways) http://www.reactome.org (Vastrik et al 2007)

SMPDB (Small Molecule Pathway Database) http://www.smpdb.ca (Jewison et al 2014)

Virtual Metabolic Human Database https://vmh.uni.lu (Thiele et al 2013)

Wikipathways http://www.wikipathways.org (Kelder et al 2012)

Pathway and networks analysis and visualization

BioCyc—Omics Viewer http://biocyc.org (Caspi et al 2016)

iPath http://pathways.embl.de (Yamada et al 2011)

MetScape http://metscape.ncibi.org (Karnovsky et al 2012)

Paintomics http://www.paintomics.org (Garcia-Alcalde et al 2011)

Pathos http://motif.gla.ac.uk/Pathos (Leader et al 2011)

Pathvisio http://www.pathvisio.org (Kutmon et al 2015)

VANTED http://vanted.ipk-gatersleben.de (Rohn et al 2012)

IMPaLA http://impala.molgen.mpg.de (Kamburov et al 2011)

MBROLE 2.0 http://csbg.cnb.csic.es/mbrole2 (Lopez-Ibanez et al 2016)

MPEA http://ekhidna.biocenter.helsinki.fi/poxo/mpea (Kankainen et al 2011)

Mummichog http://clinicalmetabolomics.org/init/default/software (Li et al 2013)

PIUMet http://fraenkel-nsf.csbi.mit.edu/PIUMet/ (Pirhaji et al 2016)

3Omics http://3omics.cmdm.tw/ (Kuo et al 2013)

InCroMAP http://www.ra.cs.uni-tuebingen.de/software/InCroMAP/ (Wrzodek et al 2013)

Multifunctional tools

MetaboAnlayst http://www.metaboanalyst.com (Xia et al 2015)

XCMS online https://xcmsonline.scripps.edu (Tautenhahn et al 2012)

MASSyPup http://www.bioprocess.org/massypup (Winkler 2015)

Workflow4Metabolomics http://workflow4metabolomics.org (Giacomoni et al 2015)

Metabox https://github.com/kwanjeeraw/metabox (Wanichthanarak et al 2017)
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the gene set enrichment analysis approach, previously devel-
oped for pathway analysis of gene-expression data (Khatri
et al 2012; Garcia-Campos et al 2015). There are three distinct
methods for performing MSEA: overrepresentation analysis
(ORA), quantitative enrichment analysis (QEA), and single-
sample profiling (SSP) (Xia and Wishart 2010; Garcia-
Campos et al 2015; Xia et al 2015). An important advantage
of computational metabolomics lies in the use of correlations
among feature signals to map chemical identity. Since metab-
olites are interconnected by a series of biochemical reactions
to build the network of metabolites, they can be interrogated
using network-based analytical tools. In metabolomics, net-
work analysis uses the high degree of correlation in metabo-
lomics data to build metabolic networks based on the complex
relationships of the measured metabolites. Based on the ob-
served relationship patterns in the experimental data,
correlation-based methods allow building metabolic networks
in which each metabolite represents a node. However, unlike
the pathway analysis, the links between nodes denote the level
of mathematical correlation between each metabolite pair and
are called edge (Krumsiek et al 2011; Valcarcel et al 2011; Do
et al 2015). These data-driven strategies have been success-
fully applied for the reconstruction of metabolic networks
from metabolomics data (Krumsiek et al 2011; Shin et al
2014; Bartel et al 2015). Biological inference often needs prior
identification of metabolites. Since this step is challenging, a
novel approach, named Mummichog, has been proposed by
Li et al to reboot the conventional metabolomic workflow (Li
et al 2013). This method predicts biological activity directly

fromMS-based untargeted metabolomics data without a priori
identification of metabolites. The idea behind this strategy is
combining network analysis and metabolite prediction under
the same computational framework, which significantly re-
duces the metabolomics workflow time. Based on spectral
peaks, the computational prediction of metabolites yields sev-
eral hits; thus, a Bnull^ distribution can be estimated by how
these predicted metabolites, retrieved from a metabolomics
experiment, map to all known metabolite reactions through
interrogating databases. Despite most annotations being false,
the biological meaning underpinning the data drives enrich-
ment of the metabolites. The metabolite enrichment pattern of
real metabolites compared to the null distribution is then sta-
tistically assessed. This method has been elegantly illustrated
in an exploration of innate immune cell activation, which re-
vealed that glutathione metabolism is modified by viral infec-
tion driven by constitutive nitric oxide synthases (Li et al
2013). Recently, Mummichog has been used for metabolic
pathway analysis in a population by untargeted metabolomics.
Hoffman et al identified metabolic pathways linked to age,
sex, and genotype, including glycerophospholipid, neuro-
transmitters, metabolism carnitine shuttle, and amino acid me-
tabolism (Hoffman et al 2016). Tyrosine metabolism was
found to be associated with nonalcoholic fatty liver (Jin et al
2016). Pirhaji et al described a new network-based approach
using a prize-winning Steiner forest algorithm for integrative
analysis of untargeted metabolomics (PIUMet). This method
infers molecular pathways via integrative analysis of metabo-
lites without prior identification. Furthermore, PIUMet en-
abled elucidating putative identities of altered metabolites
and inferring experimentally undetected, disease-associated
metabolites and dysregulated proteins (Pirhaji et al 2016).
Compared to Mummichog, PIUMet also allows system-level
inference by integrating other omics data. Contextualization
of metabolomics information is also important in pathophys-
iological investigations. From a metabolic network stand
point, flux is defined as the rate (i.e., quantity per unit time)
at which metabolites are converted or transported between
different compartments (Aon and Cortassa 2015). Thus, met-
abolic fluxes, or the fluxome, represent a unique and function-
al readout of the phenotype (Cascante and Marin 2008; Aon
and Cortassa 2015). Thus, from a network view of metabo-
lism, one or more metabolic fluxes could be altered in a given
metabolic disorder depending on the complexity of the disease
(Lanpher et al 2006). To interrogate these fluxes, fluxome
network modeling can be achieved using constraints of mass
and charge conservation along with stoichiometric and ther-
modynamic limitations (Cortassa and Aon 2012; Winter and
Kromer 2013; Kell and Goodacre 2014; Aurich and Thiele
2016). Based on the stoichiometry of the reactants and prod-
ucts of biochemical reactions, flux balance analysis can esti-
mate metabolic fluxes without knowledge about the kinetics
of the participating enzymes (Cascante and Marin 2008; Aon

Fig. 2 An illustration of pathway analysis strategies. Metabolome
pathway analysis is designed to uncover significant pathway–phenotype
relationships within a large data set. On one hand, it unveils hidden data
structure in experimental data through differential expression using
statistical metrics. On the other hand, it uses prior knowledge retrieved
through biological databases and literature. Pathway analysis combines
these two pillars to interpret the experimental findings
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and Cortassa 2015). Recently, Cortassa et al suggested a new
approach, distinct from flux balance analysis or metabolic flux
analysis, that takes into account kinetic mechanisms and reg-
ulatory interactions (Cortassa et al 2015).

Since metabolites are often involved in multiple pathways,
biologically-mediated labeling is particularly informative in
such cases. Given the dynamics and compartmentation that
characterize the metabolism, isotopic labeling is poised as an
appealing approach to unambiguously track metabolic events.
Advances in atom-tracking technologies and related informat-
ics are disruptive for metabolomics-based investigations
thanks to their contextual high throughput information retriev-
al. Among these technologies, stable isotope resolved meta-
bolomics (SIRM) is a method that allows tracking individual
atoms through compartmentalized metabolic networks which
allowed highly resolved investigations of disease-related
metabolomes (Higashi et al 2014; Fan et al 2016; Kim et al
2016). Awide variety of software tools are available for ana-
lyzing metabolomic data at the pathway and network levels.
Table 1 presents different functional analysis tools for both
pathway analysis and visualization.

Metabolomics and other omics cross-talk

Since IMD are associated with a genetic defect, their current
characterization addresses both the mutated gene and its prod-
ucts. Currently, understanding of genetic variation effects on
phenotypes is limited in most IMDwhich leads to consider the
influence of genetic or environmental modifying factors and
the impact of an altered pathway onmetabolic flux as a whole.
These diseases are related to the disruption of specific inter-
actions in a highly organized metabolic network (Sahoo et al
2012; Argmann et al 2016). Thus, the impact of a given dis-
ruption is not easily predictable (Lanpher et al 2006; Cho et al
2012). Therefore, functional overview, integrating both space
and time dimensions, is needed to assess the actors of the
altered pathway and the potential interactions of each actor
(Aon 2014). Thus, metabolomics combined with genome-
wide association studies (mGWAS) track genetic influences
on metabotypes which underpin the human’s metabolic indi-
viduality (Suhre et al 2016). Unveiling the genetically influ-
enced metabolic variations could raise huge potential patho-
physiological studies (Shin et al 2014). This includes func-
tional understanding of clinical outcomes and genetic varia-
tion associations, designing targeted therapies for metabolic
disorders and also identification of genetic modifiers underly-
ing metabolic disease biomarkers. Different studies have re-
ported genetic influences of metabotypes, disease-risk bio-
markers or drug response variations (Suhre et al 2016). In a
recent study, Rhee et al analyzed the association between ex-
ome variants and 217 plasma metabolites in 2076 participants
in the Framingham Heart Study, with replication in 1528

individuals of the Atherosclerosis Risk in Communities
Study. They identified an association between guanosine
monophosphate synthase and xanthosine using single variant
analysis and associations between histidine amonia lyase
(HAL) and histidine, phenylalanine hydoxylase (PAH)
and phenylalanine, and ureidopropionase (UPB1) and
ureidopropionate using gene-based tests, which high-
lights novel coding variants that may unveil inborn errors of
metabolism (Rhee et al 2016). Shin et al reported a compre-
hensive study exploring genetic loci influences on human
metabotypes in 7824 individuals from two European cohorts,
KORA (Germany) and Twins (UK), using MS-based metabo-
lomics. They mapped significant associations at 145 loci and
their metabotype connectivity through more than 400 blood
metabolites. The built model unveiled information on herita-
bility, gene expression and overlap with known complex dis-
orders and inborn errors of metabolism loci. The data were
used to build an online database for data mining and visuali-
zation (Shin et al 2014). The effectiveness of multi-omic ap-
proaches has been recently illustrated by van Karnebeek et al.
The authors reported a disruption of the N-acetylneuraminic
acid pathway in patients with severe developmental delay and
skeletal dysplasia using both genomics and metabolomics ap-
proaches. Variations in the NANS gene encoding the synthase
for N-acetylneuraminic acid were identified (van Karnebeek
et al 2016). This elegantly highlights how systemic ap-
proaches may address IMD complexity and allow their diag-
nosis (Argmann et al 2016). For more details on mGWAS
studies, the reader may refer to recent reviews (Kastenmuller
et al 2015; Suhre et al 2016). Figure 3 shows how laboratory
workflow using high-throughput analytical technologies, in-
tegrative bioinformatics, and computational frameworks will
reshape IMD investigations. This integrative approach will
allow intelligible molecular and clinical information recovery
for a more effective medical decision-making in IMD.

Perspectives in clinical metabolomics translation

Despite spectral information becoming available in the litera-
ture or in spectral databases, metabolite identification is still a
challenging task (Goodacre et al 2007). However, metabolite
identification remains a central issue in metabolomics prior to
embracing complete clinical translation. No software is cur-
rently available to automate the identification step.
Furthermore, metabolite identification is mandatory for abso-
lute quantitation especially in MS-based methods requiring
the use of stable isotope-labeled internal standards. Some
data-driven alternatives have been developed to elucidate me-
tabolite structure associations such as correlation-based net-
work and modularity analysis. The association structure can
be used to identify MS ions derived from the same metabolite
(Broeckling et al 2014) or to identify biotransformations
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(Kind and Fiehn 2010). However, these knowledge-based ap-
proaches may be hampered by their limits for addressing the
entire chemical space and limited coverage of metabolome
databases. Another limitation lies in the cost for targeted anal-
yses, which cannot reasonably be expected to support mea-
surement of tens of thousands of chemicals in large popula-
tions. Thus, more efforts are needed to overcome this issue.
However, in IMD a few hundred key metabolites may be
defined for large-scale screening. Standardized and validated
protocols are a prerequisite for metabolic phenotyping tech-
nologies. Harmonization of the sample preparation, process-
ing, analysis, and reporting, using validated and standardized
protocols, is mandatory (Chitayat and Rudan 2016; Kohler
et al 2016). Standardized protocols are particularly helpful
for untargeted metabolomics. In targeted methods, since each
analyte is known and quantified, technology versatility is less
important. Despite substantial efforts to standardize
untargeted metabolomics methods, there are still no universal-
ly adopted protocols, particularly for MS-based strategies.
This situation is due to the diverse and ever-changing analyt-
ical platform. The community and journals may take a lead in
standardization by aligning it to community-published stan-
dards, such as the Metabolomics Standards Initiative (Sumner
et al 2007), and data repisotories to encourage open
metabolomic data, such as MetaboLights database at the
EBI. All these endeavors aim to develop infrastructures and
frameworks standardize terminology, data structure, and

analytical workflows (Levin et al 2016). Finally, addressing
these standardization issues is essential for regulatory compli-
ance, which is a prerequisite for any clinical implementation.
Automation at different stages, at instrument and pre- and
post-analytic levels, is an important issue for broader use of
metabolomics technologies. Automation enhances through-
put, reproducibility, and reliability. Direct infusion MS-based
methods are currently used for newborn screening in routine
clinical practice (Therrell et al 2015; Ombrone et al 2016).
Moreover, they are also taking the lead from a translational
perspective, such as the iKnife, which would allow real-time
cancer diagnosis (Balog et al 2013), and breathomics strate-
gies for lung and respiratory diseases based on breath signa-
tures (Hauschild et al 2015). Furthermore, metabolomics gen-
erates a huge amount of data that require comprehensive anal-
ysis and integration with other omics and metadata to infer the
topology and dynamics of the underlying biological networks.
Advanced statistical and computational tools along with
effective data visualization are required to smoothly
handle the diversity and quantity of the data and metab-
olite mapping (Alyass et al 2015; Ritchie et al 2015). In
this regard, combining genomic and metabolic information
may enhance biological inference and even clinical diagnos-
tics (Tarailo-Graovac et al 2016; van Karnebeek et al 2016).
Despite these promising steps, further advances in computa-
tional tools are needed for more efficient storage and
integration (Perez-Riverol et al 2017).

Conclusion

Translating metabolomic data into actionable knowledge is
the ultimate goal. Particular attention should be paid to com-
putational tools for multidimensional data processing. There is
an urgent need for more databases with validated and curated
MRM transitions for targeted metabolites. Furthermore, for
untargeted metabolomics, larger libraries and curated MS/
MS spectra for metabolite identification are needed. Hybrid
strategies including pathway and network analysis methods
could enhance metabolite characterization through integration
of different metrics, including data-driven network topology,
chemical features correlation, omics data, and biological da-
tabases. Such multidimensional approaches may improve the
chemical characterization by combining both extended chem-
ical information and biological context. With all the high-
dimensional data management issues, like other omics, meta-
bolomics clinical implementation should be tackled using big
data handling strategies for efficient storage, integration, visu-
alization, and sharing of metabolomics data. To achieve the
promise of the Precision Medicine era, it is crucial to combine
expertise from multiple disciplines, including clinicians, med-
ical laboratory professionals, data scientists, computational
biologists, and biostatisticians. This raises the urgent need to

Fig. 3 Paradigm shift in inherited metabolic diseases investigation.
High-throughput analytical technologies, integrative bioinformatics, and
medical computational frameworks will allow intelligible molecular and
clinical information recovery and effective medical decision-making
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think about new teams with new skill sets and overlapping
expertise for more effective medical interactions across all
healthcare partners for the management of IMD. Training
the next generation medical workforce to manage and inter-
pret omics data is a way to go and inception of such thinking
has already started (Henricks et al 2016).
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