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Aims: Activation and expression of large conductance calcium and voltage-activated

potassium channel (BKCa) by pharmacological agents have been implicated

in cardioprotection from ischemia-reperfusion (IR) injury possibly by regulating

mitochondrial function. Given the non-specific effects of pharmacological agents,

it is not clear whether activation of BKCa is critical to cardioprotection. In this study, we

aimed to decipher the mechanistic role of BKCa in cardioprotection from IR injury by

genetically activating BKCa channels.

Methods and Results: Hearts from adult (3 months old) wild-type mice (C57/BL6) and

mice expressing genetically activated BKCa (Tg-BKCa
R207Q, referred as Tg-BKCa) along

with wild-type BKCa were subjected to 20min of ischemia and 30min of reperfusion

with or without ischemic preconditioning (IPC, 2 times for 2.5min interval each). Left

ventricular developed pressure (LVDP) was recorded using Millar’s Mikrotip® catheter

connected to ADInstrument data acquisition system. Myocardial infarction was quantified

by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Our results demonstrated that

Tg-BKCa mice are protected from IR injury, and BKCa also contributes to IPC-mediated

cardioprotection. Cardiac function parameters were also measured by echocardiography

and no differences were observed in left ventricular ejection fraction, fractional shortening

and aortic velocities. Amplex Red® was used to assess reactive oxygen species

(ROS) production in isolated mitochondria by spectrofluorometry. We found that

genetic activation of BKCa reduces ROS after IR stress. Adult cardiomyocytes and

mitochondria from Tg-BKCa mice were isolated and labeled with Anti-BKCa antibodies.

Images acquired via confocal microscopy revealed localization of cardiac BKCa in the

mitochondria.

Conclusions: Activation of BKCa is essential for recovery of cardiac function after IR

injury and is likely a factor in IPC mediated cardioprotection. Genetic activation of BKCa
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reduces ROS produced by complex I and complex II/III in Tg-BKCa mice after IR, and IPC

further decreases it. These results implicate BKCa-mediated cardioprotection, in part, by

reducingmitochondrial ROS production. Localization of Tg-BKCa in adult cardiomyocytes

of transgenic mice was similar to BKCa in wild-type mice.

Keywords: cardiac mitochondria, BKCa channels, reactive oxygen species, ischemia-reperfusion injury,

myocardial infarction, ischemic preconditioning

INTRODUCTION

The large conductance calcium and voltage-activated potassium
channels (MaxiK, BKCa, KCa1.1) encoded by Kcnma1 gene
are ubiquitously expressed in excitable and non-excitable cells
(1, 2). The functional channel is comprised of four pore-
forming α-subunits, each with seven transmembrane domains
where S4 serves as a voltage sensor and C-terminus contains
Ca2+-sensing RCK1 and RCK2 domains (3). Ca2+ and voltage
sensing allow activation of BKCa (4), resulting in its physiological
involvement in neurotransmitter release and secretion (2).
Increasing evidence indicates that BKCa channels are located
in intracellular organelles in addition to the plasma membrane,
extending their functional roles in cellular physiology from
organelle to organ level (1, 2, 5–10).

Studies involving activation (10–15) and inactivation (11,
16) with pharmacological and genetic tools, including global
(10), and tissue-specific knockouts (17), have implicated
BKCa channels in cardiac function, neuroprotection (18),
and cardioprotection from ischemia-reperfusion (IR) injury,
in addition to IR-induced inflammation and mucosal barrier
disruption in the small intestine (19). Further, it was shown that
BKCa is present in the mitochondria of adult cardiomyocytes
(10, 20). Tissue-specific knockouts in which BKCa was ablated in
adult cardiomyocytes showed that expression of mitochondrial
BKCa is responsible for its cardioprotective effect (17). It
has been shown that agonists or antagonists have no effect
on global (10) and cardiomyocytes-specific (17) knockouts.
However, mice expressing activated BKCa have not been tested
for cardioprotection from IR injury (8). Genetically modifying
BKCa in mice by introducing a mutation responsible for its
constitutive activation (8), independent of pharmacological
agents, can further support the role of BKCa in cardioprotection
from IR injury.

One of the possible outcomes of pharmacological activation
or inactivation of BKCa is decrease/increase in the production
of reactive oxygen species (ROS) (21–24). The reduction in the
levels of ROS accompanied by “mild” mitochondrial uncoupling
(25) by BKCa agonists is assigned as a possible mechanism for
organ and cellular protection from IR injury (26). As stated
earlier, all of these studies rely on the use of pharmacological
tools with possible non-specific effects. To understand the role
of activation of BKCa and its influence on mitochondrial ROS
generation, studies need to be performed independent of the
pharmacological agents. Non-specific and off-target effects of
pharmacological tools have generated reservations (12) on the
role of BKCa in modulating levels of mitochondrial ROS as well
as cardioprotection from IR injury.

In the current study, we have used genetically-activated mice
where BKCa is constitutively active due to incorporation of a gain
of function mutation (Tg-BKR207Q or Tg-BKCa) (8) to test the
role of BKCa activation in mitochondrial ROS generation and
cardioprotection from IR injury. We have established that the
activation of BKCa is vital for a cardioprotective effect in both
IR as well as IPC using an ex vivo isolated perfused heart model.
We have further shown that activation of BKCa, attenuates ROS
from complex I and complex II/III of mitochondria only after IR
injury. Our results presented here further corroborate the role of
BKCa in cardioprotection.

METHODS

All of the experiments onmice were approved by the Institutional
Animal Care andUse Committee at the Drexel University and the
Ohio State University. Animals were housed in the vivarium with
food andwater available ad libitum. Experiments were carried out
on 3 month-old male and female. Experimentalists were blinded
for the genotype of mice used.

Materials
Horseradish peroxidase (Sigma-Aldrich # P6782), DCTM protein
assay kit (BIO-RAD Laboratories, #500-0113, 500-0114, 500-
0115), glutamate (Sigma-Aldrich # G1626), malate (Sigma-
Aldrich # M6773), succinate (Fluka # 14160), pyruvate (Sigma-
Aldrich # P2256), Amplex R© Red (Invitrogen/Thermo Fisher
Scientific # A12222), anti-BKCa antibody (Alomone labs, APC-21
lot #5) were procured for the study.

Ischemia-Reperfusion Injury Model ex vivo
Wild-type mice or mice co-expressing genetically activated
BKCa (Tg-BKCa) (8) were anesthetized with 87 mg/kg of
ketamine and 13 mg/kg of xylazine by administering these agents
intraperitoneally (i.p). The hearts were rapidly excised, washed in
ice-cold modified Krebs-Henseleit (KH, pH 7.4, concentrations
in mM: 118 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 24 NaHCO3,
11.1 Glucose, 2 CaCl2, 1 sodium pyruvate) solution, mounted
on a cannula and perfused with KH solution at 37◦C at a
constant volume (2 mL/min). A pressure transducer (Millar
Mikrotip R© catheter) was introduced to the left ventricle, and
after achieving a stable baseline, hearts were subjected to 20min
of global ischemia and 30min of reperfusion (27). A subgroup
of hearts was subjected to IPC before IR to evaluate the role of
BKCa in IPC-mediated cardioprotection. Two sets of 2.5min of
ischemia and 2.5min of reperfusion were used to precondition
hearts before IR. Left ventricular developed pressure (LVDP)
was recorded using Powerlab R© hardware data acquisition system
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along with LabChart data acquisition and analysis software
(ADInstrument, USA). After recording cardiac function, hearts
either were analyzed for myocardial infarction by TTC staining
or used to rapidly isolate mitochondria and measure ROS. WT
IR, WT IPC, Tg-BKCa IR, and Tg-BKCa IPC group had 7, 8,
6, and 7 mice, respectively, for studying cardiac function and
myocardial infarction in section- Measurement of Myocardial
Infarction.

Measurement of Myocardial Infarction
Isolated hearts were thawed, cut into 5 horizontal 2-mm sections
using a heart slicer matrix, and incubated for 20min at room
temperature in 2% (w/v) TTC solution in phosphate buffer saline
at a pH of 7.4. Images were obtained using Nikon SMZ1000
microscope connected to Nikon digital sight DS-Fi2 camera
and analyzed with Image J. WT IR, WT IPC, Tg-BKCa IR, and
Tg-BKCa IPC group had 7, 8, 6, and 7 mice, respectively.

Measurement of Cardiac Function by
Echocardiography
To ensure that the results obtained related to cardiovascular
function and the myocardial infarction is not due to the
altered cardiac function of transgenic mice, we recorded the
echocardiograph of WT (n = 6) and Tg-BKCa (n = 5) mice
before they were used for IR or IPC study. Vevo2100 R© imaging
system (FUJIFILM VisualSonics) with MS400 probe was used to
acquire images (28). Briefly, mice were anesthetized using 2%
(v/v) isoflurane in carbogen(95% oxygen and 5% carbon dioxide)
with heart rate was maintained at more than 450 bpm. Cardiac
functions were measured in both B and M mode with the probe
positioned in long axis. Mean and peak velocities of the ascending
and descending aorta were also recorded using color Doppler.
Images were analyzed using Vevo Lab 3.1.1 analysis software.

Measurement of ROS
In case of some hearts, after reperfusion for 10min, the
cardiac tissue was rapidly cut into pieces in 2mL of ice-
cold mitochondrial isolation buffer A (sucrose 70mM,
mannitol 210mM, EDTA 1mM, Tris HCl 50mM, pH 7.4)
and homogenized using a hand-held glass homogenizer without
using any detergent. The homogenates were centrifuged at
4◦C, 2,500 g for 5min and supernatants were collected and
centrifuged at 4◦C, 12,000 g for 10min. The mitochondrial
pellets were resuspended in 100 µL of mitochondria isolation
buffer B (sucrose 70mM, mannitol 210mM, EDTA 0.1mM,
Tris HCl 50mM, pH 7.4) and again centrifuged at 4◦C, 12,500 g
for 5min. The pellets were again resuspended in 100 µL of
ROS buffer (EGTA 1mM, EDTA 1mM, Tris HCl 20mM,
sucrose 250mM, pH 7.4, 0.15% BSA was added before use)
and centrifuged at 4◦C, 12,000 g for 5min. The pellets were
then resuspended in 55 µL of ROS buffer and stored on
ice until used for quantifying the generation of ROS. Horse
Radish Peroxidase (0.5 µL of 10 mg/mL in 0.1M phosphate
buffer, pH 6) solutions were added to 2mL of ROS buffer in
the cuvette and the solutions were continuously stirred with
a magnetic stirrer at 37◦C. Basal absorbance was recorded
at 560 nm excitation and 590 nm emission wavelength using

Hitachi F-2710 fluorescence spectrophotometer. After 1min,
2 µL of 10µM amplex red was added to the cuvette. After
another 1min, 25 µL of the mitochondrial suspension was
added to the cuvette. Subsequently, mitochondrial substrates,
either glutamate (5mM) and malate (5mM) (WT IR, n = 3;
WT IPC, n = 4; Tg-BKCa IR, n = 4; Tg-BKCa IPC, n = 4)
or succinate (3mM) (WT IR, n = 3; WT IPC, n = 4; Tg-
BKCa IR, n = 4; Tg-BKCa IPC, n = 4), were added after 90 s
and absorbance was recorded for a total duration of 45min.
Glutamate and malate are substrates for complex I mediated
ROS production, and succinate as a substrate for complex II
result in ROS production from complex III and by backflow
of electrons to complex I. ROS generated was normalized per
µg of mitochondrial protein. The remaining mitochondrial
samples were used for measuring the protein concentration
using DCTM protein assay kit from BIO-RAD Laboratories, Inc.
and SPECTRAmax R© spectrometer from Molecular Devices. The
level of ROS produced was recorded using FL solutions software
(Hitachi, USA) and ROS produced in arbitrary fluorescence units
(a.u.) per µg of mitochondria were measured (29). For baseline
ROS measurements, hearts from WT (n = 3) and Tg-BKCa

mice (n = 3) were used without exposing the hearts to IR
and IPC.

Visualization of BKca
Adult mice cardiomyocytes were isolated and loaded with
mitotracker (100 nM, excitation: 579 nm and emission:
599 nm) for 60min at 4◦C followed by fixation with 4%
paraformaldehyde. Cardiomyocytes loaded with mitotracker
(n = 5) were labeled with anti-BKCa antibodies (Alomone labs,
APC21, 1:200) to study the localization of BKCa in mitochondria.
For studying the localization of BKCa on plasma membrane,
cardiomyocytes labeled with anti-BKCa antibodies were also
marked with plasma membrane marker, wheat germ agglutinin
conjugated with Alexa Fluor 488 (WGA, 1:1,000, n = 5) as
described earlier (10). Isolated cardiac mitochondria from
wild-type (n = 6), Tg-BKCa (n = 5), and Kcnma1−/− (n = 5)
mice were loaded with mitotracker and labeled with anti-BKCa

antibodies as described earlier (10). Atto647N anti-rabbit
secondary antibody was used to label BKCa. Images were
acquired using a confocal microscope (FV1000, Olympus) and
median filtered (29).

Statistical Analysis
Student’s t-test (unpaired and one-tailed) and one-way ANOVA
followed by Tukey’s multiple comparison tests were used to
measure the statistical difference between groups. Values are
presented as mean ± SEM of 3–8 observations. A value of
p < 0.05 was considered to be statistically significant.

RESULTS

Overall, our results demonstrate that expression and activation of
BKCa are vital for cardioprotection from IR injury as well as IPC-
mediated cardioprotection. Cardioprotection mediated by BKCa

is possibly modulated by mitochondrial ROS production.
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FIGURE 1 | Activation of BKCa and IPC promotes the recovery of cardiovascular function from IR-injury. LVDP traces of heart of WT animal subjected to IR (A) and

IPC (C) along with the LVDP traces of the heart of Tg-BKCa animal subjected to IR (B) and IPC (D) are shown. LDVP of WT hearts subjected to IPC (n = 8) showed

improved recovery, in comparison to IR (n = 7) (A,C,E). LDVP of Tg-BKCa hearts subjected to IPC (n = 7), in comparison to IR (n = 6) also recovered better (B,D,E).

LDVP of Tg-BKCa hearts (n = 6) subjected to IR exhibited improved recovery, in comparison to WT (n = 7) hearts (A,B,E). IPC promoted recovery of hearts from

Tg-BKCa mice (n = 7) better than WT mice (n = 8) (C,D,E). The average baseline values of LVDP was 80 mmHg for 28 animals from 4 different groups. Baseline

LVEDP ranged from 5 to 10 mmHg. The contractures during ischemia and reperfusion were seen in few hearts from each group in this study. The ischemic

contractions are dependent on depletion of ATP during ischemia and reperfusion-induced increase in the cytosolic calcium ion. (E) Quantification of percentage

recovery of LVDP as shown in (A–D), black circles indicate WT subjected to IR; red, WT IPC; blue, TG-BKCa IR and light blue Tg-BKCa IPC. The values are presented

as mean ± SEM of 6–8 readings.

Genetic Activation of BKCa Preserves
Cardiac Function Recovery During
Reperfusion
The role of activation of BKCa in cardioprotection has been
demonstrated by usage of pharmacological tools (1, 10, 11, 13,
14, 30–32), and these drugs are known to have non-specific
effects (12). Even though the expression of BKCa is vital for
cardioprotection from IR injury (10, 17), the role of activation
of BKCa in cardioprotection is not yet well-characterized. We
have utilized Tg-BKCa mice expressing genetically activated BKCa

in a DEC splice variant background (GenBank: JX429072.1)
(8) and carried out IR injury assays with and without IPC
(Figures 1A–D). Tg-BKCa mice are viable, normal in body
weight (8), and exhibit increased BKCa protein expression in
a wide variety of tissues as well as display increased BKCa

channel currents (8). Tg-BKCa is under Period1 (Per1) promoter
which is ubiquitously expressed in all tissues. Tg-BKCa mice
express the R207Q mutation in the S4 voltage sensor of the
BKCa α subunit which strongly augments voltage-dependent
gating of the channel without affecting the Ca2+-dependent
activation (33). In the Tg-BKCa mice, cardiac functional
recovery was higher in comparison to the wild-type control
(Figures 1B vs. A). Percentage recovery of LVDP after IR-injury
was significantly higher (p = 0.02) for Tg-BKCa mice (60 ±

5%, n = 6), in comparison to WT mice (34 ± 7%, n = 7)
(Figures 1A,B,E).

Genetic Activation of BKCa Confers
Protection During Ischemic
Preconditioning
In addition to protecting the heart from IR injury,
pharmacological activation or blocking of BKCa has also
been implicated in mediating cardioprotection through IPC
(17, 32, 34). We have also tested whether activation of BKCa

plays a role in cardioprotection mediated by IPC. Two brief
IPC events before IR provided cardioprotection to wild-type
(Figures 1A,C,E) as well as Tg-BKCa mice (Figures 1B,D,E). The
percentage recovery of LVDP seen with the hearts from Tg-BKCa

mice exposed to IPC (n = 7) was significantly higher than in
Tg-BKCa mice hearts exposed to IR (p = 0.01, n = 6) and in
WT mice hearts exposed to IPC (p = 0.001, n = 8). Percentage
recovery of LVDP at the end of reperfusion was 51 ± 3% (n = 8)
and 97 ± 12% (n = 7) for WT IPC and Tg-BKCa IPC groups,
respectively.

Genetic Activation of BKCa Attenuates
Myocardial Infarction Following IR
The degree of myocardial infarction was quantified following
IR using TTC staining. Viable cells appeared red while dead
cells appeared pale yellow (Figure 2). The degree of infarction
was higher in WT IR group (n = 7) with 59 ± 3% cell death
but infarction was significantly less in (p = 0.0001) in WT IPC
group (n = 8) with only 25 ± 4% cell death (Figures 2A–C).
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FIGURE 2 | Activation of BKCa and IPC protect hearts from IR-injury. TTC staining differentiated between infarcted (white) and viable cells (red) in the hearts of WT

(A) and Tg-BKCa (B) mice. (C) The infarcted area was quantified by planimetry using ImageJ. Quantification of (A,B), black circles indicate WT subjected to IR; red,

WT IPC; blue, TG-BKCa IR and light blue Tg-BKCa IPC. Hearts of WT mice subjected to IPC (n = 8) presented less infarction as compared to hearts subjected to only

IR (n = 7) (A,C). Similarly, the hearts of Tg-BKCa mice subjected to IPC (n = 7) were protected better than hearts subjected to only IR (n = 6) (B,C). The hearts from

Tg-BKCa mice were better protected from WT mice when subjected to IR and IPC (A–C). Values are presented as mean ± SEM of 6–8 readings.

Hearts from Tg-BKCa mice sustained less infarction [25 ± 3%
(n = 6), p = 0.04] after IR in comparison to hearts from WT
mice [59 ± 3% (n = 7)] (Figures 2A–C, p = 0.0001). IPC
further protected myocardium of the Tg-BKCa (n = 7) mice
which exhibited the least infarction to the heart cells (13 ± 2%),
(Figures 2A–C).

Taken together, our results (Figures 1, 2) implicate genetic
activation of BKCa in cardioprotection from IR injury as well as
cardioprotection mediated by IPC.

Cardiac Functional Parameters of WT and
Tg-BKCa Mice Did Not Alter at the Baseline
Left ventricular ejection fraction (LVEF) and fractional
shortening (LVFS) assessed by echocardiography (Figures 3A,B)
did not demonstrate any differences. The LVEF of WT and
Tg-BKCa were 69± 2% (n= 6) and 75± 4% (n= 5), respectively
(Figure 3C). The fractional shortening of WT and Tg-BKCa were
37 ± 1% (n = 6) and 43 ± 4% (n = 5), respectively (Figure 3D).
Similarly, we did not observe any difference in themean and peak
velocities in the ascending aorta and descending aorta of both
the WT and Tg-BKCa mice (Figures 3E–H). Mean ascending
aorta velocities of WT and Tg-BKCa were 347± 47 mm/s (n= 6)
and 315 ± 88 mm/s (n = 5), respectively (Figure 3G). The
peak ascending aorta velocities of WT and Tg-BKCa were 611
± 80 and 515 ± 145 mm/s, respectively (Figure 3G). The mean
descending aorta velocities of WT and Tg-BKCa were −398 ±

22 mm/s (n = 6) and −358 ± 56 mm/s (n = 5), respectively
(Figure 3H). The peak descending aorta velocities of WT and
Tg-BKCa were −661 ± 38 mm/s (n = 6) and −616 ± 79 mm/s
(n= 5), respectively (Figure 3H).

Genetic Activation of BKCa Reduces the
Production of Mitochondrial ROS
ROS produced during IR-mediated injury is well-characterized
in cardiac cell death (35), and BKCa has been pharmacologically
implicated in the modulation of cardiac mitochondrial ROS
generation (17, 19, 21, 22, 24, 26, 32, 36, 37). Given that BKCa

is present exclusively in mitochondria of adult cardiomyocytes
(10) and plays a direct role in cardioprotection from IR injury
(17), we tested whether activation of BKCa can directly modulate
mitochondrial ROS production. We quantified the amount of
ROS produced by isolated mitochondria after 20min of ischemia
and 10min of reperfusion (Figures 4A,B). With IPC (n = 4),
the amount of ROS produced with glutamate and malate as
substrates for mitochondria from hearts of WT mice were
significantly (p = 0.004) reduced, in comparison to hearts only
exposed to IR (n = 3) (234 ± 10 a.u./µg of mitochondria vs.
193 ± 4 a.u./µg of mitochondria, Figure 4C). The amount of
ROS produced after IPC (n = 4) with glutamate and malate as
substrates from the heart of Tg-BKCa mice was also significantly
(p = 0.003) reduced, in comparison to hearts only exposed to IR
(n = 4) (188 ± 7 a.u./µg of mitochondria vs. 166 ± 6 a.u./µg
of mitochondria, Figure 4C). Surprisingly, ROS produced from
mitochondria isolated from hearts of Tg-BKCa mice subjected to
IR showed similar levels of ROS as wild-type subjected to IPC
(Figure 4C).

The ROS produced by succinate as a substrate for cardiac
mitochondria isolated from Tg-BKCa mice exposed to IPC
(n= 4) was significantly (p= 0.027) decreased, in comparison to
hearts exposed to IR (n= 4) (444± 6 a.u./µg of mitochondria vs.
417 ± 8 a.u./µg of mitochondria, Figures 4B,D). However, the
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FIGURE 3 | Cardiovascular function of WT and Tg-BKCa mice. WT and Tg-BKCa mice were anesthetized and comprehensive echocardiography measurements were

obtained to evaluate cardiac function. (A,B) Representative B-mode and M-mode of mice hearts from both groups. Left ventricular ejection fraction (C) and fractional

shortening (D) were measured using the parasternal long axis view. There was no difference between WT (black) and Tg-BKCa (blue) mice. (E,F) Color Doppler of

ascending (red) and descending (blue) aorta from both groups. The right panel shows representative images of peak velocities of ascending and descending aorta

from both groups. (G) Mean (black and blue) and peak (gray and light blue) velocities of ascending aorta of WT and Tg-BKCa mice showed no difference. (H) Mean

(black and blue) and peak (gray and light blue) velocities of descending aorta of WT and Tg-BKCa mice showed no difference. The values are presented as mean ±

SEM of 5–6 readings.
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FIGURE 4 | Cardioprotection is inversely proportional to the amount of ROS produced during reperfusion. ROS produced by the mitochondria from the heart of WT

(A) or Tg-BKCa (B) mice exposed to IR with or without IPC. The generation of ROS by succinate (black and gray) is higher than glutamate and malate (red and

orange). (C) Quantification of total ROS produced with glutamate and malate as substrate. ROS produced by mitochondria from the heart of WT mice exposed to IR

(n = 3) is higher, in comparison to heart exposed to IPC (n = 4). Similarly, ROS produced by mitochondria from the heart of Tg-BKCa mice exposed to IR (n = 4) is

higher, in comparison to heart exposed to IPC (n = 4). ROS produced with glutamate and malate by mitochondria from the heart of WT mice exposed to IR is higher

than Tg-BKCa heart exposed to IR. (D) Quantification of total ROS produced with succinate as substrate. Mitochondrial ROS from the heart of WT mice exposed to IR

(n = 3) is not different, in comparison to heart exposed to IPC (n = 4). However, ROS produced by cardiac mitochondria isolated from the heart of Tg-BKCa mice

exposed to IR (n = 4) is higher than heart exposed to IPC (n = 4). (E) The amount of ROS produced by the mitochondria isolated from the heart of BKCa and

Tg-BKCa mice not subjected to IR are not different in presence of any substrate. Mitochondrial protein yield was measured, and it was between 0.3 and 0.6 µg/µL.

ROS accumulated / µg of mitochondrial protein was expressed for 45min continuously in (A,B). ROS produced a.u./µg of mitochondrial protein was expressed for

45th min in (C–E). Values are presented as mean ± SEM of 3–4 independent experiments.

ROS produced by succinate from the heart of WT mice exposed
to IPC (n = 4) was similar (p = 0.181) to WT mice hearts
exposed to IR (n = 3) alone (514 ± 45 a.u./µg of mitochondria
vs. 471 ± 21 a.u./µg of mitochondria, Figures 4B,D). These
results indicate that IPC decreases ROS levels from complex I
(Figure 4C) with glutamate and malate as a substrate, and not
from complex II/III (Figure 4D) where succinate was used as
a substrate in wild-type mice. ROS produced in presence of
glutamate and malate, or succinate was lower in Tg-BKCa mice
(Figures 4C,D).

We further measured ROS levels in mitochondria rapidly
(29) isolated from hearts of wild-type (n = 3) and Tg-BKCa

mice (n = 3) which were not subjected to any ischemic
stress. Surprisingly, there were no differences observed in ROS

produced by mitochondria in the presence of glutamate-malate
or succinate (Figure 4E). Although the ROS produced by
succinate in Tg-BKCa mice was ∼30% higher, in comparison
to WT mice, we did not see any statistical difference due to
wide variation in the level of ROS even with 95% power. The
cardioprotective effect shown here using transgenic Tg-BKCa

mice is similar to that of pharmacological preconditioning using
activators of BKCa (38, 39).

BKCa Co-localizes to Mitochondria of Mice
Cardiomyocytes
As stated earlier, in adult cardiomyocytes BKCa has been
exclusively localized to the inner membrane of mitochondria
(10, 20). Our results implicate BKCa in mitochondrial ROS
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FIGURE 5 | BKCa and Tg-BKCa localize in the mitochondria of heart. We

isolated the cardiomyocytes by enzymatic digestion from the heart of Tg-BKCa
animals using Langendorff apparatus. The cardiomyocytes were fixed and

labeled with mitochondrial marker (MitoTrackerTM ) (A) plasma membrane

marker (wheat germ agglutinin/WGA) (B) and BKCa marker (C). Overlay of

these images (D) confirmed that Tg-BKCa
R207Q are found to be localized in

the mitochondria. Mitochondria were isolated from the cardiomyocytes of WT

mice and labeled with mitotracker (E) and Anti-BKCa polyclonal antibody (F).

Overlay of both the images (G) showed that BKCa is present in the

mitochondria. Similarly, mitochondria were isolated from the cardiomyocytes of

Tg-BKCa mice and labeled with mitotracker (H) and Anti-BKCa polyclonal

antibody (I). Overlay of both the images (J) showed that Tg-BKCa
R207Q is

present in the mitochondria. Mitochondria were also isolated from the

cardiomyocytes of Kcnma1−/− mice, and labeled with mitotracker (K) and

Anti-BKCa polyclonal antibody (L). Overlay of both the images (M) showed

that BKCa was effectively deleted in the mice (n = 5).

generation under ischemic stress. We tested whether BKCa

localizes to cardiac mitochondria of Tg-BKCa mice. In adult
cardiomyocytes, BKCa localizes to mitochondria loaded with
mitotracker but not in the plasma membrane in Tg-BKCa

mice (Figures 5A–D). Protein proximity index (10) for BKCa

to mitotracker and plasma membrane loaded mitochondria was
0.54 ± 0.1 (n = 5), and 0.2 ± 0.09 (n = 5) indicating a
stronger correlation with mitochondria than plasma membrane.
We further isolated mitochondria from the heart of WT
and Tg-BKCa mice and observed mitochondrial localization
of BKCa (PPI of 0.6 ± 0.1, n = 6 and 0.71 ± 0.2, n = 5,
respectively, Figures 5E–M). Our observations indicate that
the genetic alteration of BKCa (BKR207Q) does not affect its
cardiac distribution or its mitochondrial localization. No specific
signals were observed for BKCa channels in the mitochondria of
Kcnma1−/− mice (n= 5) as demonstrated with immunostaining
(Figures 5K–M).

DISCUSSION

BKCa channels are modulated by calcium, voltage, and several
other cellular components, making them key pathophysiological
targets. Auxiliary proteins, β and γ subunits also directly regulate
the activity of BKCa channels, as well as, their sensitivity toward
channel activators and blockers. One of the major breakthroughs
in BKCa-centric research over the past two decades is the
availability of small molecular openers for BKCa channels. These
small molecules and pharmacological agents have provided
ample opportunities to decipher the role of BKCa channels
in physiological functions. The use of several pharmacological
agents including, NS1619 and NS11021, to activate BKCa has
been shown to play a vital role in cardioprotection and
neuroprotection from IR injury. However, due to non-specific
and off-target effects of drugs (40–44), clinical application of
BKCa agonists is not yet initiated. Preclinical and basic research
provides sufficient evidence for a translational aspect of BKCa

activators but due to limitations related to specificity and the
lack of potency (40–44), concerns have been raised on the role
of activation of BKCa in pathological conditions (45). The need
to revisit the issue related to the role of activation of BKCa

in a pathological condition such as IR injury is critical in the
light of recent findings that expression of BKCa is vital for
cardioprotection using global (10, 32) and cardiac-specific (17)
knockout mice.

In this study, we have used transgenic mice expressing

the BK
R207Q
Ca mutant subunit driven by Per1 locus. Per1 is

ubiquitously expressed in a wide variety of tissues and in
a previous study, it was shown that Tg-BKCa

R207Q mice
displayed overexpression of constitutively-activated BKCa in
several different tissues including aorta. In adult cardiomyocytes
and cardiac mitochondria isolated from Tg-BKCa mice, there
were no differences observed in the localization of BKCa,

implying that overexpression of the BKCa
R207Q mutant does

not interfere with its cellular or organelle localization. We have
not observed any abnormal phenotype or behavior in Tg-BKCa
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mice. Cardiovascular analysis using echocardiography also did
not demonstrate abnormal cardiac function, in comparison to
the wild-type mice. Hence, Tg-BKCa mice provide an appropriate
tool to test whether overexpression and activation of BKCa

play a role in cardioprotection as shown by global (10) and
cardiomyocytes-specific (17) null mutant mice.

In the last two decades, several studies using pharmacological
tools have suggested a protective role of BKCa from IR injury
and in IPC-mediated cardioprotection and are summarized in
recent reviews (1, 5). The first study to implicate BKCa in
cardioprotection (i.e., improved LVDP and reduced infarction)
from global IR injury was conducted using the agonist NS1619,
the effects of which were blocked by paxilline (20). Improved
LVDP by preconditioning with 3µM NS1619 was confirmed
by Stowe et al. (38) possibly by modulating mitochondrial ROS
and Ca2+ concentrations. The same group has proposed that
opening of BKCa elevates the level of K+ in the matrix of
mitochondria, which is exchanged for H+ ion by a K+/H+

exchanger (46). Increase in the level of H+ in the mitochondrial
matrix stabilizes mitochondrial membrane potential (19m) so
that unutilized electrons combine with oxygen to generate a small
amount of mitochondrial oxygen radicals and other ROS, which
then protects the cardiomyocytes by stimulating downstream
protective signaling pathways. In addition to NS1619, studies
involving other BKCa channel openers, NS11021 (14) and
naringenin (47), have also demonstrated that cellular and
cardioprotection from IR injury further provide strong evidence
for the role of BKCa in cardioprotection. However, in primary rat
cortical neurons, NS1619-preconditioning caused mitochondrial
depolarization which could not be prevented by paxilline (48).

Pharmacological data using agonists and antagonists provides
strong evidence for the role of BKCa in cardioprotection.
However, the same set of drugs have resulted in non-specific
effects in cells and organs. Paxilline, although is a specific
BKCa-blocker, abolished isoflurane-mediated cardioprotection in
wild-type as well as Kcnma1−/− mice12. NS1619 (>10µM) is
known to inhibit SERCA (49), mitochondrial respiratory chain
(44, 50), and H+/K+ leak (46). These issues have largely been
addressed by using low concentrations (≤10µM) of NS1619 in
conjunction with global (10) and cardiomyocytes specific (17)
BKCa knockout mice. Our results using activated BKCa reiterated
and further supported the studies involving global (10, 12, 32)
and cardiomyocytes specific (17) knockout mice.

Interestingly, we observed an increase in the LVDP amongst
a few hearts from Tg-BKCa mice exposed to IPC (4 out of
7) beyond 100% during the reperfusion stage, in comparison
to the baseline. We used a constant flow approach for this
experiment. We anticipate that in the presence of some degree
of infarction, the remaining cardiomyocytes would contract
more and beat faster to balance the pressure overload arising
due to the constant flow of buffer solution to the isolated
heart. An increase in LVDP and + dp/dt was also observed
by Okazaki et al. after IR-injury (51). Similarly, Papanicolaou
et al., also observed an increase in LDVP up to 150% in
mitofusin-2 deleted hearts after 10min of ischemia and 20min
of reperfusion ex vivo, using Langendorff model (52). Moreover,
an increase in the LVDP is associated with an increase in

the flow rate (51) in ex vivo IR study and BKCa activator,
rottlerin, is known to increase the flow rate post ex vivo IR
(24).

As others have shown, we too provide evidence that BKCa

is exclusively present in mitochondria of adult cardiomyocytes
and modulate mitochondrial function. In a recently published
study, the notion of BKCa in adult cardiomyocytes playing a
role in cardioprotection was confirmed, and cardioprotective role
via BKCa in smooth muscle cells was ruled out by using tissue-
specific knockouts (17). However, an argument regarding the role
or necessity of activation of BKCa to provide cardioprotection
from IR injury is still valid. Our study involving mice expressing
activated BKCa without any pharmacological tools support the
notion that in addition to the expression of BKCa, activation
of BKCa is also important in cardioprotection from IR injury.

Expression of BK
R207Q
Ca protected the heart from IR injury, as

well, as improved the recovery of LVDP after IPC and IR injury.
Further, we also noticed a remarkable decrease in myocardial
infarction in hearts isolated from Tg-BKCa mice as compared
to wild-type mice. IPC as anticipated, reduced myocardial
infarction in wild-type mice which was further augmented in Tg-
BKCa mice, implying that activation of BKCa can further enhance
the IPC-mediated cardioprotection from IR injury. Soltysinka
et al. (32) demonstrated a cause-effect relationship between
“IPC-mediated cardioprotection” and “BKCa” using global BKCa

knockout mice. Cardioprotective property of IPC was lost in the
hearts collected from BKCa knockout mice (31). Our results along
with other studies using global or tissue-specific knockout mice
imply that expression and activation of BKCa play an important
role in cardioprotection from IR injury.

In IR injury, ROS is well-characterized to be the major
player as a second messenger involved in preconditioning
(53). Complex III of the electron transport chain (ETC) is
the main site for ROS production, and the ROS produced is
directed away from the antioxidant defenses of the mitochondrial
matrix (54). However, complex I mediated ROS products are
released in the mitochondrial matrix in the proximity of defense
enzyme systems and is known to change the redox state of
proteins present in the mitochondrial matrix, which causes a
deleterious impact on cellular physiology (55). Association of
K+ channels to mitochondrial ROS has been well-established
(56, 57). Specifically, KATP channels mediate influx of K+ into
the mitochondrial matrix resulting in a small augmentation of
ROS production to induce cardioprotection (56, 57). In contrast,
pharmacological tools aimed at BKCa channels indicate that the
opening of BKCa reduces IR-induced large-scale ROS production
whereas closing the BKCa channel increases deleterious ROS
production (22, 24, 58). Recently, using cardiac-specific BKCa

knockout mice, it was shown that the absence of BKCa

increases ROS (17) which has been proposed earlier to regulate
endoplasmic calcium release (59). Increase in ROS in the
knockout mice is independent of change in expression of ROS
degrading enzymes such as CuZnSOD (SOD1) and MnSOD
(SOD2) (17). We have observed that activation of BKCa does
not affect the ROS production at the basal levels, however, after
IR injury, activation of BKCa results in a reduction in ROS
production. The decline was observed for both complexes of the
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ETC in isolated mitochondria from Tg-BKCa mice. The other
factor to be taken into account is the amount in addition to
the site of production of ROS available in the cell (55). IPC
reduced ROS generated by complexe I in wild-type mice which
indicate that reducing the total amount of ROS can also protect
the cardiac tissue.

Activation of BKCa is also known to increase the Ca2+

retention capacity of mitochondria (10). Our recent findings
on Ca2+ (10), and ROS in this study, and studies from other
groups have indicated that BKCa-mediated cardioprotection
involves an interplay between ROS, Ca2+ and mitochondrial
permeability transition pore (mPTP) (1, 5, 22, 31, 38, 46, 60–
62). One possible mechanism is an increase in Ca2+ retention
capacity possibly by modulating a mitochondrial Ca2+ pump on
activation of BKCa, hence allowing more Ca2+ uptake during
ischemia-reperfusion. Also, blocking BKCa channels either
pharmacologically or genetically enhances ROS production,
hence increasing myocardial infarction. The precise manner of
how Ca2+ modulates ROS generation is not well-understood.
However, three-dimensional conformational changes induced by
Ca2+ in the ETC complexes, such as changes in complex IV have
been reported (63, 64). Direct addition of BKCa channel activator
in isolatedmitochondrial preparation results in depolarization (5,
46) of mitochondrial membrane potential which made it difficult
to study mitochondrial BKCa channels in isolated preparations.
However, the use of genetic approaches clearly indicates that
partial activation (Tg-BKCa) does not change mitochondrial
ROS generation under physiological conditions. During stress,
the increase in Ca2+ influx could further increase the open
probability of the channel which could result in a reduction
of ROS as observed in our studies. Since the decrease in
ROS levels has been associated with cardioprotection from IR
injury (65, 66), we anticipate that activation of BKCa reduces
deleterious ROS production, hence decreases Ca2+ release from
endoplasmic reticulum and reduction in an influx of Ca2+ to the
matrix and prevents Ca2+ overload in mitochondria (59). This
complex interplay between Ca2+ and ROS is known to result
in apoptosis, possibly by opening the mPTP. Hence, activation
of BKCa can be linked to delay in the formation and/or closing
of mPTP.

In summary, our study implicates overexpression of activated
BKCa in cardioprotection against IR injury, and cardioprotection
ismediated, in part, by decreasing deleteriousmitochondrial ROS
generation.

LIMITATIONS OF THE STUDY

Even though, our study does not involve pharmacological tools,
there are several limitations which should be mentioned. The
Tg-BKCa mice are not homozygous but are generated in the
background of wild-type mice as the homozygous mouse is
embryonic lethal (8). The animals are phenotypically normal.
This finding is important as usage of heterozygous mice suggests
that partial activation of BKCa is sufficient for cardioprotection
and reduction of mitochondrial ROS. The gain-of-function BKCa

is present in all the cells under Per1 locus. Since Per1 is
present in most cells types, the effect we observed could also

arise from non-cardiomyocytes. Non-cardiomyocyte cells such
as cardiac neurons are known to play a role in cardioprotection
as well as cellular protection as reported earlier (12). Our
study does not rule out the role of non-cardiomyocyte BKCa in
cardioprotection from IR injury. Our ex vivo approach using
the Langendorff method partially rules out non-cardiac BKCa

as the heart is excised and isolated from other organs during
the experiment. Since hearts were not paced at a constant
rate, ± dp/dt may not be a good index of cardiac function.
Therefore, we did not report ± dp/dt. We further isolated
mitochondria and measured ROS levels with and without
IR. Our results also indicate that BKCa channel activation
can modulate mitochondrial ROS levels. We have observed
statistical significance in betweenWT and Tg-BKCa IR for LVDP,
infarction, and ROS production but not in WT IR vs. IPC when
one-way ANOVA followed by Tukey’s multiple comparison tests
was used. This could be due to the shorter duration of reperfusion
(30min).

Tg-BKCa construct is generated on DEC splice variant (8)
which is known to facilitate localization of BKCa to mitochondria
(10), and we did not observe any change in localization of
BKCa in cardiomyocytes or isolated mitochondria. Therefore,
we corroborate earlier findings involving pharmacological and
global, as well as cardiac-specific null mutant mice, in addition
to the expression of BKCa, activation of BKCa plays an important
role in cardioprotection from IR injury.
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