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ABSTRACT: The wall effects on the sedimentation motion of a
single spheroidal particle in cylindrical tubes filled with Bingham
plastic fluid are investigated with the fixed computational domain
using the Computational Fluid Dynamic (CFD) model in steady-
state mode. The CFD model is validated with literature in both
bounded and unbounded mediums. The rheological model of the
Bingham plastic fluid is regularized with a smoothly varying
viscosity. The retardation effects of the tube wall are presented in
functions of Reynolds number Re, radius ratio λ (the radius of the
tube to the semiaxis of the particle normal to the flow λ = R/r),
aspect ratio E (the ratio of the semiaxis of the particle along the flow to r, E = b/r), and Bingham number Bn. The simulation results
demonstrate that the drag coefficient CD declines with the rise in Reynolds number. The relative contribution to drag coefficient
from the pressure force increases with larger Bingham number comparing with that from the friction force. The formation and size of
the recirculation wake is suppressed by the yield stress. While Bn is approaching infinity, the limiting behavior is observed in the
location of yield surface and the value of yield-gravity parameter. The values of critical yield-gravity parameter are explicitly given at
different values of E, showing independence with Re and λ. For the flow with Bn ≥ 100, the influence of wall can be even ignored
while λ is larger than 5.

1. INTRODUCTION
The sedimentation motion of a particle in liquid or flow past a
rigid body is a research topic of interest in fluid mechanics,
considering its widespread applications in solid−liquid
separator, movement of particles in slurry, viscometer, fluid-
bed, etc.1−3 For over a century, studies have been extended
from the simplest case of a single sphere in Newtonian
rheology, which was first investigated by Stokes,4 to more
complex cases, including surrounding fluid in an unsteady
motion state5,6 or of non-Newtonian rheology, different shapes
of particle (e.g., disc, cylinder cone,7 and spheroid8,9) and
multiparticle systems.3,10 By virtue of the yield stress, the visco-
plastic material exhibits a very important characteristic. When
the shear stress is below the yield value, the fluid does not
deform and acts as a rigid solid. Ideally, for a rheology without
yield stress, the flow is sheared everywhere, even in an infinite
medium in the problem of flow past rigid body. However,
under the condition of yield stress, the unsheared region(s) is
formed in the flow and separated from the sheared region(s)
by distinct yield surface(s). In a limiting case, while the shear
stress imposed by the particle is not enough to overcome the
yield stress, no sheared region exists in the flow and the fluid
sustains the applied stress in a stationary condition. This
condition is referred as static equilibrium in the literature, and
the criterion used for the establishment of equilibrium
condition is often expressed by the critical value of yield-

gravity parameter, Yg.
11 Usually, the drag coefficient CD and the

value of critical Yg are the focus of concern in those studies on
the fluid−particle system with visco-plastic mediums.

The literature shows that work has been conducted to
disclose the standard drag curve and critical Yg of a spherical
particle with infinite Bingham plastic fluids. Volarovich and
Gutkin12 first raised the point that the visco-plastic rheology
behaved as a fluid in a small envelope, which was surrounding
the particle, and no shear but elastic force occurred outside the
envelope. By assuming the envelope of a spherical shape to be
concentric with the particle, Valentik and Whitmore13

measured the terminal velocity of the falling particle and
estimated the diameter of the envelope using a modified model
based on Newtonian fluids. Subsequently, Ansley and Smith14

proposed the envelope to be of ‘truncated toroidal shape’
based on the slip-line field theory and correlated the drag
coefficient with the Reynolds number. The critical Yg given by
them was 0.183−0.255. In 1971, Yoshioka et al.15 predicted
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two small stationary regions before and after the particle, and
the upper and lower bounds on CD were obtained based on the
variational principle. Their upper bound results agreed very
well with the following numerical work, in which, Beris et al.16

treated the discontinuous equation of Bingham fluids with a
regularization approach as proposed by Bercovier and
Engelman.17 They calculated the drag coefficient under the
creeping flow condition and worked out the critical Yg = 0.143
using the finite-element method. The results of Beris et al.16

were believed to be the most reliable values of CD and critical
Yg for the Bingham rheologies in the creeping flow regime
because of the great agreement with subsequent numer-
ical6,18,19 and experimental studies.20 Based on the work of
Ansley and Smith,14 a crude expression of the maximum value
of Reynolds number, beyond which the creeping flow started
to develop to noncreeping flow, was given by Chhabra and
Uhlherr.21 Machac ̌ et al.22 presented new experimental data on
the terminal velocity of a falling particle beyond the creeping
flow region and evaluated the suitability of available equations
for the drag coefficient with modified Reynolds number up to
1000. In 2003, Wilson et al.23 developed an approach to
predicting the terminal velocity in non-Newtonian fluids based
on equivalent Newtonian fluids of the same viscosity. Their
work was recently improved by Arabi and Sanders,24 and a
better accuracy of prediction on the terminal velocity could be
achieved in the Newton’s regime.

Besides the experiments with a spherical particle, the case
with a spheroidal particle also received much attention from
researchers. For a Newtonian fluid, based on the analytical
methods (e.g., series truncation and Fourier expansion
method), the drag phenomena were studied by extending the
solutions for spherical particle to spheroids for the flow under
the condition of small Reynolds numbers.25,26 Later, numerical
methods were employed by Rimon and Lugt27 as well as Pitter
et al. to extend the flow regime to those of Re up to 100.28 In
their works, drag coefficient was presented in functions of
Reynolds number and aspect ratio for the flow with oblate
spheroids of E = 0.05 to 0.5. For the non-Newtonian
rheologies, the flow past spherical particles in unconfined
medium was investigated numerically in the intermediate range
of Reynolds numbers up to 100 and for aspect ratios from 0.2
to 5 with shear thinning rheologies by Tripathi et al.,9 shear
thickening rheologies by Tripathi and Chhabra,29 and Bingham
plastic fluids with Bn up to 100 by Gupta and Chhabra,30

respectively.
Compared to the unbounded fluids in theoretical research,

the practical engineering problems are always dealt with in
finite-size containers. The motion of a particle is retarded in
the presence of a confining wall, namely, CD rises in
comparison with that in the unbounded fluids. In view of a
cylindrical tube with the spherical particle falling along the axis,
the retardation effect of the wall is due to the flow in the
negative direction to the movement of particle. In 1990,
Atapattu et al.31 concluded that the wall effects existed only if
the boundary intersected with the sheared region and worked
out the critical diameter ratio by measuring the terminal
velocity of a falling particle. Later, Blackery and Mitsoulis19

modified the Bingham plastic equation using an exponential
regularization method, which was proposed by Papanasta-
siou,32 and numerically studied the wall effects for Bingham
fluids under creeping flow conditions. Their predicted CD was
proven to be within a ∼10% error in a later study by Liu et al.18

A more comprehensive review can be found elsewhere.11,33

Based on the review above, it can be found that the
investigation on the wall effects for a spheroidal particle in
confined Bingham plastic fluids is still missing. Therefore, the
aim of this study is to fill this gap. The flow condition
considered here is E = 0.2−5, λ = 2−15, Bn = 0.001−1000 and
Re = 0.001−200.

2. THEORY
2.1. Rheological Model. In this study, we assume that the

fluids are incompressible with unchanging density of ρF and
rheologically time-independent. The non-Newtonian Bingham
plastic model can be described by eq 1:

= (1)

where τ̃ is the stress tensor, η̃ is the apparent viscosity, and is
the rate-of-strain tensor. For Bingham plastic fluid,

B
0= + . Here, μB is the Bingham viscosity, τ0 is the

yield stress, and ( : )1
2

= .
The Bingham model suffers from discontinuity and its

implementation poses difficulties in numerical modeling, i.e.,
tends to be zero and apparent viscosity η̃ ( /B 0= + ) tends
to be infinity while the yield surface is approached.18 Usually,
therefore, other strategies are employed to circumvent this
problem caused by the yield stress.34 One of the popular
methods, which is widely employed for the visco-plastic fluid
problem studied here,16,34 is to represent the Bingham model
using a smoothly changing viscosity, which was developed by
Bercovier and Engelman,17 as

PB
0= +

+ (2)

where P is a very small value and has the dimension of inverse
time. When P tends to be zero, the ideal Bingham plastic fluid
model is recovered from eq2 (as depicted in Figure 1).

The dimensionless form of eq 2 can be achieved by
nondimensionalizing the viscosity with μB, velocity gradient
with V/d and stress with μBV/d (where V is the relative
velocity between particle and tube) as

Figure 1. Qualitative illustration of ideal and regularized Bingham
plastic model.
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Bn
P

1
2 B

= +
+ (3)

where Bn is defined as Bn r
V
2

B

0= and PB
rP
V

= .

2.2. Reynolds Number. For a spheroidal particle in
Bingham fluids, the Reynolds number can be calculated by

Re
VdF

B

=
(4)

where d is the axis of the particle normal to the flow.
2.3. Drag Coefficient. In this study, the semiaxis normal to

the flow, i.e., r is chosen as the characterized radius. Thus, the
drag coefficient, CD can be given by

C
F

r VD
D

F
1
2

2 2=
(5)

where FD is the drag force exerting on the particle. The drag
correction factor Y is thus given by

Y
F

rV6
D

B

=
(6)

The yield-gravity parameter can be worked out by

Y
Bn

Y6g =
(7)

2.4. Yield Surface. At the yield surface, the shear stress is
equivalent to the yield stress and the following equation is
formed:

i
k
jjjjj

y
{
zzzzzPB0

0= +
+ (8)

The shear rate at the yield surface, γ̇Y can be solved from eq 8
as

P P P Bn( 2 )Y B B B
1/2= + + (9)

2.5. Governing Equations. In this study, the governing
transport equations, which are continuity and momentum
equations, can be expressed in their general forms,35 as

UContinuity: 0· = (10)

DU
Dt

pMomentum: ( )F = +
(11)

where p is the fluid pressure and U is the velocity field.

3. CFD SIMULATIONS
The commercial software program, ANSYS Workbench 17.2, is
applied to conduct the simulations. The flow geometries are
produced and meshed using the software ICEM, and the flow
is specified, solved, and postprocessed utilizing CFX 17.0. The
initial geometries are a group of straight tubes with different
diameters, combining with one spheroidal particle of E = 0.2−
5 symmetrically placed at the tube center. Based on the
axisymmetric configuration, the initial geometries are sim-
plified to a quasi-two-dimensional model, obtained by
sweeping 1° with a 2D mesh. As shown in Figure 2, the
simplified geometry involves five boundaries: inlet, outlet,
symmetry, tube wall, and particle wall. In order to eliminate the
inlet and outlet boundary effects, the entrance length, Lin and
exit length, Lout are selected as Lin = Lout = 100r − b.

In this study, the geometries are meshed using hexahedral
cells. A mesh-independence study is carried out to optimize the
mesh size for reliable results, meanwhile keeping a balance with
computational expense. A number of simulations are
performed with different mesh densities, starting from a
rough mesh and improving it until the results are independent
of the mesh size. Table 1 reports a typical mesh-independence

study with a geometry of λ = 5 and E = 1 at Re = 1. It can be
seen that meshes required to satisfy the accuracy for
calculations with small Bingham number are of relatively low
quantity comparing with those with large Bingham number.
For each mesh obtained from varying diameters, the mesh size
near the particle wall is gradually reduced to 0.001r − 0.005r to
achieve a better mesh resolution in this region where high
velocity gradients exist (as depicted in Figure 3). The quality of

each mesh in this study assessed by its orthogonality and
warpage is greater than 0.7, much higher than the universal
accepted minimum value of 0.4 for a good mesh.

PB plays a key role in the studies with yield stress rheologies.
Recovery of the ideal Bingham model from eq 3 clearly
requires PB tending to zero; i.e., small PB is prerequisite for
accurate results. On the other hand, a small value of PB may
lead to numerical difficulty or poor convergence.18 Therefore,
the optimal PB should be as small as possible, meanwhile
satisfying the demand for the reliability of the model.
Generally, the simulations with larger Bn always require a
smaller PB. By a comparison on the drag coefficient for Bn =
1000 at the extreme values of Re (0.001 and 200), E (0.2 and

Figure 2. Schematic representation of simplified model with
boundary conditions.

Table 1. Effect of Mesh Quantity on Y with Varying
Bingham Numbers at Re = 1 for λ = 5 and E = 1

Mesh Quantity

Bn 7660 14630 21450 29550 40700

0.001 1.688 1.693 1.692 1.692 1.692
1000 1340 1238 1231 1229 1228

Figure 3. Schematic of the mesh used in simulations with λ = 5 and E
= 1.
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5), and λ (2 and 15) with varying PB, it is found that the
differences in CD resulting from a further decrease of PB from
10−6 to 10−7 are ignorable (<1%), indicating that 10−6 is small
enough for reliable results. Therefore, the value of PB in the
present study is chosen as 10−6 for all cases.

The CFX code applies a finite-volume-based technique to
discretise the governing transport (eqs 10 and 11). In this
method, ϕip is calculated at an integration point from the
variable value at the upwind node, ϕup, and the variable
gradient,∇ϕ, therefore

rip up= + (12)

where β is a blend factor and Δr is the vector from the upwind
node to the integration point. A first order accurate scheme is
acquired with β = 0, which is robust but may generate a
discretization error. A second order accurate scheme can be
obtained with β = 1, which is unbounded and may lead to
nonphysical values. In the present study, a high resolution
advection scheme was employed, and the value of β is
calculated locally to be as close to 1 as possible, so as to
achieve the demand of both accuracy and boundedness.36

In the present work, the model used is with stationary flow
domain and simulations are carried out in the steady-state
mode. At the inlet uniform velocities are assigned, and at the
outlet a zero gauge pressure condition is set. In addition, the
inlet velocities and no-slip condition are specified at the tube
wall. The particle wall is explicitly stated as stationary and no-
slip.

When the root-mean-square (RMS) of both mass and
momentum residuals obtain a convergent target of 10−6, the
numerical solution is accepted as a high level of accuracy.
However, even lower RMS residual values are generally
achieved by most of the equations. An independent study
has been conducted to confirm that the results reported below
would not change with a smaller specified target of RMS
residual. Reaching this level of convergence typically requires
200−6000 iterations.

4. VALIDATION OF THE CFD MODEL
Although CFX is a stable and reliable code, and has been
widely used in many fields, to maximize our confidence,
validations are performed as much as possible here by
comparing our results with that available in the literature.
Two sets of validations, simulating flow in unbounded and
bounded mediums, respectively, are conducted and described
as below.

4.1. Validations in Unbounded Fluids. The first set of
validations are conducted with unbounded medium of both
Newtonian (i.e., Bn = 0) and Bingham plastic types. It should
be noted that the results, reported in this study, corresponding
to the unbounded condition are achieved by extrapolating the
data from λ = 2 to 50. The drag coefficient with an aspect ratio
of 0.2−5 is compared in Newtonian fluid at Re = 0.01 with that
in the literature in Table 2. It can be seen that the agreement is
generally great with the maximum difference being ∼5%.
Figure 4 depicts the variation of Y and Yg while Bn tends to be
infinity. The predicted critical Yg by the present model is
0.1426, showing an excellent agreement with the work of Beris
and Tsamopoulos16 (0.143).

4.2. Validations in Bounded Fluids. The second set of
validations are conducted by simulating the flow with spherical
particles (i.e., E = 1) in bounded mediums. For Newtonian

rheology, the predicted results are compared with literature in
the aspect of drag coefficient at Re = 1, 10, and 100,
respectively. As shown in Table 3, our results have a difference
of ∼15% from the work of Wham et al.38 when Re = 10 and λ =
10. However, it is still in a good agreement compared with the
other combinations of Re and λ. For Bingham plastic fluids of
Bn = 0.001−1000 under creeping flow conditions, the
predicted drag correction factor using the present model is
compared with the work of Blackery and Mitsoulis19 in Table
4. The match is seen to be great with Bn = 0.001. However, the
maximum difference is found to be ∼11.5% with Bn = 1 and
∼24.2% with Bn = 1000. This is generally consistent with the
that found in the study of Liu et al.18

To sum up, in spite of some slight differences existing,
considering the comparatively good agreement in the
validations, we believe that the CFD model is sufficiently
accurate and reliable for investigating the wall effects of
spheroidal particles in the confined Bingham plastic fluids.

5. RESULTS AND DISCUSSION
The drag phenomena and flow patterns are evaluated as
functions of Reynolds number (0.001 ≤ Re ≤ 200), diameter
ratio (2 ≤ λ ≤ 15), Bingham number (0.001 ≤ Bn ≤ 1000),
and aspect ratio (0.2 ≤ E ≤ 5). The choice of the ranges of Re,
Bn, and λ is briefly given here. Kishore and Gu8 have
confirmed that the confined flow of Newtonian fluids past
oblate and prolate particles is steady, laminar, and axisym-
metric with Re up to 200, indicating that the range of Re from
0.001 to 200, which is selected in the present study is also
reasonable as the flow becomes more stable under the
condition of yield stress. It also should be noted here that at
high Re the results presented in this section are possibly unable
to be used for freely falling spheroids as the initial orientation
of particle may change. Bn, from 0.001 to 1000, well describes
the rheological change of fluids from Newtonian to fully plastic
and meanwhile enables the extrapolation for critical Yg. Besides
Re and Bn, the results presented in following sections will show

Table 2. Comparison of CD with Different Values of E in
Unbounded Newtonian Fluids (Bn = 0) at Re = 0.01

E 0.2 0.5 1 2 5

Happel and Brenner37 2068 2173 2400 2889 4283
Tripathi et al.9 2126 2231 2457 2951 4382
Kishore and Gu8 2188 2259 2456 2956 4309
Presenta 2070 2176 2389 2890 4281

aExtrapolation.

Figure 4. Comparison of Y in unbounded Bingham plastic fluids for
creeping flow of E = 1. Reproduced with permission from ref 16.
Copyright 1985 Cambridge University Press.
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that the wall effects are negligible while λ is beyond 15 for most
cases, confirming the reasonability of the choice of its range
(i.e., 2−15).

5.1. The Effect of Reynolds Number on Flow Patterns
and Drag Phenomena. In Figure 5, the drag coefficient is
depicted as a function of Reynolds number of 1−200 for
spherical particle on the dual logarithmic coordinate. As
shown, CD decreases with the increase in Re over the whole
ranges of Bn from 0.001 to 1000 and λ from 2 to 15. With
given Bn and λ, the inverse relation between CD and Re (or

independence of Y with Re), which is typically interpreted as
the characteristic of creeping flow,11 is satisfied at small values
of Re. Take the case of Bn = 1 and λ = 15 as an example, CD is
inversely proportional to Re while Re ≤ ∼10. Figure 6 shows
the development of stream line patterns around a spherical
particle from Re = 1 to 200. Corresponding to the inverse
relation between CD and Re, the stream lines are nearly
symmetric before and after the particle until Re = ∼10. While
Re is beyond ∼10, the inertial force becomes more obvious,
and the flow starts to develop from creeping to noncreeping.
The fore-and-aft symmetry of the stream lines gradually
disappears. A recirculation wake can be observed after the
particle at Re = 100 and tends to be longer with further
increase in Reynolds number. For the drag coefficient, as
presented in Figure 5, CD starts to deviate from the inverse
relationship with Re at Re = ∼10, indicating the beginning of
noncreeping flow. The end of creeping flow is always marked
by its maximum value of Reynolds number, Rem.

21 Similar to
the stream line patterns, as indicated in Figure 7, the yield
surface shows symmetrical characteristics before and after the
particle, while Re is small. At a larger Reynolds number, the

Table 3. Comparison of CD with Different Values of λ in Bounded Newtonian Fluids at Moderate Reynolds Number

Re = 1 Re = 10 Re = 100

λ = 5 λ = 10 λ = 5 λ = 10 λ = 5 λ = 10

Wham et al.38 40.476 30.599 4.794 3.853 1.087 1.016
Song et al.39 40 32 4.9 4.2 1.2 1.1
Tian40 40.499 30.933 4.980 4.420 1.162 1.101
Presenta 40.542 30.961 4.982 4.426 1.162 1.100

aExtrapolation

Table 4. Comparison of Y with Different Values of λ in
Bounded Bingham Plastic Fluids for Creeping Flow

λ Bn = 0.001 Bn = 1 Bn = 1000

2 Blackery and Mitsoulis19 5.942 7.570 1160
Present 5.946 7.578 1239

10 Blackery and Mitsoulis19 1.265 3.590 1118
Present 1.269 4.003 1228

50 Blackery and Mitsoulis19 1.057 3.640 985.7
Present 1.067 4.000 1226

Figure 5. Effects of Re and Bn on CD and Cp/Cf with different values of λ for spherical particle.
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fluid is more likely to be sheared, and the yielded area
increased in size. The contributions of pressure drag coefficient
(Cp) and friction drag coefficient (Cf) to CD are also presented
in the form of Cp/Cf in Figure 5. The conclusions can be drawn
as (1) Cp makes the predominant contribution based on the
fact that Cp/Cf is generally above unity; (2) Cp/Cf is
independent with Reynolds number in the creeping flow
region. For example, with Bn = 1 and λ = 15, Cp/Cf is of
constant value at Re = 1 to ∼10, then shows exponential
growth beyond Re = ∼10 and finally reaches its maximum
value of 1.220 at Re = 200.

The yield-gravity parameter, Yg is plotted as a function of Bn
in Figure 8 with λ = 2 and 15 for a spherical particle at different
Reynolds numbers. It can be seen that Yg is independent of Re
under the condition of creeping flow, i.e., the curves at
different values of Re coincide. As stated in the introduction,
the static equilibrium state is achieved while Bn tends to be
infinity, thus, it can be concluded that the critical Yg is of
identical value (0.143) at different Reynolds numbers. Beyond
the creeping flow region, the yield-gravity parameter reduces
with the rise in Re. For example, with Bn = 0.001 and λ = 2, Yg
for the creeping flow is ∼2.3 times as that achieved at Re = 200.

Figure 6. Streamline patterns around the particle at Re = 1; 10; 100; 200 for Bingham plastic fluid: Bn = 1 with λ = 15 for a spherical particle.

Figure 7. Comparison of locations of yield surface at different Reynolds numbers with λ = 15 and E = 1 for Bingham plastic fluids of Bn = 100 and
1000.
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5.2. The Effect of Bingham Number on Flow Patterns
and Drag Phenomena. The Bingham number Bn is an
indicator of the degree of non-Newtonian behavior; the larger
is the value of Bn, the more prominent are the non-Newtonian
properties of the fluid. As Bn increases, the Bingham plastic
fluid behaves more viscous, thus resulting in a more obvious
retardation on the flow comparing with the Newtonian fluid.
As shown in Figure 5, for given Re and λ, the fluid of Bn =
1000 yields a larger value of CD over all the other cases. The
additional viscosity resulting from the non-Newtonian proper-
ties of Bingham plastic fluid also enlarges the creeping flow
region, i.e., Rem rises with the increase in Bn. For λ = 10, the

creeping flow can be realized throughout the whole range of Re
= 1−200 with Bn = 1000, but cannot be achieved with Bn =
0.001 even at Re = 1. Similar phenomena are observed in the
comparison of wakes with varying Bingham numbers. As
shown in Figure 9, at Re = 100, a clear recirculation wake is
discovered after the particle for Bn = 1. However, with the
increase in Bingham number, it gradually disappears, and
stream lines show symmetrical characteristics beyond Bn = 100

Figure 8. Effects of Bingham number and Reynolds number on Yg with λ = 2 and 15 for a spherical particle.

Figure 9. Stream line patterns around the particle at Re = 100 for Bingham plastic fluid: Bn = 1−1000 with λ = 10 and E = 1.

Figure 10. Comparison of locations of yield surface with different
values of Bn at Re = 10 with λ = 15 and E = 1.

Figure 11. Comparison of CD with different values of λ at Re = 1 for
Bingham plastic fluids of Bn = 0.001−1000 and E = 1.
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(i.e., the creeping flow is recovered). The sheared region is
depicted with Bn = 10, 100, and 1000 at Re = 10 in Figure 10.
As more shear is required to yield the flow, the unyielded
region increases in size, i.e., the yield surface tends to be closer
to the particle for a fluid with the larger Bingham number.
Conclusions from the comparison of Cp/Cf with different
values of Bn are not clear. As depicted in Figure 5, generally,
with the rise in Bn, the pressure force acting on the particle
increases, and therefore leads to a less contribution from the
friction drag. However, under the noncreeping flow condition,
the pressure drag is more likely to increase comparing with the

friction drag. Thus, at Re = 200 and λ = 2, it is observed that
the minimum value of Cp/Cf is achieved with Bn = 10.

5.3. The Effect of Diameter Ratio on Flow Patterns
and Drag Phenomena. The wall effects are generated by the
backward flux of the fluid displaced by the particle. The
diameter ratio demonstrates the impact extent of the wall

Table 5. Drag Correction Factor Y at Re = 100 and E = 1
with Different Values of λ and Bn

Bn

λ 0.001 0.1 10 100 1000

2 9.668 9.794 23.16 138.4 1239
5 4.843 5.015 19.61 135.6 1234
10 4.584 4.771 19.62 134.9 1230
15 4.553 4.736 19.63 135.1 1239

Figure 12. Comparison of streamline patterns after the particle with different values of λ for Bn = 1 and E = 1 at Re = 100.

Figure 13. Comparison of locations of yield surface with different
values of λ at Re = 100 with Bn = 100 for spherical particle.
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effects, the closer to unity is the diameter ratio, the greater is
the influence resulting from the wall. The drag coefficient, CD
is compared with varying λ at Re = 1 for a spherical particle in
Figure 11 (the values of drag correction factor Y are listed in
Table 5 for quantitative purposes). For Bn = 100 and Bn =
1000, the fluid is more likely to be solid-like and the wall
effects cannot be observed even with λ = 2 (i.e., CD is
independent of the diameter ratio throughout the range of λ).
On the other hand, at low values of Bn, the fluid behaves as
liquid, and the flow is retarded by the presence of the wall,
leading to an increase in the drag coefficient. While the wall is
moving outward from the particle, its effects on the flow
gradually diminish and finally disappear. For Bn = 1, CD
decreases rapidly from 181.8 at λ = 2 and starts to level off
beyond λ = ∼10. Finally, the drag coefficient converges to its
value of 94.34 in unbound fluids (i.e., CD reaches constant
while λ → ∞). The recirculation wakes are compared in Figure

12 with varying diameter ratios for both Bn = 0.001 and 1. For
the fluid without the yield stress, while the wall is moving away
from the particle, the recirculation wake tends to be longer for
Newtonian fluids.39,40 For non-Newtonian rheologies, their
apparent viscosity changes with the additional shear yielded by
the particle surface while the fluid flows past the particle. Thus,
the length of wake progressively grows for the shear-thickening
fluids or decays for the shearing-thinning types while λ is
increasing.39,40 Similar to the pseudoplastic fluids, the Bingham
plastic fluids exhibit an apparent viscosity that decreases
hyperbolically with the increasing shear rate. Therefore, for the
fluid with small value of Bn (0.001), the length of recirculation
wake (defined as the length along the axis of tube) is around
1.65r at λ = 2, then reaches ∼1.72r at λ = 10 and does not
change with further departure of the wall from the particle.
However, for the fluid of Bn = 1, the non-Newtonian property
results in a shorter wake length of 0.50r beyond λ = 10,
comparing with that of ∼ 0.94r at λ = 2. The yield surface is
depicted in Figure 13 at Re = 100 with varying diameter ratios.
Under the severe wall effects (e.g., λ = 2), the velocity gradient
is so large that the fluid is more likely to be sheared beside the
particle, and the yielded region extends to the wall. While λ is
rising, the size of yielded area increases, and the wall effects can
be neglected beyond λ = 10.

The yield-gravity parameter, Yg, is compared in Table 6 with
varying λ for E = 0.2−5 under the creeping flow condition. It
can be seen that Yg is lower in the case of bounded flow while
Bn is small. However, as Bn tends toward infinity, the fluid
behaves as a solid and is not affected by the wall. Therefore,
under the condition of static equilibrium, the values of critical
Yg, corresponding to an identical aspect ratio, are the same with
different diameter ratios.

5.4. The Effect of Aspect Ratio on Flow Patterns and
Drag Phenomena. The aspect ratio describes the shape of
the particle, the smaller is the aspect ratio, the more oblate is
the spheroidal particle. With a given r (i.e., the semiaxis normal
to the direction of flow is fixed), a larger E indicates a bigger

Table 6. Yield-Gravity Parameter Yg at Re = 0.001 with Different Values of λ, E, and Bn

Bn

E λ 0.001 0.1 10 100 1000 Critical Yg(i.e., Bn → ∞)a

0.2 2 4.416 × 10−5 4.274 × 10−3 1.076 × 10−2 1.497 × 10−1 1.604 × 10−1 ∼1.64 × 10−1

5 1.247 × 10−4 1.067 × 10−2 1.123 × 10−1 1.488 × 10−1 1.589 × 10−1

10 1.578 × 10−4 1.174 × 10−2 1.120 × 10−1 1.490 × 10−1 1.572 × 10−1

15 1.688 × 10−4 1.179 × 10−2 1.120 × 10−1 1.490 × 10−1 1.587 × 10−1

0.5 2 3.771 × 10−5 3.657 × 10−3 9.799 × 10−2 1.406 × 10−1 1.523 × 10−1 ∼1.57 × 10−1

5 1.157 × 10−4 9.919 × 10−3 1.051 × 10−1 1.406 × 10−1 1.520 × 10−1

10 1.486 × 10−4 1.107 × 10−2 1.060 × 10−1 1.400 × 10−1 1.518 × 10−1

15 1.597 × 10−4 1.115 × 10−2 1.047 × 10−1 1.403 × 10−1 1.510 × 10−1

1 2 2.806 × 10−5 2.732 × 10−3 7.997 × 10−2 1.214 × 10−1 1.345 × 10−1 ∼1.43 × 10−1

5 9.905 × 10−5 8.535 × 10−3 9.215 × 10−2 1.236 × 10−1 1.357 × 10−1

10 1.314 × 10−4 9.814 × 10−3 9.223 × 10−2 1.232 × 10−1 1.356 × 10−1

15 1.425 × 10−4 9.790 × 10−3 9.196 × 10−2 1.228 × 10−1 1.355 × 10−1

2 2 1.740 × 10−5 1.698 × 10−3 5.439 × 10−2 8.749 × 10−2 9.998 × 10−2 ∼1.14 × 10−1

5 7.339 × 10−5 6.404 × 10−3 7.140 × 10−2 9.714 × 10−2 1.075 × 10−1

10 1.036 × 10−4 7.800 × 10−3 7.119 × 10−2 9.681 × 10−2 1.073 × 10−1

15 1.146 × 10−4 7.877 × 10−3 7.108 × 10−2 9.662 × 10−2 1.078 × 10−1

5 2 7.705 × 10−6 7.550 × 10−4 2.621 × 10−2 4.425 × 10−2 5.183 × 10−2 ∼7.12 × 10−2

5 3.851 × 10−5 3.436 × 10−3 4.253 × 10−2 5.924 × 10−2 6.626 × 10−2

10 6.089 × 10−5 4.658 × 10−3 4.261 × 10−2 5.883 × 10−2 6.541 × 10−2

15 7.050 × 10−5 4.933 × 10−3 4.257 × 10−2 5.884 × 10−2 6.617 × 10−2

aExtrapolation.

Figure 14. Effects of E on CD and Cp/Cf with different values of Bn for
a spheroidal particle at Re = 10.
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particle. As the particle−fluid interface increases, the particle
normally suffers a larger friction force, thus, contributing a
larger CD. The variation of drag coefficient with E at Re = 10 is
shown in Figure 14. Taking Bn = 100 as an example, CD shows
a significant increase from 266.58 at E = 0.2 to 668.48 at E = 5.
The relatively rapid rise in friction force also results in a
decrease in the value of Cp/Cf. As depicted in Figure 14, the
case of E = 5 yields a smaller value of Cp/Cf over all the other
cases.

Based on eqs 5−7 and the discussions above, it can be
derived that the increase in E also leads to a decrease in the
yield-gravity parameter. As depicted in Table 6, under the
creeping flow condition (Re = 0.001), for the case of λ = 10
and Bn = 10, Yg is 1.120 × 10−2 at E = 0.2, about 2.6 times as
that at E = 5. While Bn → ∞, the dependence of critical Yg on
aspect ratio shows a similar trend as that at a finite Bingham
number. As shown in Table 6, the case of E = 5 leads to the
smallest value of critical Yg, ∼0.0712 in the present study.

6. CONCLUSIONS
In this study, the flow past spheroidal particles in cylindrical
tubes filled with Bingham plastic fluids is investigated for wide
ranges of Reynolds number, diameter ratio, Bingham number,
and aspect ratio using CFX with a validated CFD model. The
total drag coefficient depends on Re, λ, Bn, and E in the
following ways: (1) CD decreases with the increase in Re in the
whole range; (2) CD rises with increasing Bn; (3) CD declines
with increasing λ until the wall effects can be ignored; (4) CD
reduces as the particle tends to be more oblate. In addition, for
a spherical particle, Cp/Cf remains constant and rises
exponentially beyond the creeping flow regime when Re is
increasing. In the present study, the friction provides more
drag for Newtonian fluids than the pressure; however, less for
the Bingham fluids with large values of Bn. Rem increases with
the rise in Bn, and the creeping flow regime is much larger for
flow with a high value of Bn. At large Reynolds number, the
recirculation wake may form after the particle. The formation
and growth of the wake is promoted from the departure of the
wall from the particle, but suppressed by the non-Newtonian
property of Bingham fluids. The limiting behavior can be
observed in the location of the yield surface while Bn tends to
be infinity. The critical Yg, corresponding to the same aspect
ratio, is of identical value for all combinations of λ and Re used
in the present study.
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■ NOMENCLATURE
CD Total drag coefficient, -
Cf Friction drag coefficient, -
Cp Pressure drag coefficient, -
d Particle diameter, m
D Tube diameter, m
E Aspect ratio, -
FD Total drag force, N
P Regularization parameter, s−1

PB Dimensionless regularization parameter, -
r Particle radius, m
R Tube radius, m
Re Reynolds number, -
V Relative velocity between particle and tube wall, m s−1

Y Drag coefficient correction factor, -
Yg Yield-gravity parameter, -
Greek letters
γ̇ Dimensionless shear rate, -

Shear rate, s−1

η Apparent viscosity, Pa s
ηB Bingham viscosity, Pa s
λ Diameter ratio or radius ratio, D/d or R/r, -
ρF Density of fluid, kg m−3

τ Dimensionless shear stress, -
τ̃ Shear stress, Pa
τ0 Yield stress, Pa
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