
DisruPPI: structure-based computational

redesign algorithm for protein binding

disruption

Yoonjoo Choi1, Jacob M. Furlon2, Ryan B. Amos3, Karl E. Griswold2,4,5

and Chris Bailey-Kellogg6,*

1Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,

Republic of Korea, 2Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA, 3Department of Computer

Science, Princeton University, Princeton, NJ 08540, USA, 4Norris Cotton Cancer Center at Dartmouth, Lebanon, NH

03766, USA, 5Department of Biological Sciences, Dartmouth, Hanover, NH 03755, USA and 6Department of

Computer Science, Dartmouth, Hanover, NH 03755, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Disruption of protein–protein interactions can mitigate antibody recognition of therapeutic

proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among

other applications. While designing affinity-enhancing mutations remains generally quite challenging,

both statistically and physically based computational methods can precisely identify affinity-reducing

mutations. In order to leverage this ability to design variants of a target protein with disrupted interac-

tions, we developed the DisruPPI protein design method (DISRUpting Protein–Protein Interactions) to

optimize combinations of mutations simultaneously for both disruption and stability, so that incorpo-

rated disruptive mutations do not inadvertently affect the target protein adversely.

Results: Two existing methods for predicting mutational effects on binding, FoldX and INT5, were

demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind

databases of experimentally determined changes in binding free energy. DisruPPI was imple-

mented to use an INT5-based disruption score integrated with an AMBER-based stability assess-

ment and was applied to disrupt protein interactions in a set of different targets representing di-

verse applications. In retrospective evaluation with three different case studies, comparison of

DisruPPI-designed variants to published experimental data showed that DisruPPI was able to iden-

tify more diverse interaction-disrupting and stability-preserving variants more efficiently and effect-

ively than previous approaches. In prospective application to an interaction between enhanced

green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants,

all of which were shown to have significantly reduced nanobody binding while maintaining func-

tion and thermostability. This demonstrates that DisruPPI may be readily utilized for effective re-

moval of known epitopes of therapeutically relevant proteins.

Availability and implementation: DisruPPI is implemented in the EpiSweep package, freely avail-

able under an academic use license.

Contact: cbk@cs.dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to the importance of protein–protein interactions in myriad cel-

lular processes, much effort has been invested in the development of

methods to redesign interacting pairs for desired affinity and specifi-

city, and even to design entirely new partners. Such methods

typically focus on improving affinity (Kastritis and Bonvin, 2012),

and have driven a wide range of applications (Kortemme and Baker,

2004; Schreiber and Fleishman, 2013), including improvement of

antibody binding affinities (Kuroda et al., 2012; Lippow and Tidor,

2007; Lippow et al., 2007), design of inhibitors against infectious
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organisms (Reynolds et al., 2008; Whitehead et al., 2012), enhance-

ment of T-cell mediated immune recognition (Haidar et al., 2009;

Harada et al., 2007; Hawse et al., 2012), epitope-focused vaccine

design (Azoitei et al., 2012, 2011) and peptide redesign for cancer

detection (Hao et al., 2008).

In some significant applications, the goal is to disrupt binding in-

stead of enhancing it. For example, an existing anti-drug antibody

response against a therapeutic protein can be mitigated by mutageni-

cally modifying the positions recognized by the antibody(-ies)

(Griswold and Bailey-Kellogg, 2016; Liu et al., 2012; Onda et al.,

2008). As another example, monomerization of some oligomeric

proteins, such as fluorescent proteins, reduces aberrant aggregation

and provides better solubility (Campbell et al., 2002; Nooren and

Thornton, 2003). Finally, residues constituting an allosteric hotspot

by which one protein passes a signal to another can be identified by

testing potentially disruptive mutations (Liu et al., 2013). However,

in spite of the importance of these and other applications, little ef-

fort has been made regarding general-purpose methods for optimiz-

ing binding disruption.

Optimizing the affinity of interacting proteins (for better or

worse) requires predicting the effects of mutations on binding. A

wide range of approaches to this problem have been pursued,

including all-atom molecular dynamics (Deng and Roux, 2009;

Moretti et al., 2013; Weis et al., 2006), empirically derived physical

potentials (Brender and Zhang, 2015; Guerois et al., 2002;

Kortemme and Baker, 2004), statistical contact potentials (Pons

et al., 2011; Tharakaraman et al., 2013; Vangone and Bonvin,

2015), machine learning methods combining multiple such features

(Dehouck et al., 2013; Wang et al., 2012) and target-specific data-

driven models (Kamisetty et al., 2015; Nielsen et al., 2008; Thomas

et al., 2009). The curation of extensive databases of experimentally

measured binding free energies (Moal and Fernández-Recio, 2012;

Sirin et al., 2016) has recently enabled evaluation of the predictive

ability of some such methods (i.e. correlation of predicted and ex-

perimental DDG).

In general, such benchmark studies assess how well scoring func-

tions predict free energy changes over all types of mutations (both

enhancing and disrupting binding). However, our focus here is on

the selection of mutations that truly are disruptive. This is a some-

what different goal from generally predicting affinity well, or even

classifying improved versus weakened binding, as we are willing to

miss some disruptive mutations in order to ensure that all the

selected mutations are very likely to be disruptive (i.e. accept false

negatives in order to eliminate false positives). Intuitively, prediction

of binding disruption is easier than binding improvement because

only limited free energy space is available for bound states (Goh

et al., 2004; Tsai et al., 1999). The recent CAPRI experiment also

showed that best performers were particularly good at identifying

deleterious (disruptive) mutations of de novo hemagglutinin binders

(Moretti et al., 2013). Thus we refine previous benchmarks into a

binding disruption-focused benchmark and demonstrate that disrup-

tion can in fact be predicted quite well by two representative meth-

ods: the physically based FoldX (Guerois et al., 2002; Schymkowitz

et al., 2005), the best performer in other recent binding benchmarks

(Brender and Zhang, 2015; Sirin et al., 2016), and the statistically

based INT5 (Pons et al., 2011), part of a scoring function routinely

shown to be very successful in protein docking benchmarks (Moal

et al., 2013; Pons et al., 2011).

While our new assessment demonstrates the ability of computa-

tional methods to specifically identify disruptive mutations, it is also

necessary to preserve the stability and function of the protein of

interest. It would not be helpful to disrupt a target protein’s

interactions simply by denaturing it. This requires consideration and

optimization of the interrelated effects of sets of mutations on a pro-

tein, problems in the field of protein design (Karanicolas and

Kuhlman, 2009). In order to simultaneously but independently

evaluate and optimize stability and binding disruption, we devel-

oped a new method, called DisruPPI (DISRUpting Protein–Protein

Interactions). DisruPPI employs a Pareto optimization approach to

select mutations making the best trade-offs between these two crite-

ria, designing variants that are predicted to destabilize the protein as

little as possible for increasing amounts of binding disruption. This

Pareto optimization approach leverages the high performance of

binding disruption prediction, sidestepping explicit design of the

interface and thus yielding a more focused design problem, while

also robustly assessing interrelated effects of mutations on disrup-

tion and stability.

We first demonstrate the utility of DisruPPI in three representa-

tive retrospective case study applications, where the computational

design approach yields more diverse variants than alanine scanning

does, while also being more efficient and effective than alanine scan-

ning and other approaches in generating beneficial variants that

both disrupt binding and maintain stability and function. We then

describe a successful prospective application of DisruPPI to disrupt a

previously detailed interaction between enhanced green fluorescent

protein (EGFP) and a nanobody (Kubala et al., 2010). This pro-

spective study serves as a model system for deimmunization of thera-

peutically useful proteins by removing known antigenic sites

(antibody epitopes) with minimal sets of mutations.

2 Materials and methods

2.1 Prediction of binding disruption
To predict which mutations may disrupt binding, we consider two

computational methods representing quite different approaches:

FoldX (Guerois et al., 2002; Schymkowitz et al., 2005) employs an

empirical force field, while INT5 (Pons et al., 2011) is a statistical

potential derived from amino acid pair propensities at protein–

protein interfaces. As is suitable both for these methods in general

and for the present application in particular, we seek to disrupt

binding with a small number of mutations. With either of these

approaches, we represent the predicted mutational effects with a dis-

ruption score, for which a positive value indicates that binding is

disrupted relative to wild-type.

For FoldX (ver. 4), the wild-type complex structure is repaired

and optimized using ‘RepairPDB’. Given a mutation or set of muta-

tions, the effect on binding (DDG) is then calculated using the

‘BuildModel’ command; this serves as the disruption score.

For INT5, inter-protein contacting residue pairs are identified in

the wild-type complex structure according to a 6 Å distance thresh-

old between non-hydrogen atoms. A sequence-based binding score

is then computed as the sum of terms in the INT5 scoring matrix for

contacting amino acid pairs, and the disruption score is taken as the

difference between the mutant and wild-type binding scores. We

note that the INT5 scoring matrix was constructed based on 5 Å

threshold (the ‘5’ in the name), but only marginal differences were

reported for thresholds ranging from 4 to 6 Å. Thus we chose 6 Å in

order to better capture contacts involving larger hydrophobic amino

acids such as Trp and Phe (Glaser et al., 2001), whose mutation can

be very disruptive.

To assess the performance of the binding disruption predictors,

we use two complementary benchmark datasets. AB-Bind was re-

cently curated in order to enable benchmarking of computational
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antibody design methods (Sirin et al., 2016). It provides a set of

antibody-antigen pairs, each including the wild-type complex struc-

ture along with binding affinity data for the wild-type and mutation-

al variants. We note that FoldX was one of the top performers in the

AB-Bind evaluation. We selected the ‘antibody-antigen’-related

mutations from AB-Bind, yielding 20 complexes with a total of 636

mutation sets with associated DDG values. SKEMPI (Moal and

Fernández-Recio, 2012) is an even larger database, again with wild-

type complex structures and their variant affinity measurements,

and including other types of interacting proteins in addition to anti-

bodies and their antigens. To avoid redundancy with AB-Bind, we

filtered SKEMPI to non-antibody interactions; for clarity we refer to

the reduced database as SKEMPI*. The SKEMPI* database contains

138 interacting protein pairs with a total of 2518 mutation sets and

associated affinity values. Variants in the two databases have from 1

to 27 mutations, with >90% of them single or double mutations

(Supplementary Fig. S1).

2.1.1 Protein redesign algorithm for binding disruption

The ability to predict whether or not mutations are disruptive is ne-

cessary but not sufficient for designing functional, stable, binding-

disrupted variants. In order to ensure that the mutations introduced

to disrupt binding do not adversely impact the constituent pro-

tein(s), we developed DisruPPI to search over possible sets of muta-

tions, designing variants that are predicted to maintain their own

stability while having their interaction disrupted. While in general

both of the interacting proteins could be redesigned so as to disrupt

their interaction, in practice the design is often for just one or the

other, so we focus on that case.

DisruPPI designs Pareto optimal variants (Fig. 1), i.e. those mak-

ing best trade-offs between the predicted impact on binding and the

predicted impact on stability, in that no design is better for one as-

pect without being worse for the other (He et al., 2012; Parker

et al., 2010; Thomas et al., 2009). In the example in Figure 1A,

Pareto optimal designs were generated for EGFP in order to disrupt

the previously characterized binding of a nanobody (Kubala et al.,

2010). Figure 1D depicts one example of the optimal designs (top:

wild-type and bottom: variant) that are predicted to both maintain

EGFP’s stability and disrupt nanobody binding. Our experimental

results confirm that indeed this particular variant maintains a ther-

mostability on par with wild-type while essentially eliminating

nanobody binding.

Full details of the design process are provided in Supplementary

Text I. In summary, DisruPPI starts with a set of mutational choices

to consider; e.g. those that are evolutionarily accepted or structural-

ly favorable by themselves, and thus most likely to maintain protein

stability. It optimizes combinations that are Pareto optimal in terms

of a disruption score and a stability score. The current implementa-

tion uses INT5 as the disruption score, but could readily incorporate

others. Likewise, the implementation is generic to stability score,

currently using OSPREY-based assessment of rotameric energies

(Chen et al., 2009; Gainza et al., 2012) based on a standard rotamer

library (Lovell et al., 2000). Pareto optimal design is done within the

general-purpose integer programing framework EpiSweep, previous-

ly developed and applied to redesign therapeutic proteins (Choi

et al., 2015; Parker et al., 2013). Given a user-specified mutational

load, the algorithm ‘sweeps’ out the Pareto frontier of variants (e.g.

circles in Fig. 1A) using that number of mutations to make the best

trade-offs between disruption and stability. The process can be iter-

ated to identify near-optimal designs, slightly worse on either or

both criteria. It is also run independently over a range of different

mutational loads to be considered.

2.2 Prospective application to EGFP-nanobody binding
DisruPPI designs were based on an EGFP-nanobody complex struc-

ture in the PDB (3OGO, chain B for EGFP and G for the nanobody).

Genes including the wild-type EGFP and computationally designed

variants, along with the nanobody, were synthesized as gBlocks

(IDT) and expressed in Escherichia coli BL21 (DE3) followed

by HIS-tag purification. Excitation and emission spectra of the

expressed variants were measured using SPECTRAmax GEMINI

fluorescent plate reader (emission scanning from 475 to 650 nm and

excitation scanning from 300 to 530 nm). Emission and excitation

maxima were determined by peak fluorescence intensities. Binding

affinity was measured by an enzyme-linked immunosorbent assay

(ELISA) over different concentrations. Thermostability was meas-

ured by differential scanning fluorimetry. Full experimental details

are provided in the Supplementary Text II.

3 Results and discussion

3.1 Assessment of protein disruption prediction
This benchmark focuses on identification of mutations that are dis-

ruptive. We allow missing some actually disruptive mutations, as

long as the ones we identify are highly likely to actually be disrup-

tive, under the assumption that this will give sufficient possibilities

for design. Thus our measure is the positive predictive value,

PPV¼TP/(TPþFP), the ratio between correctly predicted disruptive

mutations (TP: true positives) and all mutations predicted to be dis-

ruptive (TP plus false positives, FP). Here ‘positive’ means predicted

to be disruptive, i.e. the disruption score exceeds a threshold, which

we slide up from 0 to test its impact. ‘True’ means experimentally

determined to be disruptive, for which we use the AB-Bind guideline

for medium confidence, DDG > 0:5 kcal/mol; ‘false’ means experi-

mentally determined to be non-disruptive, DDG � 0 kcal/mol; and

Fig. 1. Overview of DisruPPI DisruPPI generates (A) Pareto optimal designs

balancing stability and binding by trading off two scores: (B) rotameric en-

ergy versus (C) disruption score. Pareto optimal designs are undominated, in

that each design is the best possible for one score without requiring a sacri-

fice for the other. The designs in (A) are from our prospective application of

DisruPPI to a nanobody-EGFP complex. One highly disruptive design (red

solid circle) has two mutations, depicted in (D, bottom) as R168A (left) and

N170K (right) compared to the wild-type (D, top). These mutations cause a

105-fold reduction in the binding affinity while maintaining stability and func-

tional fluorescence
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we ignore mutations of uncertain degree of disruptiveness, with 0

< DDG � 0:5 kcal/mol. The AB-Bind dataset includes 350 true,

182 false and 104 ignored, while SKEMPI* has 1363 true, 602 false

and 533 ignored.

Both INT5 and FoldX are able to successfully identify disruptive

mutations in both benchmarks, achieving consistently high PPV

(>0.8) at any disruption score threshold (Supplementary Fig. S2),

and trending toward 1 at higher values (i.e. more stringent thresh-

olds yield mostly just disruptive mutations, though fewer of them).

Note that both databases are biased, with 66% of AB-Bind muta-

tions truly disruptive along with 69% of SKEMPI* ones, setting

baselines for randomly selecting disruptive mutations. Both of the

predictors well exceed the random prediction rates, and a combin-

ation of the two scores is even better (Supplementary Fig. S3). For

example, at a threshold of 0, for the AB-Bind mutations FoldX

attains a PPV of 0.83, INT5 0.85 and the combination 0.90; for

SKEMPI*, FoldX attains 0.78, INT5 0.81 and the combination

0.85.

While not our focus here, we note that a detailed examination of

the scores versus the measurements (Supplementary Fig. S3) reveals

that binding improvement is indeed harder to predict, with negative

predictive value [TN/(TNþFN)] reaching only 0.61 for FoldX and

0.38 for INT5 (the null is 0.3); where TN is the number of muta-

tions with negative disruption score and DDG � 0 and FN the num-

ber with negative disruption score and DDG > 0:5. Thus our

focused benchmark reveals the value of separately assessing the abil-

ity to select truly disruptive mutations, as opposed to overall

accuracy.

3.2 Retrospective case study applications
We applied DisruPPI to redesign three proteins representing differ-

ent binding disruption applications discussed in the introduction.

Other techniques had previously been used to reengineer these pro-

teins for reduced binding. Since the approaches are different, the ex-

perimentally tested variants naturally do not include some of the

designs that DisruPPI identified, and likewise include some that are

not optimal under DisruPPI’s metrics. Thus these retrospective tests

can only be used to provide an overall qualitative comparison.

Nonetheless, we do show that the DisruPPI designs incorporate

many of the positions and mutations that had been experimentally

determined to be beneficial in terms of disrupting the interaction

while still maintaining monomeric structure and function. In

contrast to these other approaches, however, the simultaneous opti-

mization approach of DisruPPI enables design for both disruptive-

ness and stability, instead of separately considering them or relying

solely on experiment for one or the other. We demonstrate here that

this leads to a more diverse yet better targeted set of variants. Since

INT5 and FoldX had comparable performance in our benchmark

but INT5 is more computationally efficient than FoldX and still

highly predictive, we used it as the disruption predictor in these

studies.

3.2.1 Deletion of antibody epitopes in hen egg lysozyme

When an immune response has been established against a therapeut-

ic protein, it may be necessary to mutagenically alter the residues

recognized by the matured antibodies (‘delete’ the antibody epito-

pes) to reduce detrimental effects and enable effective clinical appli-

cation (Griswold and Bailey-Kellogg, 2016; Liu et al., 2012; Onda

et al., 2008). To evaluate DisruPPI’s general ability to design muta-

tions disrupting antibody binding, we targeted the well-studied hen

egg lysozyme (HEL) and two anti-HEL antibodies of different

binding modes, HyHEL-63 and D1.3. We used binding data from

AB-Bind for these antibodies against alanine scanning mutants of

HEL (Dall’Acqua et al., 1998; Li et al., 2003).

Mutational choices were collected from homologous sequences

to HEL identified by three iterations of PSI-BLAST. The unbound

form of HEL (PDB code: 1LSG) was used to compute rotameric en-

ergy terms. Contact residues were identified from the complex struc-

tures (HyHEL-63: 1DQJ and D1.3: 1VFB). DisruPPI was applied to

design variants that disrupt binding of one antibody or the other as

well as variants that disrupt them both simultaneously. The effects

of mutational load were assessed by considering from one to three

mutations per variant. For each mutational load, a curve of all

Pareto optimal designs and four near-optimal curves were gener-

ated. This yielded a total of 322 designs for HyHEL-63 and 244 for

D1.3.

Figure 2A and B depict the Pareto optimal and near-optimal

designs at the three mutational loads. We note that, as is typical

since the crystal structure was solved to optimize a different score,

the wild-type protein is not optimal according to the rotameric en-

ergy function and it is possible to find variants with better energies.

In general, quite a bit of disruptiveness can be gained before incur-

ring a substantial energetic penalty; this can be calibrated by the dis-

ruption score thresholds from the benchmark, where e.g. >90% of

the mutations above 0.5 were indeed disruptive in the cases of AB-

Bind. As typical, the curves hit an ‘elbow’ point beyond which add-

itional disruption requires taking less energetically favorable muta-

tions; this naturally tends to come later with higher mutational

loads.

The designs include mutations at positions identified by alanine

scanning to be disruptive. Seventy two percent of the DisruPPI var-

iants designed to disrupt HyHEL-63 contain mutations at R21

(R21E: 47.5%, R21A: 24.5%). The experimentally tested alanine

substitution R21A was found to reduce the binding affinity to be

27.3% of the wild-type. For the DisruPPI designs against D1.3,

N19G is the most frequent, but mutating the position may be only

marginally disruptive to D1.3 binding; in the experimental results,

74.1% of binding was retained upon alanine substitution. Instead,

the second most frequent position, K116, is sufficiently disruptive

(49.7% of wild-type binding retained experimentally).

DisruPPI can also be applied to therapeutic proteins where dis-

ruption of multiple antibodies is required (Onda et al., 2011). In this

case, simultaneous optimization for stability and disruption is critic-

al since multiple mutations (against multiple antibodies) often leads

to destabilization of the target protein (Drummond and Wilke,

2009). DisruPPI was applied to design double mutants of HEL in

order to disrupt binding of both D1.3 and HyHEL-63. Strikingly,

combinations of the mutations that were most frequent in individual

antibody designs above (N19 and R21) are predicted to be highly

disruptive but energetically worse than the wild-type, and similarly

with combined alanine mutations (Fig. 2E). However mutations at

R21 and K116 are predicted to be both highly disruptive and ener-

getically favorable. Thus simultaneous design against both antibod-

ies discovered better designs than simply combining independent

outcomes. Figure 2F summarizes frequently selected mutations.

While R21E is still most frequent, the order of the subsequent fre-

quencies is notably different compared to single antibody designs

(Fig. 2C). This further illustrates that the design process is account-

ing for energetic interactions in maintaining a stable target protein

while disrupting its interactions.

In summary, by considering a larger sequence space than just ala-

nine substitutions, and by simultaneously accounting for both

i248 Y.Choi et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty274#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty274#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty274#supplementary-data


stability and disruption, DisruPPI can enable more efficient develop-

ment of more substantially deimmunized variants.

3.2.2 Identification of HIV-1 gp120 allostery-triggering hotspots

on CD4

The entry of HIV-1 into a host cell is regulated with large conform-

ational changes in glycoprotein gp120 upon binding of the host cell

receptor CD4 (Kwon et al., 2012). Thus identification of binding

hotspots on CD4 that trigger the gp120 allosteric restructuring can

aid the development of viral entry inhibitors. A recent study identi-

fied such hotspots by making alanine substitutions to CD4 along its

interface with gp120, and then determining by isothermal titration

calorimetry which of the substitutions disrupted binding and thus

the associated gp120 allosteric restructuring (Liu et al., 2013).

We applied DisruPPI to likewise select mutations to help identify

CD4 binding hotspots. Mutable amino acids were obtained from

CD4-related sequences after three iterations of PSI-BLAST. Energies

were calculated according to the CD4 structure from its complex

with gp120 (PDB code: 1G9N). Since localization of the hotspot

position(s) is important, we considered only single point mutations,

optimized for both disruption of binding and preservation of stabil-

ity, focusing just on the optimal designs to keep the comparison

focused.

In an alanine scanning study (Liu et al., 2013), 17 positions were

tested and 3 (Q25, K35 and F43) were found to yield large free en-

ergy changes (DDG > 0:8 kcal/mol, Fig. 3A). All three positions

were also predicted to be disruptive (red circles in Fig. 3B). DisruPPI

identified three Pareto optimal designs, H27N, H27T and F43A.

The design predicted to be most disruptive, F43A, was the one that

had in fact been experimentally determined to be most disruptive

(DDG ¼ 1:5 kcal/mol). The mutation also showed large enthalpy

change (DDH ¼ DHðF43AÞ � DHðWTÞ ¼�21.4 � (�43.4)¼22kcal/

mol), i.e. the hotspot position likely caused the allosteric restructur-

ing. The other two Pareto optimal designs at H27 were not experi-

mentally tested. Instead, an alanine substitution at the position

(H27A) was tested and found to be not very disruptive but as stable

as the wild-type (DDG < 0:1 kcal/mol, DDH > 1 kcal/mol). This

agrees with the model (Fig. 3B), which predicted little disruption and

somewhat better energy. It may be speculated that the designed

H27N and T would also be marginally disruptive and stable. The

other two alanine substitutions (Q25A and K35A) showed medium

enthalpy changes (1 < DDH < 20 kcal/mol), but it is unclear

whether these changes are due to partial allosteric restructuring or in-

stability of CD4. In particular, the lower energy value of K35A versus

Q25A could stem from sequentially localized (K35) versus spread out

(Q25) interactions with residues in CD4, yielding more wide-ranging

impacts of the single mutation at Q25.

In this case study, DisruPPI largely captured experimentally

assessed levels of disruption and thermostability. Moreover, one of

the three Pareto optimal DisruPPI-designed variants was found to be

the binding hotspot that also triggers the allosteric restructuring of

gp120. Compared to alanine scanning through all 17 contacting

positions, DisruPPI can more efficiently and effectively focus experi-

mental efforts for hotspot identification.

3.2.3 Monomerization of oligomeric red fluorescent protein

Fluorescent proteins (FP) have enabled numerous breakthroughs in

the imaging of cellular function and dynamics (Chudakov et al.,

2010; Wu et al., 2011). However, most FPs naturally form oligom-

ers, which can in some cases lead to aberrant aggregation hindering

Fig. 2. Design of antibody binding disruption for hen egg lysozyme (HEL) and two antibodies with different binding poses (HyHEL-63 and D1.3). (A) and (B) Pareto

optimal and near-optimal HEL designs independently disrupting each antibody (A: HyHEL-63; B: D1.3) using 1 to 3 mutations. (C) Utilization of mutations (bar

heights: frequencies across designs) and inferred disruptiveness (numbers above bars: binding affinities of corresponding alanine mutants at those positions,

relative to wild-type). (D) Visualization of highly disruptive and frequently selected positions for each antibody. HyHEL-63 (PDB code 1DQJ) is rendered as a white

surface and D1.3 (1VFB) as a green one. The HEL structure (1LSG) is rendered as a cartoon colored so that the redder, the more frequently targeted. The most fre-

quent positions are labeled (R21 for HyHEL-63 and K116 for D1.3), and contacting antibody residues are colored in blue. (E) Pareto optimal and near-optimal

curves for double mutants designed to disrupt both antibodies simultaneously. Mutation combinations of top two frequent mutations (R21 for HyHEL-63, N19

and K116 for D1.3) are in solid red circles. (F) Mutation frequency and disruptiveness, as in (C), for double mutants disrupting both antibodies.

PPI disruption by protein redesign i249



their production and use (Shemiakina et al., 2012; Wannier et al.,

2015). In the case of red FPs (RFPs), all known native RFPs (about

50 to date) are tetrameric and only a few engineered ones are mono-

meric (Wannier et al., 2015). A recent computationally driven ap-

proach demonstrated that resurfacing interface b-strands can aid

monomer engineering of Discosoma sp. red fluorescent protein

(DsRed) (Wannier et al., 2015). The approach created a ‘monomeric

library’ (mLib) targeting 17 interface positions. Ninety-three var-

iants out of 96 in the library were found to be soluble and

monomeric.

To enable a direct comparison, we configured DisruPPI with cor-

responding design settings: target the 17 interface positions for mu-

tation to one of 12 non-hydrophobic amino acids (Ala, Arg, Asn,

Asp, Gln, Glu, Gly, His, Lys, Pro, Ser and Thr). A chain of an oligo-

meric DsRed structure (PDB code: 1ZGO chain A) with the muta-

tions was used to evaluate rotameric energies. Since the mLib

variants incorporated from 13 to 16 mutations, we also imposed

that mutational load constraint. The 96 mLib designs were selected

with the lowest energy values. For direct comparison against the

mLib optimized variants, we considered only Pareto optimal

designs.

In total, 216 Pareto optimal designs were generated (Fig. 4A).

They dominated the mLib variants, in the Pareto sense—for each

mLib variant, at least one DisruPPI design was better for both dis-

ruption and rotameric energy scores. It is worth noting that the

mLib variants exhibit near wild-type energies under the score we

used (different from that in the original study), and are also pre-

dicted to be disruptive to the oligomer. Thus we would expect the

DisruPPI designs to also be stable monomers.

The DisruPPI designs and mLib variants have similar sequence

composition, with many amino acids identical or of similar physico-

chemical properties (Fig. 4B). For instance, in the overlapping

disruption score range (<10), T21R is always observed and R216 is

always unmutated in both sets, whereas aggressive designs with

highly disruptive mutations (>10) and correspondingly higher rota-

meric energies differ at those positions, perhaps indicating that these

are energetically important positions. In fact, the mLib variants are

more similar to the aggressive designs (i.e. those with relatively

higher rotameric energies) than those with similar disruption scores.

Comparing the most frequent mutation at each position, eight posi-

tions of the aggressive designs are identical to the mLib variants,

while only four are for those in the overlapping disruption score

range.

Based on this analysis, we speculated that the rotameric energy

and disruption score ranges of the mLib variants could be achieved

with a smaller number of mutations. We generated a Pareto optimal

set of 5-mutation DisruPPI variants, which were indeed in a similar

disruption score range but still with lower rotameric energies

(Fig. 4A). A representative 5-mutation plan, Rep5, with disruption

score near the representative variant selected for discussion in the

previous study (mLib77; 14 mutations) was chosen for a direct com-

parison. The mutated positions of Rep5 are a subset of mLib77

(Supplementary Table S1). In the structure (Fig. 4C), Rep5 muta-

tions largely overlap the regions covered by mLib77, constituting

65% of the contacting surface area (2530 Å2 for mLib77 and 1633

Å2 for Rep5), but requiring only one-third of the mutations.

The results show that DisruPPI is able to generate variants likely

to disrupt oligomerization but preserve stable monomers, using a

relatively small number of mutations and avoiding extensive experi-

mental effort.

3.3 Prospective disruption of EGFP-nanobody binding

interaction
As discussed in Section 1, in the course of therapeutic and vaccine

development it may be necessary to eliminate undesired antibody

recognition of a protein. To evaluate the utility of disruptive design

in this context, we put DisruPPI to prospective use, computationally

optimizing and experimentally evaluating variants of EGFP designed

to disrupt molecular recognition by a high-affinity nanobody

(Kubala et al., 2010) while maintaining molecular function.

Complete sets of Pareto optimal designs were generated for muta-

tional loads from 1 to 4 (Supplementary Fig. S4). As discussed for

the HEL case study, the most frequently targeted positions over the

set of designs may indicate hotspot residues that can be safely

mutated to disrupt binding. Figure 5A shows that the top two posi-

tions here (R168 and N170, Supplementary Fig. S4B) are at the core

of the binding interface between the nanobody and EGFP. In fact,

R168 is reported to be a flexible residue involved in binding of

known nanobodies (Kirchhofer et al., 2010). Furthermore, all the

Fig. 3. Identification of CD4 binding hotspots for HIV gp120. (A) The complex

structure (PDB code 1G9N) of gp120 (cartoon, left) and CD4 (surface, right).

An alanine scanning study Liu et al. 2013 showed that Q25, K35 and F43 were

important for binding. F43A in particular makes tight contacts with hydropho-

bic amino acids in gp120 (in pink sticks). (B) DisruPPI generated three Pareto

optimal designs, one of which had been previously tested (F43A) and found

to be the most disruptive among a set of 17 alanine mutations in the CD4

interface. The position is involved not only binding but also an allosteric

restructuring of gp120. The two other alanine substitutions (Q25A and K35A)

are also predicted to be highly disruptive. The two Pareto optimal mutations

(H25N and T) may be less disruptive. However the results of H27A, which

showed low binding disruption but is as stable as the wild-type, may indicate

that the two Pareto optimal mutations are stable as predicted
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single mutation Pareto optimal designs are at R168 (to A, V, L

and E).

We thus computationally evaluated all allowed mutations (indi-

vidually in combination) at these two positions (Fig. 5). We selected

for experimental evaluation the most and least disruptive single

mutations at R168 (R168A and R168E) and the only mutational

choice at N170 (to K). We augmented these single mutations with

their double-mutation combinations (N170K with R168A or

R168E).

The engineered variants were produced recombinantly, purified

(Supplementary Fig. S5), and assessed for a-GFP nanobody binding,

thermostability, and spectral characteristics (Table 1). Binding affin-

ity of the a-GFP nanobody to each EGFP variant was quantified by

ELISA, yielding an EC50 of 0.44 nM for wild-type EGFP, which was

consistent with the previously reported Kd values for this interaction

(Kirchhofer et al., 2010; Rothbauer et al., 2006). All five DisruPPI

designs exhibited a dramatic reduction in nanobody binding, with

EC50 values in the range of 1–10 lM, equating to 6000- to 19 000-

fold reductions in affinity (Table 1). The predicted disruption scores

and rotameric energies of the five EGFP variants fell within relative-

ly narrow ranges, and as a result, there was not a strong correlation

with experimental measurements. It bears noting, however, that the

double-mutation designs, as predicted, were more disruptive of

nanobody binding compared to the single mutation designs and the

disruption levels of single mutants tended to be additive. Thus,

the disruption score predictions were consistent with overall

experimental trends, and we speculate that testing a larger panel of

designs covering a wider range of scores might yield better overall

correlation with affinity measurements, as we have shown in the

context of deimmunization via T-cell epitope deletion (Salvat

et al., 2015). While effectively evading nanobody binding, the

Fig. 4. Monomerization of DsRed. (A) DisruPPI designs dominate the 93 mLib

variants found to be stable monomers. All the mLib variants including the

representative (mLib77) exhibit near wild-type energies and they are also pre-

dicted to be disruptive, but the DisruPPI designs are even better. A subse-

quent set of DisruPPI designs with only five mutations covers the same

disruption range as mLib77 but also still with better energies. (B) DisruPPI

and mLib designs show similar mutation patterns. The mLib variants are in

fact closer to aggressive DisruPPI designs (disruption score>10). (C) Variants

in the similar disruption and energy ranges of the mLib ones can be achieved

by imposing a smaller number of mutations. Rep5 with five mutations (red

spheres) largely covers the surface contacting regions (orange surface) of the

14 mutation mLib representative (blue spheres; cyan surface)

Fig. 5. Design of EGFP variants disruptive to the binding nanobody. (A) The

two most frequently targeted positions by DisruPPI (R168 and N170) are at

the core of the binding interface. The complex structure is 3OGO chain B and

G. (B) Single and double mutations at the positions are selected for final

designs. The single mutation N170K is not a Pareto optimal design but partici-

pates in combinations that are
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DisruPPI variants retained functional fluorescence and high ther-

mostability, exhibiting only 1–3�C reductions in Tm values relative

to wild-type EGFP.

4 Conclusion

While methods to predict or enhance protein–protein interactions

have been extensively pursued, much less effort has been made to-

ward disrupting protein–protein binding. Here we show that muta-

tions predicted to be disruptive can be confidently used, and we

develop a computational redesign program, DisruPPI, leveraging

this insight to optimize beneficial sets of such mutations. The algo-

rithm simultaneously optimizes protein stability and disruption,

which are otherwise typically treated separately, or not at all. We

have demonstrated this method in a diverse set of representative

practical cases: antibody–antigen binding disruption, binding hot-

spot identification and monomerization of oligomeric proteins.

DisruPPI proved to be highly effective and efficient compared to

previous approaches, finding more diverse variants likely to be dis-

ruptive and stable mutations within a smaller pool of candidates

for experimental testing. In the case of prospective application to

an EGFP-nanobody complex, DisruPPI reduced nanobody binding

affinity by four orders of magnitude with only one or two Pareto

optimal mutations, while at the same time the engineered variants

maintained wild-type thermostability and spectra.
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