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Abstract: This study aimed to evaluate the value of the deep learning image reconstruction (DLIR)
algorithm (GE Healthcare’s TrueFidelity™) in improving the image quality of low-dose computed
tomography (LDCT) of the chest. First, we retrospectively extracted raw data of chest LDCT from
50 patients and reconstructed them by using model-based adaptive statistical iterative reconstruction-
Veo at 50% (ASIR-V 50%) and DLIR at medium and high strengths (DLIR-M and DLIR-H). Three
sets of images were obtained. Next, two radiographers measured the mean CT value/image signal
and standard deviation (SD) in Hounsfield units at the region of interest (ROI) and calculated the
signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Two radiologists subjectively evaluated
the image quality using a 5-point Likert scale. The differences between the groups of data were
analyzed through a repeated measures ANOVA or the Friedman test. Last, our result show that the
three reconstructions did not differ significantly in signal (p > 0.05) but had significant differences
in noise, SNR, and CNR (p < 0.001). The subjective scores significantly differed among the three
reconstruction modalities in soft tissue (p < 0.001) but not in lung tissue (p > 0.05). DLIR-H had
the best noise reduction ability and improved SNR and CNR without distorting the image texture,
followed by DLIR-M and ASIR-V 50%. In summary, DLIR can provide a higher image quality at the
same dose, enhancing the physicians’ diagnostic confidence and improving the diagnostic efficacy of
LDCT for lung cancer screening.

Keywords: deep learning; low-dose computed tomography; image quality; lung

1. Introduction

Lung cancer has the second highest incidence rate and the highest mortality rate
among all malignancies [1], and an early detection and clinical intervention are essential for
improving the patient’s prognosis. Since most early stage lung cancers are asymptomatic,
screening for early stage lung cancer to improve the patient’s prognosis has always been a
focus of lung cancer research. Low-dose computed tomography (LDCT) of the chest is the
only effective lung cancer screening method at present and can significantly reduce lung
cancer mortality in high-risk groups [2,3]. Chest LDCT is suitable for large-scale population
screening. This method mainly reduces the dose by reducing the intensity of the tube
current (mAs), but the dose reduction also leads to an increase in noise, which affects the
image quality and diagnostic performance [4,5].

The CT reconstruction algorithm is a critical factor affecting image quality. The tra-
ditional filtered back projection (FBP) algorithm can obtain high-quality images from
high-dose scanning. However, after the dose is reduced, the image noise increases signifi-
cantly, affecting the observation and judgment of low-contrast structures and lesions [6,7].
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Therefore, various iterative reconstruction (IR) algorithms are currently used in the process-
ing of chest LDCT data to reduce image noise and artifacts. However, it has been found
that regardless of the IR technique applied, the smooth artifacts at the tissue boundaries
tend to cause a “waxy” and “plastic-like” speckled image appearance, especially with
high-intensity IR [8,9], which is considered to be a technical flaw in IR.

In recent years, with the explosive development of artificial intelligence (AI) in the
medical field, a deep learning image reconstruction (DLIR) method based on a deep neural
network (DNN) was proposed to reduce image noise and improve spatial resolution [10,11],
and it is expected to be superior to the existing IR techniques in image quality, dose
performance, and reconstruction speed. To our knowledge, there are only two commercially
available CT image reconstruction algorithms using the DLIR method that have been
approved by the FDA: TrueFidelityTM by GE Healthcare and AiCE by Canon Medical
Systems. In our study, the DLIR technology used was GE Healthcare’s TrueFidelity™. At
present, there are few reports on the application of DLIR in chest LDCT, and its effect has
yet to be evaluated. The purpose of this study was to reconstruct the raw data of chest
LDCT by using the DLIR algorithm (TrueFidelityTM) and model-based adaptive statistical
iterative reconstruction-Veo (ASIR-V) on a GE Healthcare CT system, compare the image
quality between the two reconstruction algorithms, and discuss the application value of
DLIR in improving the chest LDCT image quality.

2. Materials and Methods
2.1. Study Population

Ethical approval was obtained from the Institutional Review Board of the Cancer
Hospital Chinese Academy of Medical Sciences (protocol number NCC3609, approval date
2 August 2022) for this retrospective analysis, and the requirement to obtain informed
consent was waived. The imaging data of 50 patients at the Cancer Hospital of the Chinese
Academy of Medical Sciences from September to October 2021 were collected. The inclusion
criteria included patients who underwent chest LDCT scans at Revolution CT for cancer
prevention screening or periodic lung nodule review. The exclusion criteria included
patients with severe respiratory diseases and images of poor quality that could not be
accurately measured.

2.2. Image Acquisition

All patients were scanned with a Revolution CT from GE Healthcare. The patient
was in a supine position in the middle of the examination bed with the head advanced,
arms elevated, and hands behind the head. To ensure an adequate image quality, any
metal jewelry or clothing components on the patient’s neck and chest were removed before
scanning, and standardized breathing training was executed to reduce the breathing motion
artifacts. The scanning method was as follows: spiral scanning; the scanning area: from
the apex to the base of the lung; and the scanning parameters: a tube voltage of 120 kV, an
automatic tube current modulation of 20~30 mAs, a noise index of 17, a pitch of 0.992:1,
and a rotation time of 0.5 s.

2.3. Algorithm Training and Image Reconstruction

The DLIR technology used in this study was GE Healthcare’s TrueFidelity™. This
technique utilizes high-quality projection data obtained by FBP at high doses as an ideal
model to obtain a large number of real image sets from laboratory and clinical environments
to train and verify the DNN. First, the low-dose sinogram was input to the DNN, and
then the DNN output image was compared with the corresponding high-dose FBP output
image. The difference between the low-dose output image and the high-dose output image
was found, and these features were fed back into the DNN. The DNN tends to make the
low-dose image the ideal model by enhancing (or weakening) some equations. This process
was repeated until the model tended to be stable, and finally, the accuracy and stability
of this model were verified with new clinical or virtual cases [12]. Eventually, the DLIR
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engine is trained to create TrueFidelity CT images similar to high-dose FBP at low doses. In
addition, DLIR provides three reconstruction strength levels (low, medium, and high) to
control the amount of noise reduction [12,13].

The raw LDCT scanning data of all the patients were reconstructed by ASIR-V at a level
of 50% (ASIR-V 50%) and DLIR at medium and high strengths (DLIR-M and DLIR-H) to
obtain three sets of images with a layer thickness of 1.25 mm. All images were transmitted
to the GE AW4.7 workstation, and the image information was anonymized.

2.4. Radiation Dose

To assess the radiation exposure, the volume CT dose index (CTDIvol) and dose-
length-product (DLP) were reviewed from the electronically logged protocol for each LDCT
acquisition. The effective radiation dose of chest CT was calculated by multiplying the DLP
by the region-specific conversion coefficient k of 0.014 mSv/mGy cm [14].

2.5. Objective Image Analysis

Two radiographers with 3 years of experience in radiology were responsible for
measuring the mean CT value and standard deviation (SD) in Hounsfield units (HU) at
the region of interest (ROI). The mean CT value represents the signal of the image. The
noise was defined as the SD of the mean CT value in the same ROI [14]. Subsequently,
the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated [15].
The ROI was set as follows: each ROI area was approximately 100 mm2; ROIaorta was
placed in the center of the descending aorta, avoiding the tube wall; ROIlung was placed
in the normal right interlobar fissure with few lung markings; ROImuscle was placed in
the central area with uniform density in the right subscapular muscle; ROIliver was placed
in the S7 segment of the right lobe of the liver; and ROIvertebrae was placed at the central
12th thoracic vertebrae. When setting the ROI, the blood vessels, bile duct, and lesion
tissue were avoided. Background noise was evaluated based on air located 3–5 cm in
front of the sternum. The SNR and CNR were calculated as follows: SNR = HUROI

SDROI
;

CNR =
2(HUTarget−HUBackground air)

2

SDTarget2+SDBackground air
2 .

2.6. Subjective Image Analysis

Two radiologists with 3 and 10 years of experience performed a subjective analysis
of the three groups of images. The radiologists were unaware of the image reconstruction
techniques and patient characteristics. The images are displayed in a random order in a
preset window, displaying a sequence at a time. The radiologists could scroll through the
image and adjust the window width and window position at random. We used a 5-point
scale to evaluate the subjective image quality of soft tissue and lung tissue. The scoring
standard for soft tissue was as follows: 1 = poor mediastinal contrast, unacceptable image;
2 = slightly poor mediastinal contrast, suboptimal image; 3 = moderate mediastinal contrast,
acceptable image; 4 = good mediastinal contrast, good image; and 5 = excellent mediastinal
contrast, optimal image. The scoring standard for the lung tissue was as follows: 1 = un-
clearly displayed lung markings, unacceptable image; 2 = fussy display of lung markings,
suboptimal image; 3 = generally displayed lung, acceptable image; 4 = clearly displayed
lung markings, good image; and 5 = lung excellent display of markings, optimal image.

2.7. Statistical Analysis

IBM SPSS Statistics for Windows, version 26.0 (Armonk, NY, USA) was used for
the statistical analysis. The objective data following a normal distribution are presented
as the mean ± SD, while nonnormally distributed data are presented as the median
(interquartile range, IQR). The differences between the groups of data were analyzed
through a repeated measures ANOVA or the Friedman test, depending on the normality.
Bonferroni multiple comparisons were used for pairwise comparisons between any two
groups. The subjective data are presented as the median (IQR) and the differences between
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the groups were analyzed through the Friedman test. A p value < 0.05 was considered
statistically significant.

Intraclass correlation coefficients (ICCs) were calculated to evaluate an agreement
on the objective data between the two radiographers. An ICC value >0.75 indicates a
good consistency; 0.4~0.75, a general consistency; and <0.4, a poor consistency. Cohen’s
kappa statistic was calculated for an agreement on the independent scoring of the image
quality between the two radiologists. A kappa statistic of 0.81~1.00 implies an excellent
agreement; 0.61~0.80, a substantial agreement; 0.41~0.60, a moderate agreement; 0.21~0.40,
a fair agreement; and 0.00~0.20, a poor agreement.

3. Results

According to the exclusion criteria for inclusion, the CT images of 48 patients were
finally selected. Among them, there were 22 males [mean age ± standard deviation (SD)
51.45 ± 9.57 years] and 26 females (mean age ± SD 52.31 ± 8.94 years).

3.1. Radiation Dose

The mean CTDIvol, DLP, and effective dose of the 48 patients were 2.04 ± 0 mGy,
79.69 ± 4.81 mGy*cm, and 1.07 ± 0.07 mSv, respectively.

3.2. Objective Analysis

The mean CT values measured by the two radiographers were consistent (ICC value:
0.921~0.995). There were no significant differences in the mean CT values among the three
image reconstruction methods for the aorta, lung, muscle, liver, and vertebrae (all p > 0.05),
i.e., the reconstruction method had no effect on the signal intensity of the images. The
results are presented in Table 1 and Figure 1A,E.

Table 1. Comparison of image CT values among the three groups.

CT Value
(HU) ASIR-V 50% DLIR-M DLIR-H p

p

ASIR-V 50%
vs.

DLIR-M

ASIR-V 50%
vs.

DLIR-H

DLIR-M
vs.

DLIR-H

Aorta
ICC 0.948 0.951 0.955

Reader 1 48.64 ± 5.47 48.76 ± 5.35 48.72 ± 5.36 0.515 † 1.000 1.000 1.000
Reader 2 48.64 ± 5.04 48.79 ± 4.99 48.78 ± 4.91 0.394 † 0.891 1.000 1.000

Lung
ICC 0.960 0.958 0.961

Reader 1 −891.66 ± 18.06 −891.65 ± 17.82 −891.63 ± 17.88 0.866 † 1.000 1.000 1.000
Reader 2 −889.88 ± 19.30 −890.00 ± 19.12 −889.88 ± 19.14 0.622 † 1.000 1.000 1.000
Muscle

ICC 0.926 0.921 0.925
Reader 1 61.55 ± 4.65 61.67 ± 4.90 61.66 ± 4.83 0.681 † 1.000 1.000 1.000
Reader 2 61.27 ± 4.81 61.21 ± 4.94 61.28 ± 4.83 0.804 † 1.000 1.000 0.780

Liver
ICC 0.987 0.990 0.992

Reader 1 62.40 (10.82) 62.90 (10.45) 63.05 (10.03) 0.717 ‡ 1.000 1.000 1.000
Reader 2 62.13 (11.08) 62.46 (10.27) 62.41 (10.20) 0.763 ‡ 1.000 1.000 1.000
Vertebrae

ICC 0.993 0.994 0.995
Reader 1 170.50 ± 52.68 170.69 ± 53.25 170.53 ± 53.03 0.662 † 1.000 1.000 0.790
Reader 2 170.15 ± 52.04 170.32 ± 52.91 170.23 ± 52.77 0.750 † 1.000 1.000 1.000

Note: HU = Hounsfield units. ICC = intraclass correlation coefficient. ASIR-V 50% = adaptive statistical iterative
reconstruction-Veo at a level of 50%; DLIR-M and DLIR-H = deep learning image reconstruction in medium and
high strengths, respectively. † indicates normally distributed data compared using repeated measures ANOVA.
‡ indicates nonnormally distributed data compared with the Friedman test.
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Figure 1. Boxplots of all quantitative data. (A−D) show the CT value, SD value, SNR, and CNR
measured by Reader 1, respectively. (E−H) show the CT value, SD value, SNR, and CNR measured
by Reader 2, respectively. ns indicates that the difference between the three groups is not statistically
significant (p > 0.05). *** indicates that the difference between the three groups is statistically
significant (p < 0.001). + in the boxplot indicates the mean value.
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The SD values measured by the two radiographers in the lung were generally consis-
tent (ICC value: 0.716~0.815), and the SD values in the aorta, muscle, liver, and vertebrae
were consistent (ICC value: 0.817~0.937). There were significant differences in the SD
values among the three image reconstruction methods for the aorta, lung, muscle, liver, and
vertebrae (all p < 0.05), i.e., the reconstruction method had a significant effect on the image
noise. DLIR-H had the lowest noise in the ROIs of the three constructed images, followed
by DLIR-M and ASIR-V 50%. Compared with ASIR-V 50%, DLIR-H reduced the noise by
approximately 54.74%, 52.88%, 48.35%, 35.90%, and 11.55% in the aorta, liver, muscle, ver-
tebrae, and lung tissue, respectively. A pairwise comparison between the groups showed
that the three reconstruction modalities showed significant differences in the aorta, lung
tissue, subscapularis muscle, liver, and vertebrae (all p < 0.05). The results are presented in
Table 2 and Figure 1B,F.

Table 2. Comparison of image noise in the three groups.

Noise (HU) ASIR-V 50% DLIR-M DLIR-H p

p

ASIR-V 50%
vs.

DLIR-M

ASIR-V 50%
vs.

DLIR-H

DLIR-M
vs.

DLIR-H

Aorta
ICC 0.921 0.934 0.932

Reader 1 19.35 ± 2.70 13.58 ± 1.96 8.74 ± 1.22 <0.001 † <0.001 <0.001 <0.001
Reader 2 19.16 ± 2.66 13.42 ± 1.96 8.69 ± 1.20 <0.001 † <0.001 <0.001 <0.001

Lung
ICC 0.815 0.716 0.751

Reader 1 19.79 ± 2.59 18.18 ± 2.44 17.45 ± 2.51 <0.001 † <0.001 <0.001 0.001
Reader 2 20.22 ± 2.93 18.75 ± 3.04 17.94 ± 2.93 <0.001 † <0.001 <0.001 <0.001
Muscle

ICC 0.902 0.851 0.817
Reader 1 23.13 ± 2.93 17.10 ± 1.80 11.89 ± 1.44 <0.001 † <0.001 <0.001 <0.001
Reader 2 22.87 ± 3.08 17.01 ± 2.09 11.87 ± 1.60 <0.001 † <0.001 <0.001 <0.001

Liver
ICC 0.906 0.862 0.834

Reader 1 23.07 ± 2.35 16.81 ± 1.75 10.86 ± 1.08 <0.001 † <0.001 <0.001 <0.001
Reader 2 23.13 ± 2.21 16.86 ± 1.61 10.91 ± 0.99 <0.001 † <0.001 <0.001 <0.001
Vertebrae

ICC 0.937 0.896 0.896
Reader 1 36.82 (7.66) 29.72 (5.69) 23.16 (5.68) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 36.28 (7.81) 30.50 (6.47) 23.69 (6.31) <0.001 ‡ <0.001 <0.001 <0.001

Note: HU = Hounsfield units. ICC = intraclass correlation coefficient. ASIR-V 50% = adaptive statistical iterative
reconstruction-Veo at a level of 50%; DLIR-M and DLIR-H = deep learning image reconstruction in medium and
high strengths, respectively. † indicates normally distributed data compared using repeated measures ANOVA.
‡ indicates nonnormally distributed data compared with the Friedman test.

The SNR and CNR calculated by the two radiographers were consistent (ICC value:
0.739~0.976). There were significant differences in the SNR and CNR among the three
image reconstruction methods for the aorta, lung, muscle, liver, and vertebrae (all p < 0.05).
DLIR-H had the highest SNR and CNR in each ROI, and ASIR-V 50% had the lowest.
Compared with ASIR-V 50%, DLIR-H improved the SNR by approximately 125.35%,
112.40%, 93.75%, 53.95%, and 15.65% and enhanced the CNR by approximately 276.55%,
274.50%, 251.95%, 147.65%, and 35.10% in the aorta, liver, muscle, vertebrae, and lung tissue,
respectively. Pairwise comparisons between the groups showed statistically significant
differences among all methods (p < 0.05). The results are presented in Tables 3 and 4 and
Figure 1C,D,G,H.
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Table 3. Comparison of SNR among the three groups.

SNR ASIR-V 50% DLIR-M DLIR-H p

p

ASIR-V 50%
vs.

DLIR-M

ASIR-V 50%
vs.

DLIR-H

DLIR-M
vs.

DLIR-H

Aorta
ICC 0.911 0.913 0.925

Reader 1 2.46 (0.53) 3.50 (0.72) 5.51 (1.24) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 2.47 (0.59) 3.56 (0.74) 5.60 (1.29) <0.001 ‡ <0.001 <0.001 <0.001

Lung
ICC 0.757 0.739 0.790

Reader 1 45.80 ± 6.03 49.95 ± 7.01 52.12 ± 7.54 <0.001 † <0.001 <0.001 <0.001
Reader 2 43.37 (7.94) 48.05 (12.79) 50.95 (13.96) <0.001 ‡ 0.018 <0.001 <0.001
Muscle

ICC 0.893 0.837 0.817
Reader 1 2.70 ± 0.38 3.64 ± 0.47 5.26 ± 0.77 <0.001 † <0.001 <0.001 <0.001
Reader 2 2.73 ± 0.43 3.65 ± 0.55 5.26 ± 0.85 <0.001 † <0.001 <0.001 <0.001

Liver
ICC 0.976 0.965 0.961

Reader 1 2.65 (0.68) 3.65 (0.83) 5.67 (1.22) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 2.68 (0.71) 3.59 (0.89) 5.65 (1.18) <0.001 ‡ <0.001 <0.001 <0.001
Vertebrae

ICC 0.971 0.966 0.943
Reader 1 4.66 ± 1.32 5.67 ± 1.65 7.18 ± 2.09 <0.001 † <0.001 <0.001 <0.001
Reader 2 4.63 (2.02) 5.58 (2.17) 7.12 (2.76) <0.001 ‡ <0.001 <0.001 <0.001

Note: ICC = intraclass correlation coefficient. ASIR-V 50% = adaptive statistical iterative reconstruction-Veo
at a level of 50%; DLIR-M and DLIR-H = deep learning image reconstruction in medium and high strengths,
respectively. † indicates normally distributed data compared using repeated measures ANOVA. ‡ indicates
nonnormally distributed data compared with the Friedman test.

Table 4. Comparison of CNR among the three groups.

CNR ASIR-V 50% DLIR-M DLIR-H p

p

ASIR-V 50%
vs.

DLIR-M

ASIR-V 50%
vs.

DLIR-H

DLIR-M
vs.

DLIR-H

Aorta
ICC 0.953 0.948 0.938

Reader 1 4220.40 (1543.54) 7023.38 (3140.01) 15,958.01 (6466.08) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 4234.37 (1612.33) 7126.66 (3468.47) 15,880.75 (6711.26) <0.001 ‡ <0.001 <0.001 <0.001

Lung
ICC 0.869 0.893 0.924

Reader 1 41.75 (19.53) 48.10 (22.55) 57.13 (33.65) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 42.78 (21.31) 49.55 (25.71) 57.05 (34.88) <0.001 ‡ 0.009 <0.001 <0.001
Muscle

ICC 0.948 0.932 0.900
Reader 1 3239.26 (888.57) 5560.85 (1350.57) 11,430.93 (3465.19) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 3202.04 (1440.15) 5533.11 (1680.58) 11,239.74 (3792.47) <0.001 ‡ <0.001 <0.001 <0.001

Liver
ICC 0.926 0.864 0.862

Reader 1 3353.37 ± 648.20 5673.28 ± 1184.25 12,621.82 ± 2547.01 <0.001 † <0.001 <0.001 <0.001
Reader 2 3343.94 ± 620.62 5624.45 ± 1051.58 12,459.73 ± 2273.57 <0.001 † <0.001 <0.001 <0.001
Vertebrae

ICC 0.921 0.833 0.791
Reader 1 1716.03 (757.72) 2641.56 (895.71) 4391.59 (1575.93) <0.001 ‡ <0.001 <0.001 <0.001
Reader 2 1797.66 (641.32) 2618.25 (916.38) 4304.24 (1915.51) <0.001 ‡ <0.001 <0.001 <0.001

Note: ICC = intraclass correlation coefficient. ASIR-V 50% = adaptive statistical iterative reconstruction-Veo
at a level of 50%; DLIR-M and DLIR-H = deep learning image reconstruction in medium and high strengths,
respectively. † indicates normally distributed data compared using repeated measures ANOVA. ‡ indicates
nonnormally distributed data compared with the Friedman test.
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3.3. Subjective Analysis

The subjective analysis results show significant differences in the image quality for
soft tissue among the three reconstruction methods (all p < 0.05). The image score of DLIR
was higher than that of ASIR-V 50%. However, the difference in the image quality for
the lung tissue was not statistically significant among the three reconstruction methods
(p = 0.121 and 0.069). Both radiologists believed that DLIR had an outstanding noise
reduction ability in soft tissue. DLIR-H had the best image quality, with a low noise and a
natural texture (Figure 2). However, DLIR did not visualize the lung tissue more clearly
(Figure 3). The subjective scores between the two radiologists were consistent (kappa value
range: 0.48–0.91). The results are presented in Table 5.
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Figure 2. Soft tissue images of a 62-year-old female after chest LDCT. Three reconstruction methods
were used: ASIR-V 50% (a), DLIR-M (b), and DLIR-H (c). The image signal did not significantly
vary across different reconstructions (all p > 0.05). Image noise significantly varied across different
reconstructions (all p < 0.05). Both radiologists agreed that DLIR-H had the best image quality, with
low noise and a natural texture.
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Figure 3. Lung tissue images of a 62-year-old female after chest LDCT. Three reconstruction methods
were used: ASIR-V 50% (a), DLIR-M (b), and DLIR-H (c). The image signal did not significantly
vary across different reconstructions (all p > 0.05). Image noise slightly varied across different
reconstructions (all p < 0.05). However, both radiologists agreed that DLIR did not visualize the lung
tissue more clearly.

Table 5. Results of the subjective image analysis.

Subjective Scores ASIR-V 50% DLIR-M DLIR-H p

Soft tissue
Reader 1 3 (0) 4 (0) 5 (0) <0.001
Reader 2 3 (0) 4 (0) 5 (0) <0.001

Lung tissue
Reader 1 4 (0) 4 (0) 4 (0) 0.121
Reader 2 4 (0) 4 (0) 4 (0) 0.069

Note: ASIR-V 50% = adaptive statistical iterative reconstruction-Veo at a level of 50%; DLIR-M and DLIR-H = deep
learning image reconstruction at medium and high strengths, respectively.
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4. Discussion

Different reconstruction algorithms lead to different image qualities. In view of the
wide application of chest LDCT, in this study, we used both objective and subjective
evaluation methods to compare the effect of the DLIR algorithm and ASIR-V algorithm
on the image quality of chest LDCT. However, we should be aware that there is not
an official definition of the terms low dose or standard dose [16]. Since expectations
concerning the image quality can substantially differ between institutions, the definition
of a high or low dose will vary. The radiation dose in our study is in line with the current
guideline recommendation [17]. In this study, the objective parameters of image quality
were measured by two radiographers, and there was a good agreement between the
measured values. The objective analysis results showed that the reconstruction method
had no effect on the signal intensity of the images. However, DLIR had a significant
advantage in reducing the image noise and improving the SNR and CNR. The noise
reduction abilities of the three reconstruction methods from best to worst were DLIR-H,
DLIR-M, and ASIR-V 50%. Compared with the ASIR-V 50% algorithm, DLIR-H was able
to reduce noise in the aorta, liver, muscle, vertebrae, and lung tissue by approximately
54.74%, 52.88%, 48.35%, 35.90%, and 11.55%, respectively, maintaining a high resolution
while significantly reducing noise and artifacts. The subjective evaluation results showed
that DLIR significantly improved the image quality for the soft tissue and maintained the
real noise texture. The image quality with DLIR was better than that with the standard
algorithm ASIR-V 50%, but there was no significant difference in the visual effect among
the three reconstruction methods when observing the lung tissue. Consistent with previous
results [18,19], this study further confirmed that the DLIR reconstruction algorithm could
significantly improve the quality of chest LDCT images.

Noise is a key factor affecting the image quality. A large amount of noise will directly
affect the density resolution of the image and reduce or even mask the visibility of some
features, especially low-contrast structures. ASIR-V is a hybrid reconstruction technique
that combines the model-based iterative advantages of ASIR with a real-time reconstruction
and model-based iterative reconstruction (MBIR) [20]. ASIR-V successfully reduces the
radiation dose of chest LDCT and provides a relatively good image quality; thus, this
method is now widely used in clinical practice [21,22]. However, this is a concession
to the low-dose image standard established after a comprehensive consideration of the
existing technology and doses. Research shows that radiologists are most satisfied with the
images reconstructed by the FBP algorithm under high-dose conditions. The advantages
of the ASIR-V algorithm are based on the complexity of the model. A limited degree of
reconstruction increasingly affects the image texture as the iterative intensity increases,
resulting in an unnatural visual effect [8,9]. The True Fidelity™ engine is based on the
raw data acquired with a CT scanner and directly uses FBP-reconstructed images under
ideal conditions as the training standard to improve the IR algorithm to reduce the degree
to which noise will distort the image texture [12]. In this study, the chest LDCT images
reconstructed with DLIR-H did not exhibit the oversmoothing phenomenon, but it showed
the robust noise reduction ability of the algorithm under low-dose scanning conditions
and maintained a more realistic image texture. Recent studies on DLIR have also proven
that it can improve the image quality and reduce the radiation dose in abdominal CT
examinations, chest angiography in children, CT urography, etc. [23–26].

Among the different tissues and organs (aorta, lung tissue, liver, muscle, and vertebrae)
on chest LDCT images, DLIR had the best noise reduction ability for soft tissue density
organs or tissues (aorta, liver, and muscle), followed by bone and lung. LDCT is widely
used for lung cancer screening because the lungs are rich in gas, have a naturally good
contrast, and are more tolerant to noise than other anatomical structures (abdomen or head).
We suggest that this may be a reason why the visual effect improvement of DLIR is evident
in soft tissue but not in lung tissue. On the other hand, our subjective evaluation is based
on normal lung tissue rather than pathological details. This may also account for the lack of
difference in the subjective evaluation. In addition to lung cancer screening, chest LDCT can
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also screen and diagnose some common major chronic noncommunicable diseases, such
as coronary artery calcification, fatty liver, osteoporosis, and extrapulmonary (including
mediastinum, thyroid, breast, and upper abdominal organs) tumor lesions. DLIRs are more
effective in reducing the noise of soft tissue and bone and improving the image contrast,
which is beneficial for the detection of major chronic noninfectious diseases, in addition to
lung cancer, by thoracic LDCT, and is important for improving the cost-effectiveness and
significance of thoracic LDCT for lung cancer screening.

Our study still has certain limitations. First, this study only compared normal anatom-
ical tissues with standard reconstruction algorithms and did not explore the detection
capability of the algorithms for the lesions. In further studies, the detection capabilities
of the two different reconstruction methods will be validated for different disease types.
Second, the sample size of this study was relatively small and the study was conducted
in a single center. Larger sample sizes need to be included to further validate the current
research results.

In summary, for LDCT, DLIR can provide a higher image quality at the same dose,
enhancing the physicians’ diagnostic confidence and improving the diagnostic efficacy of
LDCT for lung cancer screening.
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