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Average trapping time on weighted 
directed Koch network
Zikai Wu & Yu Gao

numerous recent studies have focused on random walks on undirected binary scale-free networks. 
However, random walks with a given target node on weighted directed networks remain less 
understood. In this paper, we first introduce directed weighted Koch networks, in which any pair 
of nodes is linked by two edges with opposite directions, and weights of edges are controlled by a 
parameter θ . Then, to evaluate the transportation efficiency of random walk, we derive an exact 
solution for the average trapping time (Att), which agrees well with the corresponding numerical 
solution. We show that leading behaviour of Att is function of the weight parameter θ and that the 
Att can grow sub-linearly, linearly and super-linearly with varying θ . finally, we introduce a delay 
parameter p to modify the transition probability of random walk, and provide a closed-form solution for 
Att, which still coincides with numerical solution. We show that in the closed-form solution, the delay 
parameter p can change the coefficient of ATT, but cannot change the leading behavior. We also show 
that desired ATT or trapping efficiency can be obtained by setting appropriate weight parameter and 
delay parameter simultaneously. thereby, this work advance the understanding of random walks on 
directed weighted scale-free networks.

In recent years, complex networks have received attention from numerous researchers1. As a fundamental tool 
developed to describe the dynamic process of networks, random walks on a graph has been widely employed to 
evaluate dynamical properties of different complex networks2, such as chemical kinetics in molecular systems3, 
page search in the World Wide Web4, and lighting harvesting in antenna systems5,6. In addition to the applications 
in network science7–9, random walks has also been applied to other subjects (e.g., image segmentation10, the nor-
malized Laplacian spectrum of a graph11,12 and signal propagation in proteins13).

One of the main foci in studies of random networks is the mean first passage time (MFPT)14–18, which has 
been defined as the expected steps that a walker starting in node i will require to reach node j for the first time19. 
When the target node j is given or assumed as the trap node, the MFPT is regarded as the mean first passage time 
to the trap node, which is also called the average trapping time (ATT). The ATT for a given trap has been used 
as a quantitative indicator of trapping efficiency to evaluate the process of random walks16,20,21. Researchers have 
studied the construction and dynamic process of differing undirected fractal networks, such as T-fractals22–24, 
Sierpinski fractals7,25,26, and Caley trees27–30 and other structures31–33.

Previous works have provided the framework for calculating ATT on different undirected scale-free networks. 
However, many networks in real life are directed and the directed edges linking pairs of nodes may have con-
siderable influences on dynamic processes34,35. In comparison, the understanding of random walks process in 
directed weighted networks is still inadequate. In particular, for random walks in fractal networks or non-fractal 
networks36,37, a significant issue is to explore the effect of weighted and directed edges on the average trapping 
time (ATT) with a given target node. Although some efforts have been made with several weighted and directed 
models38–41, additional work is needed to deepen the understanding of the impact of the weight and direction on 
random walks. Below, we first propose a weighted directed Koch network42–45, where each pair of nodes has two 
edges with opposite directions46, and the weights of edges are controlled by a weight parameter θ. Then, build-
ing on the time-delay system theory47–49, we further introduce a delay parameter p into the weighted directed 
network.

Following the introduction of weighted directed Koch network, we derive the exact analytical expression 
of ATT for a given target node. We find that as θ goes from 0 to infinity, the ATT of the target grows subline-
arly, linearly, and surperlinearly depending on the value of the weight parameter. We also calculate the ATT on 
weighted directed Koch network with a delay parameter. The result shows that delay parameter can only change 
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the coefficient of the ATT, but leaves the leading scale unchanged. In summary, the results advance our under-
standing of random walks process in directed weighted Koch network.

Results
construction and properties of directed weighted Koch network. The Koch network is derived 
from the Koch curve, a well-known fractal, in which each node in the network corresponds to one triangle in the 
curve. The generation procedure of binary Koch networks was detailed in44. Let K(g) denotes the network after 
g iterations. For g = 0, K(0) is a triangle containing three nodes. For g ≥ 1, K(g) can be obtained from K(g−1) as 
follows: For each existing node, two new nodes are created and attached to the existing node to form a triangle44. 
Figure 1 shows the construction process of the first three generations. We note that L(g), the number of triangles 
in K(g), equals to 4g. The variable Lv(g), the number of nodes created at g th generation, equal to 6 × 4g−1. The var-
iable Le(g), the number of edges created at g th generation, equal to 9 × 4g−1. Besides, the variable Ng, the number 
of the nodes in K(g), equals to 2 × 4g + 144.

Based on the undirected and unbiased Koch network, we propose a weighted directed Koch network by intro-
ducing a weight parameter θ quantifying the reciprocating relation between edges. In other words, the edge in the 
binary network is replaced by two opposite directed edges with different weights.

Let 
→
K g( ) represent the weighted directed Koch network at generation g and Wij(g) denote the weight of the 

edge linking node i and node j in 
→
K g( ). Then we define Wij(g) > 0, if node i and node j are adjacent, and Wij(g) = 0, 

otherwise. The weights of edges in the network are defined recursively as follows. When g = 0, 
→
K (0) is a triangle 

containing three nodes, in which W1,2(0) = W2,1(0) = W2,3(0) = W3,2(0) = W1,3(0) = W3,1(0) = 1. When g = 1, each 
node in 

→
K (0) is treated as the mother node and produce two new nodes, which and mother node are connected 

each other to form a new triangle. In the new triangle, the weight of the two edges linking mother node and new 
produced nodes is θ times that of edges linking mother node and its old neighbors, and the weight of edges link-
ing new nodes and mother node equals to that of edges linking mother node’s old neighbors and mother node. As 
a result, W1,8(1) = θW1,3(0), W8,1(1) = W3,1(0), W1,9(1) = θW1,2(0), W9,1(1) = W2,1(0), W8,9(1) = θW8,1(1), 
W9,8(1) =  θW9,1(1), W2,6(1) =  θW2,3(0), W6,2(1) =  W3,2(0), W2,7(1) =  θW2,1(0), W7,2(1) =  W1,2(0), 
W6,7(1) =  θW6,2(1), W7,6(1) =  θW7,2(1), W3,4(1) =  θW3,2(0), W4,3(1) =  W2,3(0), W3,5(1) =  θW3,1(0), 
W5,3(1) = W1,3(0), W4,5(1) = θW4,3(1), W5,4(1) = θW5,3(1). When g > 1, each node of each triangle in 

→
−K g( 1) 

generates one triangle respectively, and the iteration rules governing the weight of edges in new produced trian-
gles are the same as those mentioned above. Figure 2 shows the succession process of the reciprocity weights.

In the directed weighted network, we define the out-strength and in-strength of node i at generation g as 
= ∑ = ∑+

=
−

=S g W g S g W g( ) ( ), ( ) ( )i j
N

ij i j
N

ji1 1
g g  respectively. Based on the evolution rule of network, it can be shown 

that θ= ++ −S g( ) 2( 1)i
g gi, where gi represents the generation at which the node i is created.

numerical formulations of Att in directed weighted Koch network. In this paper, we address a 
special biased random walks with a given target node. For convenience, we label all the nodes in the following 
way: the initial three nodes in 

→
K (0) are labeled as 1, 2 and 3, respectively. Let Ng−1 + 1, Ng−1 + 2, …, Ng denote the 

new nodes created at g th generation in 
→
K g( ), which are shown in Fig. 2. We assume that the target node is placed 

at any node in K(0). Without loss of generality, let node 1 be target node. This stochastic process of random walks 
is characterized by the transition matrix Pg. The element of Pg named pij(g) denotes the transition probability of 
jumping from i to j in each time step. It satisfies ∑ == p g( ) 1j

N
ij1

g .
Let Ti

g( ) denote the mean first passage time for a walker moving from node i to target node in 
→
K g( ). Then, it 

obeys the equation

Figure 1. The first three generations of Koch network. (a–c) are the first three generations of Koch 
network,respectively. The blue, yellow and green nodes are represent the generations 0,1, and 2, respectively.
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which can be rewritten in matrix form as

= +T P T e , (2)g g g g

where Tg  and Pg  are formed by deleting the first row of Tg and Pg and respectively. The variable eg  is formed by 
removing the first element of eg, which is the Ng-dimensional vector of ones.

From Eq. (2), we obtain

= − −T I P e( ) , (3)g g g g
1

where Ig  is the (Ng − 1) × (Ng − 1) identity matrix.
From Eq. (3), we further obtain

∑ ∑ ∑ τ〈 〉 =
−

=
−

.
= = =

T
N

T
N

1
1

1
1 (4)

g
g i

N

i
g

g i

N

j

N

ij
2

( )

2 2

g g g

where τij is the ijth element of matrix − −I P( )g g
1. By definition, 〈T〉g is the average trapping time (ATT) after g 

iterations. Note that Eq. (4) is valid only if node 1 is designated as absorbing node, or p1,1(g) = 1 and 
p1,j(g) = pi,1(g) = 0 for all i,j > 1.

Equation (4) shows that in order to compute 〈T〉n or ATT, we only need to compute the inverse of transition 
matrix. However, computing the inverse of a matrix leads to heavy computational burden when network’s size is 
large. Therefore, alternative approach is needed to efficiently compute the ATT and equation 4 can be applied to 
verify the solutions derived by alternative approach.

Analytical solutions for Att in weighted directed Koch network. Now, we analytically derive the 
ATT with a given target node on directed weighted Koch network. Let Ωg denote the set of nodes in generation g 
and Ωg  be the set of new nodes created at generation g, then |Ω | = |Ω | + |Ω |−

¯g g g1 . It is obviously that 
|Ω | = × +2 4 1g

g , and |Ω | = × −6 4g
g 1. Let ki(g) represents the degree of node i at gth generation. According to 

Figure 2. The weighted directed Koch network construction. (a) is the labels of nodes for unweighted and 
undirected Koch model, (b) is an example of directed weighted edges’ construction between node 1 and its 
neighbors for the first two steps.
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network’s construction rule, the iteration rule of ki(g) is ki(g) = 2ki(g − 1). Furthermore, among the 2ki(g − 1) 
neighbors of node i at generation g, there are ki(g − 1) neighbors created before generation g(old neighbor) and 
there are ki(g − 1) neighbors created just at generation g(new neighbor). We use Z to denote mean first passage 
time for a walker moving from node i to any of its ki(g) old neighbors, and let X represent the mean first passage 
time for a walker going from any of the new neighbors of i to one of its ki(g) old neighbors. By the iteration rule of 
the directed weighted Koch network, we have

θ
θ

θ

θ
θ

θ











=
+

+
+

+

=
+

+ +
+

+

Z X

X Z X

1
1 1

(1 ),
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(5)

from which we obtain Z = (1 + θ)2, which is just the iteration rule of the average trapping time. In other words,

θ= + .+T T(1 ) (6)i
g

i
g( 1) 2 ( )

We define the intermediary quantities for 1 ≤ m ≤ g.
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Then, we obtain the relation
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1 (9)
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Thus, the problem of computing 〈T〉g reduces to computing Tg tot
g
,

( ) . Taking the iteration rule of the average 
trapping time into consideration, we have

θ= + = + + .− −
−T T T T T(1 ) (10)g tot
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Hence, in order to get Tg tot
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When g = 1,
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Thus, we have

∑

θ

θ

=

= + + + + +

= + + + +

= + + .

∈Ω
T T

T T T T T T

T T T

T

6(1 ) 2( )

6(1 ) 2 (11)

tot
i

tot

1,
(1)

i
(1)

4
(1)

5
(1)

6
(1)

7
(1)

8
(1)

9
(1)

1
(1)

2
(1)

3
(1)

0,
(1)

1

https://doi.org/10.1038/s41598-019-51229-2


5Scientific RepoRtS |         (2019) 9:14609  | https://doi.org/10.1038/s41598-019-51229-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Similarly, when g = 2, we obtain
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From Eqs (10) and (11), we obtain
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Multiplying Eq. (13) with (1 + θ)2 and subtracting the result from Eq. (14), we find
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When θ = 1, substituting Eq. (17) into Eq. (10), we obtain
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When θ = 1, the result is consistent with the relevant expression in literature39. From Eq. (18), we find that 
the ATT grows linearly with the network size. In fact, when θ = 1, the network reduces to binary Koch network.

When θ ≠ 1, we have
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Thus, according to the Eq. (9), we obtain
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when g → ∞ and θ ≠ 1, we have

θ θ
θ

θ θ
θ θ θ

〈 〉 ≈ +






+
+

−
+ −

+ +







≈ .θ+

T

N

(1 ) 7 4
3( 1)

2 1
2(2 )(1 )

(21)

g
g

g

2
2

2

log ( 1)2

Equation (21) shows that 〈T〉g grows sub-linearly with the network size if θ < 1, while 〈T〉g grows super-linearly 
with the network size if θ > 1.

We have compared our analytical result with numerical result obtained from Eq. (4). They agree well with each 
other for different values of θ and network order g, which are summarized in Fig. 3.

Expressions for ATT with delay parameter on weighted directed Koch network. We now intro-
duce a delay parameter p to explore the impact of time-delay on random walk.

By the construction of network, we define the random walk process in the network with delay as follows: The 
walker in 

→
−K g( 1) is allowed to move to any neighbor either in 

→
−K g( 1) or 

→
K g( ) with probability p and 1 − p, 

respectively, where 0 ≤ p ≤ 1. The transition probability pij for the walker jumping from node i to node j is defined 
by

=
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where +s g( )i  is the out-strength of node i. If the walker is at nodes newly created in generation g, it will do random 
walk on 

→
K g( ).

When p = 0, the walker moves from its current location (node i) to any neighboring node j with transition 
probability = +p g W g S g( ) ( )/ ( )ij ij i . In other words, random walk with delay reduces to random walk in 

→
K g( ).

When p = 1, the walker jumps from current position (node i) to any neighboring node j in 
→

−K g( 1) with 
transition probability = −+p g W g S g( ) ( )/ ( 1)ij ij i  if node i is created before generation g. Otherwise, the walker 
moves from current position to any neighbor in 

→
K g( ) with transition probability = +p g W g S g( ) ( )/ ( )ij ij i .

By the definition above, the quantities of Z and X obeys the relation
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Figure 3. Verification of analytical solutions on weighted Koch network. ATT 〈T〉g for three different values 
of θ and g. The filled symbols represent the data of numerical results and the empty symbols are the analytical 
values given by Eqs (19) or (20).
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In this section, we define Di(g) as the MFPT in 
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Figure 4. Verification of analytical solutions on weighted Koch network in delay state. ATT 〈D〉g for weighted 
directed Koch network in delay state with different p, θ and g. The filled symbols are the results of numerical 
results of Eq. (4) and the empty symbols represent the exact analytical values of Eqs (34) or (38).
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Multiplying Eq. (26) with 2(θ + 1)2 and subtracting the result from Eq. (28), we find
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Plugging |Ω | = × −6 4g
g 1 and Eq. (17) into Eq. (29), and taking = θ θ θ

θ
+ + −

+
D tot

p
p1,

(1) 2(1 )(7 4 )
1

 into consideration, 
we compute

θ θ θ θ

θ θ θ
θ

θ θ θ
θ θ

θ θ θ θ θ
θ θ θ

= + − + + − ×

+ × ×
+ + −

+
×





 + −

+ −
+







+
+ − + + − ×

+ +
.

+
+

−

−

(D D

p
p

p
p

2 1 ) 3(1 )( 2 1) 4

2 4 (1 ) (1 )
(1 )

2(7 4 ) 3( 2 1)
2

6( 2 1)(1 ) (1 ) 4
(2 )(1 ) (30)

g tot
g

g tot
g g

g
g

g

1,
( 1) 2

,
( ) 2

1
2 2

2

2 2 1

2

Based on Eq. (30), we further find

θ θ
θ

θ

θ θ
θ

θ θ θ
θ θ

θ

θ θ θ
θ θ θ

θ θ

=
+ −

+
+

+
+ −

+





 + −

+ −
+





 × + −

+ ×






+ + −
+ +

− +




 × + − .

−

− − −

− −

D p
p

p
p

p
p

(7 4 )
1

2 (1 )

(1 )
1

2(7 4 ) 3( 2 1)
2

2 (1 ) (2 1)

2 3(1 ) (1 )
2(2 )(1 )

3(1 ) [(1 ) 2 ]
(31)

g tot
g g g

g g g

g g g

,
( ) 2 1

2

2
1 2 2 1

2

2
2 2 1

When θ ≠ 1, we recall Eq. (26) to obtain
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By substituting Eq. (31) into Eq. (32), we obtain
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Then from Eq. (25), we have
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We compared analytical expressions in Eqs (34) and (38) with numerical results from Eq. (4). As shown in 
Fig. 4, the analytical results agree well with numerical results for different values of θ, p and n.

It can be seen from Eqs (35) and (39) that 〈D〉g grows sub-linearly, linearly, super-linearly with network size 
when θ < 1, θ = 1, θ > 1 respectively. However, Eqs (35) and (39) also show that the delay parameter p can only 
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change the coefficient of the ATT. Although the delay parameter p has less pronounced influence on the transport 
efficiency, both it and the weight parameter are needed to tune for getting desired average trapping time.

Discussion
In this paper, we first proposed a weighted directed Koch network, in which the weight of edge is controlled by a 
parameter θ. Then, we derived the closed form solution of average trapping time (ATT) of a random walk with a 
given trap node. The solution shows that the weighted directed construction has a significant effect on trapping 
efficiency and the leading scale of ATT can be sub-linear, linear and super-linear with varying weight parameter. 
Finally, when a delay is introduced such that new extended structures do not always affect the system immedi-
ately, then we introduce a delay parameter p to steer the random walk on the weighted directed network. The 
exact solution of the ATT in this scenario shows that the delay parameter can only change the prefactor of the 
ATT. Our results also show that we can obtain desired ATT with appropriate values of weight parameter θ and 
delay parameter p. It is noteworthy that the procedure used here is limited to deriving average trapping time of 
random walks with trap located at node 1,2 or 3. For next steps, we will generalize our work to average trapping 
time with trap located at any nodes.

References
 1. Albert, R. & Barab´asi, A. Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002).
 2.  Lov´asz, L., Lov, L. & Erdos, O. P. Random walks on graphs a survey. Comb. (1996).
 3. Kim, S. K. Mean first passage time for a random walker and its application to chemical kinetics. J. Chem. Phys. 28(6), 1057–1067 

(1958).
 4. Hwang, S., Lee, D. S. & Kahng, B. First passage time for random walks in heterogeneous networks. Phys. Rev. Lett. 109(8), 088701 

(2012).
 5. Barhaim, A. & Klafter, J. Dendrimers as light harvesting antennae. journal of luminescence. J. Lumin. 76–77, 197–200 (1998).
 6. Barhaim, A. & Klafter, J. Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B 102(10), 

1662–1664 (1998).
 7. Jung, S., Kim, S. & Kahng, B. Geometric fractal growth model for scale-free networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 

65(2), 056101 (2002).
 8. Song, C., Havlin, S. & Makse, H. Origin of fractality in the growth of complex networks. Nat. Phys. 2(4), 275–281 (2005).
 9. Rozenfeld, H. D., Havlin, S. & Benavraham, D. Fractal and transfractal recursive scale-free nets. New J. Phys. 9(6), 175–190 (2006).
 10. Grady, L. Random walks for image segmentation. IEEE Trans.pattern Analysis machine.intelligence 28(11), 1768–1783 (2006).
 11. Xie, P. C., Zhang, Z. Z. & Comellas, F. The normalized laplacian spectrum of subdivisions of a graph. Appl. Math. Comput. 286, 

250–256 (2016).
 12. Xie, P. C., Zhang, Z. Z. & Comellas, F. On the spectrum of the normalized laplacian of iterated triangulations of graphs. Appl. Math. 

Comput. 273, 1123–1129 (2016).
 13. Chennubhotla, C. & Bahar, I. Signal propagation in proteins and relation to equilibrium fluctuations. Plos Comput. Biol. 3(9), 1716 

(2007).
 14. Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 36, 695 (1987).
 15. Condamin, S., Bénichou, O. & Moreau, M. First-passage times for random walks in bounded domains. Phys. Rev. Lett. 95(26), 

260601 (2005).
 16. Redner, S. & Dorfman, J. R. A guide to first-passage processes. Am. J. Phys. 52(2), 49–70 (2007).
 17. Gallos, L. K., Song, C. & Havlin, S. Scaling theory of transport in complex biological networks. Proc. Natl. Acad. Sci. United States 

Am. 104(19), 7746–7751 (2007).
 18. Shlesinger, M. F. Mathematical physics: search research. Nat. 443(7109), 281 (2006).
 19.  Stoyanov, J. A guide to first-passage processes. Camb. Univ. Press (2001).
 20. Kozak, J. J. & Balakrishnan, V. Analytic expression for the mean time to absorption for a random walker on the sierpinski gasket. 

Phys. review.E 65(1), 021105 (2002).
 21. Bentz, J. L., Turner, J. W. & Kozak, J. J. Analytic expression for the mean time to absorption for a random walker on the sierpinski 

gasket. ii. the eigenvalue spectrum. Phys. Rev. E Stat. Nonlinear Soft Matter Physics 82(1), 011137 (2010).
 22. Lin, Y., Wu, B. & Zhang, Z. Z. Determining mean first-passage time on a class of treelike regular fractals. Phys. Rev. E 82(1), 031140 

(2010).
 23. Wu, B. & Zhang, Z. Z. Controlling the efficiency of trapping in treelike fractals. J. Chem. Phys. 139(2), 024106 (2013).
 24. Zhang, Z. Z., Wu, W. & Chen, G. R. Complete spectrum of stochastic master equation for random walks on treelike fractals. 

Europhys. Lett. 96(4), 2510–2513 (2011).
 25. Zhang, Z. Z., Julaiti, A., Hou, B. Y., Zhang, H. J. & Chen, G. R. Mean first-passage time for random walks on undirected networks. 

Eur. Phys. J. B 84(4), 691–697 (2011).
 26. Lin, Y. & Zhang, Z. Z. Random walks in weighted networks with a perfect trap: an application of laplacian spectra. Phys. Rev. E 87(6), 

062140 (2013).
 27. Bentz, J. L., Hosseini, F. N. & Kozak, J. J. Influence of geometry on light harvesting in dendrimeric systems. Chem. Phys. Lett. 

370(3–4), 319–326 (2003).
 28. Bentz, J. L. & Kozak, J. J. Influence of geometry on light harvesting in dendrimeric systems. ii. n th-nearest neighbour effects and the 

onset of percolation. J. Lumin. 121(1), 62–74 (2006).
 29. Kahng, B. & Redner, S. Scaling of the first-passage time and the survival probability on exact and quasi-exact self-similar structures. 

J. Phys. A Gen. Phys. 22(22), 887 (1989).
 30. Haynes, C. P. & Roberts, A. P. Global first-passage times of fractal lattices. Phys. Rev. E 78(1), 041111 (2008).
 31. Baronchelli, A., Catanzaro, M. & Pastor-Satorras, R. Bosonic reaction-diffusion processes on scale-free networks. Phys. Rev. E Stat. 

Nonlinear Soft Matter Phys. 78(2), 016111 (2008).
 32. Meyer, B., Agliari, E. & Bénichou, O. Exact calculations of first-passage quantities on recursive networks. Phys Rev E Stat Nonlin Soft 

Matter Phys 85(2 Pt 2), 026113 (2012).
 33. Condamin, S., Bénichou, O. & Tejedor, V. E. A. First-passage times in complex scale-invariant media. Nat. 450(7166), 77–80 (2007).
 34. Squartini, T., Picciolo, F. & Ruzzenenti, F. Reciprocity of weighted networks. Sci. Reports 3(3), 2729 (2013).
 35. Zhang, Z. Z., Li, H. & Sheng, Y. Effects of reciprocity on random walks in weighted networks. Sci. Reports 4, 7460 (2014).
 36. Kittas, A., Carmi, S. & Havlin, S. Trapping in complex networks. Europhys. Lett. 84(4), 605–609 (2012).
 37. Agliari, E., Burioni, R. & Manzotti, A. Effective target arrangement in a deterministic scale-free graph. Phys. Rev. E 82(1), 011118 

(2010).
 38. Lin, Y. & Zhang, Z. Z. Controlling the efficiency of trapping in a scale-free small-world network. Sci. Reports 4, 6274 (2014).
 39. Zhang, Z. Z., Lin, Y. & Ma, Y. J. Effect of trap position on the efficiency of trapping in treelike scale-free networks. J. Phys. A Math. 

Theor. 44(7), 075102 (2011).

https://doi.org/10.1038/s41598-019-51229-2


1 1Scientific RepoRtS |         (2019) 9:14609  | https://doi.org/10.1038/s41598-019-51229-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 40. Zhang, Z. Z., Dong, Y. & Sheng, Y. Mixed random walks with a trap in scale-free networks including nearest-neighbor and next-
nearest-neighbor jumps. J. Chem. Phys. 143(13), 47 (2015).

 41.  Gao, Y. & Wu, Z. K. Controlling the trapping efficiency in a family of scale-free tree networks. Int. J. Mod. Phys. B 1850224 (2018).
 42. Koch, H. V. Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Math. 

30(1), 145–174 (1906).
 43. Lakhtakia, A., Varadan, V. K. & Messier, R. Comment:, generalisations and randomisation of the plane koch curve. J. Phys. A Gen. 

Phys. 1366(20), 3537 (1987).
 44. Zhang, Z. Z. et al. Standard random walks and trapping on the koch network with scale-free behavior and small-world effect. Phys. 

Rev. E Stat. Nonlinear Soft Matter Phys. 79(6 Pt 1), 061113 (2009).
 45. Wu, Z. K., Hou, B. Y. & Zhang, H. J. Scaling of average weighted shortest path and average receiving time on weighted expanded 

koch networks. Int. J. Mod. Phys. B 28(17), 47–61 (2014).
 46. Wu, B. & Zhang, Z. Z. Controlling the efficiency of trapping in treelike fractals. J. Chem. Phys. 139(2), 6197 (2013).
 47. Hasegawa, T. & Nemoto, K. Hierarchical scale-free network is fragile against randomfailure. Phys. Rev. E Stat. Nonlinear Soft Matter 

Phys. 88(6), 062807 (2013).
 48. Friesecke, G. Convergence to equilibrium for delay-diffusion equations with small delay. J. Dyn. Differ. Equation 5(1), 89–103 

(1993).
 49. Balachandran, B., Kalmar-Nagy, T. & Gilsinn, D. Delay differential equations. recent advances and new directions. Nagy 15(3), 

333–338(6) (2009).

Acknowledgements
The work was supported by National Natural Science Foundation of China under Grant Nos 11501351 and 
61304178.

Author contributions
Yu Gao and Zikai Wu designed the research, performed the research, and wrote the manuscript.

Additional information
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-51229-2
http://creativecommons.org/licenses/by/4.0/

	Average trapping time on weighted directed Koch network
	Results
	Construction and properties of directed weighted Koch network. 
	Numerical formulations of ATT in directed weighted Koch network. 
	Analytical solutions for ATT in weighted directed Koch network. 
	Expressions for ATT with delay parameter on weighted directed Koch network. 

	Discussion
	Acknowledgements
	Figure 1 The first three generations of Koch network.
	Figure 2 The weighted directed Koch network construction.
	Figure 3 Verification of analytical solutions on weighted Koch network.
	Figure 4 Verification of analytical solutions on weighted Koch network in delay state.




