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Abstract

This paper explores the ratio of the mass in the inflection point over asymptotic mass for 81

nestlings of blue tits and great tits from an urban parkland in Warsaw, Poland (growth data

from literature). We computed the ratios using the Bertalanffy-Pütter model, because this

model was more flexible with respect to the ratios than the traditional models. For them,

there were a-priori restrictions on the possible range of the ratios. (Further, as the Berta-

lanffy-Pütter model generalizes the traditional models, its fit to the data was necessarily bet-

ter.) For six birds there was no inflection point (we set the ratio to 0), for 19 birds the ratio

was between 0 and 0.368 (lowest ratio attainable for the Richards model), for 48 birds it was

above 0.5 (fixed ratio of logistic growth), and for the remaining eight birds it was in between;

the maximal observed ratio was 0.835. With these ratios we were able to detect small varia-

tions in avian growth due to slight differences in the environment: Our results indicate that

blue tits grew more slowly (had a lower ratio) in the presence of light pollution and modified

impervious substrate, a finding that would not have been possible had we used traditional

growth curve analysis.

Introduction

This paper uses nonlinear regression models to study the growth of passerine birds, blue tits

(Cyanistes caeruleus) and great tits (Parus major). Our study was based on data from [1–4] on

the development of 81 nestlings of blue tits and great tits, and the environmental characteris-

tics of their nest sites (nest-boxes) in a public park of the Warsaw city center.

Ricklefs [5] was amongst the first to recommend simple regression models for exploring

the growth patterns of nestlings. Examples include the S-shaped (sigmoidal) growth curves of

the logistic trend model. It was used to relate growth to predation [6, 7], to environmental vari-

ation [8–10], to annual adult mortality rates, and to incubation period duration [11]. Literature

has considered various environmental factors that may affect growth, such as: tree cover [12],

impervious surface [4, 13], pollution by light [14, 15] and sound [16–18], or nest interference

by humans and pets [1, 2, 19]. All these factors are also known to affect the breeding success.

For example, when clearly distinct environments were compared (forests and urban park-

lands), then significant differences in the breeding success of blue tits [19] and in the growth of

nestlings [10] could be established by the logistic and other simple models.
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We aimed at demonstrating that less distinct environmental variation and the ongoing

adaption of birds to urban environments [20] at a small scale could potentially be detected

with more complex models. We used the five-parameter Bertalanffy-Pütter regression model

(BP-model) for this purpose. It generalizes the traditional three-parameter regression models

(e.g., Bertalanffy, Brody, Gompertz, Richards, or logistic growth of Verhulst) and provides a

common biophysical interpretation for them (explained below). The growth function m(t) of

the BP-model describes mass (m) at time (t) using the following differential equation of Pütter

[21].

m0ðtÞ ¼ p �mðtÞa � q �mðtÞb ð1Þ

The model parameters of Eq (1) are to be determined from fitting the model to mass-at-age

data: Four parameters are displayed in the equation, namely the non-negative exponent-pair a
< b and the scaling constants p and q. An additional parameter is the initial value (intuitively

the hatching mass), i.e. m(0) = c> 0. This model was recently recommended in epidemiology

[22–24] and it was also proposed [25] and applied [26–29] for studies in animal growth, where

the BP-model (1) achieved significant improvements over the logistic model and other simpler

three-parameter models with respect to the fit of the data. However, the benefits of its use

remained little known and insufficiently evaluated. As explained below, the good fit was not

the sole reason for using the BP-model: [30] argued that a better fit alone would not justify the

added efforts of more complex models. Rather, we addressed a major concern about the tradi-

tional models, their inflexibility with respect to the shape of the growth curve [31, 32]. A main

advantage of using the BP-model over three-parameter models is its flexibility due to two addi-

tional parameters (the variable exponent-pair) resulting in a larger pool of possible shapes of

the growth curves.

For each nestling we identified the BP-model (its optimal parameters) with the best fit to

the growth data. This approach avoided pooling across individuals (fitting growth curves to

average-size-at-age). While pooling would be computationally easier (one fit for all females

and males of each species) and the variations of the averages might be smaller (resulting in bet-

ter fits), the aggregate data may miss biologically important differences between individuals

(averaging treats them as equal). We used these models to compute the shape-parameter

“ratio”, mass at the inflection point over the asymptotic mass. Fig 1 illustrates the meaning of

Fig 1. Growth trajectories of logistic growth and an alternative growth model together with the inflection points.

The growth curves had the parameters a = 1, b = 2, c = 0.1, p = q = 1 (blue: logistic growth) and a = 1, b = 4, c = 0.1,

p = q = 0.7526 (red). The asymptotic limit was 1 (both curves) and the inflection point coordinates (gray dots) were

(2.197, 0.5) for logistic growth and (2.572, 0.63) for the alternative curve.

https://doi.org/10.1371/journal.pone.0250515.g001
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this parameter by the growth trajectories of two hypothetical birds. Although the initial and

asymptotic masses were the same for both curves, the growth patterns differed: The growth

curve with the higher ratio appeared to reach the asymptotic mass sooner (we refer to this situ-

ation as “faster growth”). We hypothesized that the shape of the growth curves might reflect

the success of provisioning, which in turn may depend on the environmental situation. There-

fore, we explored whether the shape-parameter ratio could reveal potential impacts of the envi-

ronment on avian growth that could not be observed using logistic growth and other simple

three-parameter models, whose ratios are fixed.

Methods

Nonlinear trend models

In temporal order the most common three-parameter growth models in avian research [33]

are the Gompertz [34] model, the logistic model of Verhulst [35, 36], the monomolecular

model (bounded exponential growth) of Brody [37], the von Bertalanffy [38, 39] model, and

the more recent West model [40, 41]. There are also simpler trend models, such as power-laws

between size and age [42], and more complex models explaining growth in relation to food

consumption [43] or describing spatial characteristics of growth by partial differential equa-

tions [44].

The BP-model generalizes several common models in the following sense. If an exponent-

pair (a, b) is preset, then Eq (1) defines a model BP(a, b) with three parameters (c, p and q) as a

special case of the general BP-model. The models of Bertalanffy and West are BP(2/3, 1) and

BP(3/4, 1), respectively, monomolecular growth of Brody is BP(0, 1), and logistic growth is BP
(1, 2). The Gompertz model is the limit case BP(1, 1); see [45]. Common four-parameter mod-

els fit into this scheme, too: Richards [46] model is the BP-model with a = 1 (free parameters

b> 1, p, q, and c); the “generalized Bertalanffy model” [39] is the BP-model with b = 1 (free

parameters 0� a< 1, p, q, and c). Recently, the generalized logistic model [47] was recom-

mended. It is represented by exponent-pairs of the form (a, a+1). Assuming exponents a = 1

or b = 1, as for the above-mentioned models, then the differential Eq (1) could be solved by

means of elementary functions [46, 48, 49]. For general exponent-pairs the solution of differ-

ential Eq (1) was expressed in terms of the Gaussian hypergeometric function 2F1 [45, 50],

which is not an elementary function [51].

[21, 39] interpreted Eq (1) as a model of ontogenetic growth, where the body would utilize

resources at a metabolic rate (p�ma) for growth, except for the resources allocated to the opera-

tion and maintenance of existing tissue (q�mb). Different biophysical explanations for growth

translated into different exponent-pairs (“metabolic exponents”). Thus, [38] proposed the

exponents a = 2/3 as lung surface (assumed to be proportional to the 2/3rd power of mass)

delimits oxygen uptake, and b = 1 as cell count (assumed to be proportional to mass) deter-

mines the resources needed for maintenance. [40] developed a different argument in support

of the exponents a = 3/4 and b = 1. This model was often used for mammalian growth [52]

and [41] recommended it for avian growth. Other authors stressed that the metabolic expo-

nents would also depend on the environment and not merely on biophysics [53, 54]. Hence, it

would be meaningful to identify the best-fit exponent-pair for individuals.

Shape-parameters

We use the term shape-parameter, but there is no need to formally define “shape” [55]. For

solutions of Eq (1), the asymptotic mass mmax and the mass minfl at the inflection point (peak
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growth, reached at time tinfl) are computed from Eq (2):

mmax ¼
p
q

� � 1
b� a

; minfl ¼
a
b

� � 1
b� a
�mmax ð2Þ

For q = 0 asymptotic mass is infinite and there is no inflection point (examples: linear

growth a = 0, unbounded exponential growth a = 1). For a = 0 there is no inflection point,

either (example: Brody model). For birds without inflection point we recorded minfl = 0 and

tinfl = 0. For the general model (1) the age tinfl at the inflection point could only be determined

numerically (solving m(t) = minfl for t). Note that an infinite (or unreasonably large) asymp-

totic mass did not always mean a poor fit of the growth curve to the data. Rather, the growth

process might have been truly unbounded, as suggested for Drosophila larvae [39], or the data

could have been representative for the initial (exponential) phase of growth, only. The parame-

ters mmax, minfl, and tinfl are known to have a biological meaning. Asymptotic mass was linked

to adult mass [56]. The inflection point was related to a change in diet, from spiders with

much keratin (for the growth of feathers) to protein-rich caterpillars [57]. Further, the maxi-

mal growth rate, the derivative m´(tinfl), was suggested as a proxy for the basal metabolic rate

[58].

This paper explores the shape-parameter ratio minfl/mmax. As the ratio was defined from

two biologically meaningful parameters, it might be biologically relevant, too.

Bird and nest-box data

We use life history data from [1–3] and environmental data from [4] that were collected

between March and June of 2016. [3] investigated the development of nestlings of blue tits and

great tits that grew up at various sites in and around Warsaw, Poland. [4] complemented these

growth data by reporting environmental data from the nest-box sites. We received from these

authors data on 429 nestlings from 56 nest-boxes. For each bird, data included the ID of the

bird (band number) and of the nest-box, the species (blue tits or great tits), the hatching date,

the number of hatchlings at the first visit, mass in gram (eight repeated weighing), sex, and

fledging success. To distinguish birds prior to banding, they were marked at the first measure-

ment (using different methods, such as coloring or clipping of nails).

To ensure comparability, we studied only a fraction of the 429 nestlings. First, we selected

only hatchlings from the first brood. Second, to exclude irregular growth patterns from runts,

we selected those birds whose sex could be determined (female or male) and that finally

fledged. Third, all selected birds were weighed at the same eight odd numbered days 1 (hatch-

ing), 3, 5, 7, . . ., and 15. [8] suggested to truncate the data at the peak, but we did not truncate

our data as this could leave not enough points of time to determine the five model-parameters.

Fourth, we focused on the study site with the largest number of surviving birds from different

nests, Pole Mokotowskie park close to the city center (20 nest-boxes with 81 nestlings). Fifth,

species and sex affected body mass (Fig 2), so we controlled for these factors: There were 26

female and 31 male blue tits and 12 female and 12 male great tits.

To study the association between environmental variables and growth we used the follow-

ing information about the nest-boxes: human activity (explained in [1]), air temperature at the

nest-box site (average of the morning temperatures in˚C at the eight visits), light and sound

pollution at the nest-box sites (units: lux and decibel), distances to paths and roads (minimal

Euclidean distance in m from the nest-box to the center of the next path or road), percentage

of impervious surface around the nest (ISA), tree cover in percent around the nest, and NDVI

(normalized difference vegetation index). According to [3], the latter indicators were assessed
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for a circle with radius 100 m around the nest and a pixel-resolution of 20 m. For methodologi-

cal details we refer to the published sources [1–4].

In addition, we considered the association of growth to brood-specific indicators, namely

the hatching day, the count of hatchlings at the first visit (4–12 birds/nest at day 1), at the last

visit (1–9 birds/nest at day 15), and the difference between these counts. This difference may

have been caused by early fledging, by death of runts, or by predation. In the latter case, the

likely predators were woodpeckers, as they did not harvest all nestlings at once. Nests that

were destroyed (typically, by martens) were removed from the sample.

Calibration

There are different techniques to fit growth curves to data and to analyze them further. A large

body of literature used the method of least squares and variants of it. Other approaches used

spline-interpolation [59, 60], time series methods [61], or stochastic (partial) differential equa-

tions [62]. More recently, mixed-effect models became popular [63–65], but to remain viable

they were based on growth curves that could be parameterized by means of elementary func-

tions such as for the Verhulst model [66] or the Richards model [67].

We decided to use a variant of the method of least squares, sum of squared errors between

log-transformed mass and log-transformed predictions (SSLE), because in previous work SSLE
performed well for poultry and dinosaurs [27, 28]. Thus, given the growth data of a chick, we

aimed at finding parameters that minimized SSLE of Eq (3). If m(t) was a solution of Eq (1),

using certain exponents a< b and parameters p, q, c, and if (ti, mi) were the mass-at-age data

(for our data: n = 8 = number of measurements per chick), then SSLE was defined by Eq (3):

SSLE ¼
Xn

i¼1

ln ðmiÞ � ln ðmðtiÞÞ
� �2

ð3Þ

To justify the logarithmic transformation, we checked for each bird, if its data ln(mi) were

normally distributed (lognormal distribution of body mass) and if the residuals in Eq (3) were

normally distributed (SSLE as a maximum likelihood estimation). We used the Anderson &

Darling [68] distribution-fit test to verify these assumptions.

Fig 2. Mass at days 1, 3,. . ., and 15 plotted side-by-side; from left female blue tits (red), male blue tits (blue), female

great tits (orange), and male great tits (cyan).

https://doi.org/10.1371/journal.pone.0250515.g002
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SSLE was related to a method of weighted least squares using 1/m(ti)2 as weights [69], since

its residual, ln(mi)–ln(m(ti)), approximated the relative error, (mi–m(ti))/m(ti). As [24] noted,

the choice of the method calibration depends on the purpose of data-fitting. The logarithmic

transformation of the data in Eq (3) was motivated by the Box & Cox [70] power transforma-

tions that aim at stabilizing variance, making data-fitting less sensitive to higher variances for

the higher masses.

Data-fitting

For the common three-parameter models there are various software solutions for determining

the best-fitting parametric growth curves [71, 72]. However, literature reported difficulties

with data-fitting already for four-parameter models, the generalized Bertalanffy model [73]

and the Richards model [74]. To simplify data-fitting, several authors suggested to reduce the

number of free parameters by not optimizing certain parameters. We did not apply this strat-

egy. For instance, [43] defined the parameter c = m(0) by the hatching mass (the first weighing

at day 1 corresponded to the age t = 0), as this reduced the number of optimized parameters by

one. In contrast, we used hatching mass as an estimate for the initial value but allowed the opti-

mization to identify a better value of c to find a lower SSLE. [56] recommended to identify

asymptotic mass with the average adult age of the considered group of birds. We did not use

this extrapolation, as after fledging and prior to attaining adult mass there might have occurred

another growth phase, as was observed for farmed birds [75]. Thus, adult mass might overesti-

mate the asymptotic mass of the considered growth phase.

To resolve these difficulties, for our data we simplified the parameter-space by using a grid-

search combined with a custom-made variant of the method of simulated annealing [76] for

data-fitting. Thereby, we defined a grid of possible exponent-pairs and for each grid-point expo-

nent-pair (a, b) we identified the best-fit growth curve for the three-parameter model BP(a, b) by

means of simulated annealing. Simulated annealing successively altered the current parameters

slightly at random (we generated positive parameter-values c, p, q> 0, only) and compared the

fit. Other than a random search (continuing with the better fit), simulated annealing with a posi-

tive probability allowed to continue with the poorer fit, whence the search could escape from

suboptimal local extreme values. However, owing to the random character of this search proce-

dure best fits were not always guaranteed. We therefore used a fine grid with distance 0.01

between neighboring grid-points, as then possible optimization errors at one grid-point could be

corrected by the outcomes for the surrounding grid-points. Amongst all grid-point exponent-

pairs (each representing a distinct three-parameter model) we then identified the one with the

overall best fitting growth-curves. If the optimum was on the boundary of the grid, we manually

added further grid-points. (For each bird, we optimized 37,454 to 98,903 grid-points, in the

median 43,578.) We used Wolfram Mathematica 12 (www.wolfram.com) for our computations;

for (explanations of) the Mathematica-code we refer to [27, 28].

Model comparison

To assess the goodness of fit across different datasets (nestlings), we considered an analogue of

the coefficient of determination for SSLE, namely RL-squared of Eq (4). It assesses the relative

improvement of SSLE for the best-fit BP-model in comparison to the best-fitting constant

model (geometric mean of the masses):

RL2 ¼ 1 �
SSLEðBP modelÞ
SSLEðconstantÞ

ð4Þ
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In view of certain limitations of R-squared [77] that apply also to RL2, we did not draw fur-

ther conclusions about model selection, as RL-squared would not be sufficiently selective for

such a purpose. Instead, for model selection we used a variant of the Akaike information crite-

rion (5), applied to the log-transformed data and models. It penalizes the model with more

parameters, and the penalty is higher for fewer data [78, 79]. We used RL-squared merely to

inform about the goodness of fit by means of a well-known statistic.

AICc ¼ n � ln
SSLE

n

� �

þ 2 � K þ 2 � K �
K þ 1

n � K � 1
ð5Þ

Here, n = 8 is the number of data-points for each bird, and K is the number of optimized

parameters of the model. (K = 6 for the general BP-model, counting a, b, c, p, q and SSE, and

K = 4 for logistic growth, where a = 1, b = 2 are not optimized.) When comparing two models,

the model with the lower AICc was selected.

Utilizing the information from optimization, we aimed at quantifying the possible conse-

quences of overfitting. For each bird we identified those grid-point exponent-pairs (a, b),

where the corresponding three-parameter model, BP(a, b), had a good fit to the data in terms

of RL-squared (e.g.: RL2� 95% or RL2� 99.5%). For each of these models we computed the

parameter values of interest. We then evaluated the spread of parameters by means of the

quantiles of the parameter-values that were computed for this set of models.

Statistical approach for analyzing the ratio

We studied environmental indicators from avian literature that potentially affect the growth of

birds. To find any potential environmental impact, we tested 13 indicators, but for concerns

about spurious outcomes by chance we used three different approaches: a) correlation tests

between the shape-parameter ratio and the indicators, b) location tests for the ratio of birds

from clearly distinct environments (high vs. low indicator values), and c) location tests of the

environmental parameters for birds with clearly distinct shapes of the growth curves (high

ratio vs. low ratio birds). If the same association was 1.) supported by three different tests, 2.)

was highly significant for at least one of them (p� 0.01), and 3.) was shared by the females and

males of the same species or even by different species, then we deemed the outcome as reliable

and reported it in detail. For completeness, the results mention other significant findings, too

(p� 0.05).

We started with data-fitting that identified the best-fit BP-growth curve for each individual

bird. For the further analysis of the shape-parameter ratio, we controlled for species and gen-

der. This stratification defined four samples (female and male blue and great tits) of moderate

sample sizes (12–31 individuals). To keep sample sizes large enough for statistically significant

conclusions we did not control for nest sizes, but we used resampling techniques to explore

this influence (see below.).

The search (a) for significant correlations between the shape-parameter (ratio) and the 13

(brood-specific and environmental) indicators applied the Spearman rho and the Spearman

rank test [80] for each of the four samples. We expected at most two spurious outcomes per

sample and test series. (P-value p = 0.0245 for three or more false reports of “95% significant”,

assuming a binomial distribution with 13 trials and a chance of 5% for errors.)

We then asked (b): Did variations in the local environments (at or around the nest-sites)

lead to different shapes of the growth curves of the nestlings? Were nestlings from inferior

environments inhibited in their growth? As thresholds between inferior and superior environ-

ments we used the medians of Table 1 for each indicator and group of birds. Thus, we divided

each of the four samples into two groups of approximately equal sizes, namely birds that grew
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up in an ambience with a high parameter value (equal or larger than the sample median) and

the other birds. For these classes we tested for significant differences in the location of the ratio

using the Mann-Whitney test [80].

We finally explored (c), if and to what extent the growth-patterns allowed to draw infer-

ences about the “social background” of birds: Did birds with distinct ratios come from differ-

ent environments? We defined subsamples of the four groups of birds in terms of the ratio: A

bird was high-ratio, if minfl/mmax� 0.5 for the best-fit BP-model growth-curve (the threshold

0.5 comes from logistic growth), and otherwise it was low-ratio. Using the Mann-Whitney test

we compared the medians of the environmental indicators for the subsamples of high-ratio

and low-ratio birds.

Finally, we checked for possible bias. Owing to the correlations between the environmental

and nest-specific indicators, in theory the count of spurious observations for the ratio could be

larger than initially estimated. To obtain more precise estimates we used resampling: For each

group of birds we reshuffled the birds at random amongst the nest-sites (the nest characteris-

tics were not altered) and counted the so obtained supposedly false significant associations.

Our improved estimate was the 95%-quantile of these counts from of 10,000 shuffles. (The

high number of simulations was motivated by a recommendation [81] for Mantel’s test.) Fur-

ther, we explored, if the outcomes were affected by nest-size. Assuming that growth was

Table 1. Medians of the environmental data for each group of birds and counts of above/below median birds.

Indicator Female blue tits count12 Male blue tits count12 Female great tits Male great tits

Hatching day1 38 d A: 15, B: 11 38 d A: 24, B: 7 36 d 38 d

Hatchlings initially2 9 A: 20, B: 6 7 A: 25, B: 6 7 7

Hatchlings finally2 6 A: 15, B: 11 5 A: 17, B: 14 5 4

Nest-size difference2 5 A: 17, B: 9 1 A: 23, B: 8 1 1

Human activity3 1.1 A: 15, B: 11 1.05 A: 20, B: 11 1.1 0.75

ISA4 4.59% A: 13, B: 13 4.49% A: 20, B: 11 10.38% 9.07%

Light5 3160 lx A: 14, B: 12 2852 lx A: 20, B: 11 8588 lx 4907 lx

NDVI6 0.76 A: 14, B: 12 0.75 A: 17, B: 14 0.69 0.71

Path7 14.3 m A: 11, B: 15 11.1 m A: 17, B: 14 5.55 m 6.9 m

Road8 85.4 m A: 15, B: 11 165.1 m A: 18, B: 13 63.7 m 106.9 m

Sound9 65.44 db A: 13, B: 13 65.93 db A: 16, B: 15 65.41 db 66.98 db

Temperature10 10.86˚C A: 17, B: 9 10.86˚C A: 20, B: 11 11.04˚C 11.08˚C

Tree cover11 28.13% A: 14, B: 12 19.07% A: 16, B: 15 30.46% 24.90%

Notes: All numbers were rounded to the shown decimal.
1 count of days from the start of the field work to hatching
2 initial and final counts, respectively, of hatchlings in each nest, and difference of these counts
3 index of human activity from Corsini et al. (2017)
4 percentage of impervious area around the nest-box
5 light pollution at the nest-box site (in lx)
6 index for the vegetation cover around the nest-box
7 minimal (Euclidean) distance to the (center of the) next path (in m)
8 minimal (Euclidean) distance from the nest-box to (the center of) the next road (in m)
9 sound pollution at the nest-box site (in db)
10 average of the morning temperatures at the eight visits (in˚C)
11 tree cover around the nest-box (percent)
12 count of birds of the given type (first row, left column), whose nest characteristics was above (A)/below (B) the median (displayed in the left column). Counts for great

tits are not displayed, because for 12 birds per group the subsamples were too small to be representative.

https://doi.org/10.1371/journal.pone.0250515.t001
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affected by the ability of the parents to supply each nestling with adequate food, then this abil-

ity was influenced by nest-size and not only by environmental factors. We used resampling to

reduce such dependencies: For each group of birds we selected one “representative” bird per

nest and repeated the previous analysis of correlations for this small sample.

Results

Best-fit exponent-pairs and goodness of fit

We first observed that the logarithmic transformation stabilized variance. This confirmed the

suitability of SSLE. For each bird we tested if its masses (mi) were log-normally distributed.

The Anderson-Darling test did refute this assumption for six (7.4% of 81) birds (P-values

p< 0.05). Further, the SSLE residuals were significantly non-normal in only 6.2% of chicks (5

of 81), and for three nestlings both distribution assumptions were refuted. We did not discard

of these data, as these were only few exceptional birds.

The best-fit exponent-pairs appeared to be scattered at random, whereby the exponent b
was much more variable than the exponent a (Fig 3). We could not observe a concentration

near any of the exponent-pairs of the “traditional” three-parameter models (Brody, Berta-

lanffy, Gompertz, West, Verhulst). For six birds the exponent-pairs were on the line a = 0 (no

inflection point). 47% of the birds were near-diagonal (exponent-difference smaller than 1.5),

whereby the proportion of near-diagonal birds was almost equal amongst all groups of birds:

50%, 48%, 42%, and 42% for female and male blue tits, and female and male great tits,

respectively.

Next, for each bird we screened the growth curve of the BP-model with optimized parame-

ters to assess its fit to the data. In general, the five-parameter BP-model achieved an excellent

fit with median-RL2 of 99.77%; for 70 of 81 data RL-squared was above 99.5%. However, one

bird was exceptional (K7V3278), as the best-fit BP-model did not achieve RL-squared above

95% (namely RL2 = 94.2%). For this nestling, asymptotic mass was excessive (1.4�1013). This

was also insofar exceptional, as generally asymptotic mass was close to the maximal observed

mass: The median of the quotient of the asymptotic mass over the maximal observed mass was

1.006 with the 95% confidence interval between 0.998 and 1.016 (computed from one-sided

sign tests [79] with p = 0.0224 for both limits). Further, we evaluated the maximal absolute

deviations of the model curves from the data. For blue tits, in the median the maximal devia-

tion was 0.41 g; worst case: 0.91 g for the exceptional bird (day-15 mass: 9.8 g). For the larger

Fig 3. Best-fit exponent-pairs for 81 nestlings of female blue tits (red), male blue tits (blue), female great tits (orange),

male great tits (cyan), and yellow lines (b = a and b = a+1.5) to indicate near-diagonal exponent-pairs.

https://doi.org/10.1371/journal.pone.0250515.g003
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great tits, in the median the maximal deviation was 0.64 g; worst case: 1.53 g for chick

K7V3620 (day-15 mass: 15.3 g). Fig 4 plots the growth data of these two birds together with the

best-fit model curves. Apparently, the deviations were caused by fluctuations of the growth

data, while the model curves captured the correct shapes of the growth data. As such fluctua-

tions are common [82], we did not exclude any birds.

Model selection per se was not the primary issue of this paper, because for conceptual rea-

sons (flexible ratio minfl/mmax) we decided to use the five-parameter BP-model, even if there

was a danger of overfitting (meaning that simple models might have been more parsimoni-

ous). Indeed, when compared with the best-fit BP-model, logistic growth had a lower AICc for

all birds. The reason was the huge penalty for the BP-model from the last term in Eq (5). The

generalized logistic model [47] might be a more parsimonious four-parameter alternative to

the general BP-model. For this model, AICc was always lower than for the general BP-model,

but still AICc was higher than for logistic growth, even for the near-diagonal birds.

Ratios for best and nearly best fitting growth-curves

In view of Eq (2) the ratio, minfl/mmax, depends on the exponent-pair, only. For any given

three-parameter model BP(a, b) with a preset exponent-pair, the ratio is fixed, irrespective of

the data (e.g. ratio 0.5 for logistic growth, unless q = 0). For the general five-parameter BP-

model and for the four-parameter generalized logistic growth model any ratio between 0 and 1

could be realized. By contrast, for the four-parameter Richards-model the ratio was bounded

from below by 1/e (= 0.368) and for the generalized Bertalanffy model it was bounded from

above by 1/e. For our data, the best-fit ratios ranged from 0 (for a = 0) to 0.835, whereby 0.1

was the least ratio for a sigmoidal bird (meaning a> 0). For 21 birds (19 of them sigmoidal)

the ratio was smaller than 1/e� 0.368 (lower bound for the Richards model) and for 48 birds

it was above 0.5 (ratio of logistic growth).

Bertalanffy [39] mentioned the ratio and suggested that its value would be around 1/3 for

vertebrates. Was this true for our data? Comparing the ratios of sigmoidal birds with the value

1/3, for all four groups of birds the ratios were significantly greater than 1/3 (one-sided sign

test [80]: p< 0.015 for each group). Rather, the median ratios (with 95% confidence bounds)

were close to the ratio 0.5 of logistic growth: 0.511 (0.467–0.59) for female blue tits, 0.503

Fig 4. Mass and best-fitting BP-model growth curves of blue tit K7V3620 (blue) and great tit K7V3278 (green),

chosen for their poor fits. (Days 1, 3,. . ., and 15 correspond to t = 0, 1,. . ., 14.).

https://doi.org/10.1371/journal.pone.0250515.g004
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(0.467–0.57) for male blue tits, 0.459 (0.42–0.59) for female great tits, and 0.528 (0.42–0.65) for

male great tits.

To study the variability of the model parameters, we identified for each bird (except

K7V3278) the exponent-pairs that defined BP-models with a good fit: RL2� 95%. Given any

of these 80 birds, there was a large region of exponent-pairs that represented alternative mod-

els, whose growth curves had a good fit to the growth-data and that therefore had about the

same shape: The green area in Fig 5 plots the exponent-pairs that were common to all these

regions. The best-fit ratio turned out to be insofar resilient against this variability, as the

median of all estimated values from growth curves with excellent fit was often close to the best-

fit value. To give a specific example, there were 66 birds with sigmoidal best-fit models satisfy-

ing RL2� 99.5%. (The red area in Fig 5 plots the still large region of exponent-pairs that

achieved an excellent fit for all 66 birds.) For 47 (= 71% of these 66) birds, the relative error

between the best-fit ratio and the median of the ratios of all growth curves with RL2� 99.5%

was below 10%. Similarly, for 47 birds the absolute difference between the best-fit ratio and

that median was below 0.05.

Statistical analysis of the ratio

We searched systematically for significant associations between the ratio, four brood-specific

indicators, and nine environmental indicators, whereby we studied four groups of birds inde-

pendently (female/male blue/great tits). Table 2 summarizes the main finding: The indicators

impervious area (ISA) and light pollution had highly significant negative correlations with the

ratio for both female and male blue tits. The strengths of these correlations were moderate to

strong (using a classification in [83]). Further, nestlings of blue tits that grew up in environ-

ments with high percentage of impervious area (ISA) or a high level of light pollution had sig-

nificantly lower ratios (highly significant in one case). And for high-ratio blue tits the light

pollution and ISA was significantly lower than for low-ratio birds (but not highly significant).

Thus, both for female and for male blue tits the associations between the ratio and the two

indicators (ISA and light pollution) were supported by three different tests, some of them

highly significant, whence we deemed them as reliable. The correlation tests achieved higher

levels of significance, because they were applied to the full samples (26–31 birds), while the

Fig 5. Exponent-pairs of named models (blue), exponent-pairs of models with RL> 99.5% for 66 data (red),

exponent-pairs of models with RL> 95% for 80 data (green), remaining exponent-pairs of the search grid (yellow),

diagonal a = b (grey) and contour lines (thick and black) of the ratios 0.2, 0.3,. . ., 0.6 (from left to right), using Eq (2)

for the ratio.

https://doi.org/10.1371/journal.pone.0250515.g005

PLOS ONE Models for avian growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0250515 April 26, 2021 11 / 18

https://doi.org/10.1371/journal.pone.0250515.g005
https://doi.org/10.1371/journal.pone.0250515


other two (location equivalence) tests compared smaller subsamples (e.g.: subsamples of 11–19

high/low ratio birds).

For blue tits we observed additional significant outcomes: Both for female and for male

blue tits there was a highly significant negative correlation of the ratio with the difference

between the initial and final nest sizes (median differences 3 and 6 for female high-ratio and

low-ratio birds, respectively). For female blue tits, but not for males, there was a highly signifi-

cant negative correlation of the ratio with initial nest-size (in the median high-ratio and low-

ratio birds had 8 and 9.5 siblings, respectively), and there was a highly significant difference in

the level of sound pollution between high-ratio birds (median 64 db) and low-ratio birds

(median 68 db), which translated into a significant negative correlation. Further, for male blue

tits, only, there was a significantly positive correlation of ratio with NDVI (and the ratios of

birds from nests with high or low NDVI differed significantly).

For great tits, the sample size turned out to be too small. There were highly significant nega-

tive Spearman rank correlations of the ratio with the initial nest sizes for female and male great

tits. The Mann-Whitney tests involved subsamples of merely 3–9 birds, which was hardly rep-

resentative, so we did not analyze great tits further.

Check for possible bias

The purpose of this paper was to illustrate the ability of the ratio (of BP-models) to detect bio-

logical effects. For male and female blue tits 4 and 5 of the 13 correlation tests between ratio

and environmental or nest-specific indicators were significant, respectively, and at most two

tests of each series were spurious by chance. Therefore, we could conclude that there were

valid significant statistical associations between some environmental variables and the ratio.

However, our estimate for the count of spurious correlations assumed independence of the

tests. For our data, the environmental indicators were correlated, whence the estimated count

of spurious correlations could be overly optimistic. For instance, for the data of female and of

male blue tits nest-size difference was significantly correlated with initial nest-size, final nest-

size, hatching day, ISA, sound pollution, and temperature. In addition, for female blue tits

there were significant correlations with light pollution and distance to a path, while for male

blue tits there were significant correlations with human activity and NDVI. Several of these

Table 2. Tests for significant associations between the ratios for blue tits and the indicators impervious area (ISA) and light pollution.

females males

Count n = 26 31

Indicators: ISA light ISA light

Correlation between ratio and indicators
Spearman rho −0.54 −0.64 −0.48 −0.51

P-value (Spearman rank correlation test) 0.004 0.0004 0.0069 0.0035

Comparing growth patterns from distinct environments
Median ratio: birds from nests with high indicator value 0.467 0.493 0.473 0.491

low indicator value 0.529 0.576 0.595 0,599

P-value (Mann-Whitney test) 0.0349 0.0415 0.0032 0.0157

Comparing environments for distinct growth patterns
Median indicator for high ratio birds 4.54% 2896 lx 3.58% 2852 lx

low ratio birds 13.33% 5937 lx 8.88% 3160 lx

P-value (Mann-Whitney test) 0.018 0.041 0.0114 0.002

Note: All mentioned outcomes were significant (p < 0.05); highly significant outcomes (p < 0.01) were displayed in boldface.

https://doi.org/10.1371/journal.pone.0250515.t002
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correlations were strong and highly significant. To account for the correlations between the

environmental and nest-specific indicators we used resampling. For 95% of 10,000 random

shuffles of female or male blue tits amongst the nest there were at most two spurious correla-

tions, confirming the previous estimate. (For female great tits up to three spurious correlations

were conceivable.)

The highly significant correlations of the ratio with initial nest size for three groups of birds

gave rise to the question if birds from large broods had dominated our observations: Were the sig-

nificant associations of ratio with ISA and light pollutions for blue tits mere artefacts of the experi-

mental design? We used resampling, selecting for each group of birds one representative nestling

from each brood, to show that this was not the case. If for each nest we deterministically selected

the bird (of the required gender) with “typical growth” (ratio nearest to the nest-median), then for

both groups of female and male blue tits the ratio had a significant negative correlation with light

pollution and ISA. (In view of the small sample sizes of 11 male and female birds, each, we could

not expect a high significance. However, P-values were below 0.03.) Using bootstrap simulations

(selecting the representative bird at random) confirmed this finding.

Discussion and conclusions

We studied a shape parameter for bounded sigmoidal growth curves, the ratio of inflection

point mass over asymptotic mass (range between 0 and 1), whereby we used the five-parameter

BP-model to estimate the ratio. Using data from literature, we illustrated the utility of this

model by demonstrating that a higher level of urbanization (impervious area, light pollution)

was associated to a lower ratio, which in turn indicated a (finally) slower growth towards the

adult (asymptotic) mass. These findings were confirmed by three different tests and they

remained stable, when we eliminated the possible dependency on nest-size by resampling with

one bird from each nest.

We conclude, irrespective of the biological interpretations of our results, that the ratio was

suitable to detect small variations in avian growth due to fine-scaled environmental and

brood-specific factors. However, we did not aim at pinpointing exact causations for the

observed effects. Thus, the finding for ISA was biologically plausible, as impervious area

around the nest could inhibit the success of provisioning [13] and this clearly would affect the

growth of the nestlings. Light pollution, on the other hand, is known to affect the behavior of

birds [14, 15], but from the data we could not discern a mechanism explaining its possible

impact on the growth of nestlings. As for another example, sound pollution is known to affect

the growth of certain passerine species adversely, as for instance in noisy environments female

sparrows reduced the provisioning rate for their brood [18], but for our data the evidence for

an impact of sound pollution on the growth of the nestlings was weak.

The count of n = 8 observations per bird, as for our data, was the minimum for a meaning-

ful model comparison by means of AICc of Eq (5). This small number of time-points used was

also a reason for the high variability of the exponent-pairs with a good fit (Fig 5). More mea-

surements per bird would be preferable and for our data the variability could have been

reduced by weighing the nestlings daily instead of at every second day. For this reason, altricial

birds that leave their nests late would be a good choice for growth studies (e.g., hawks), but

many species are sensitive to nest interferences by investigators, breed at remote places, and

are protected by the law. Passerine birds accepting nest-boxes are less problematic in this

respect. For precocial birds our approach to growth modeling would require domestic animals

(e.g., poultry [27, 59]) with environmental variation simulated by the experimental design.

Many semi-precocial and semi-altricial, ground-nesting seabird chicks are ideal subjects for

this type of study, too, since they can be recaptured successfully until they fledge [72].
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A drawback of the BP-model was the excessive CPU-time needed for data fitting (up to a

week per bird). However, the ratio is meaningful for any model, so researchers interested in

studying the relation of the ratio to environmental indicators are not confined to the BP-

model. While the traditional three-parameter models are not suitable for this task (inflexibility

with respect to the ratio), there are suitable four-parameter BP-models, such as the generalized

logistic model [47]. Fig 5 explains the reason: The ratios were constant on the black curves that

were (approximately) perpendicular to the diagonal, and the line b = a+1 of exponent-pairs of

the generalized logistic model was parallel to the diagonal, intersecting all these curves. For

data-fitting, the five-parameter BP-model required the optimization of the model parameters

for tens of thousands grid-point exponent-pairs, while for generalized logistic growth by the

same procedure the optimization at a few hundred grid-point exponent-pairs on the line b = a
+1 would suffice. Thus, using this four-parameter model would reduce CPU-time for comput-

ing the ratio by a factor of 100 to less than an hour per bird. (Using more data per bird, as rec-

ommended previously to reduce the variability, would slow down the computations slightly.)

We nevertheless used the five-parameter BP-model for our research, as initially we were

interested in another question: We observed that for about half of the birds the best-fit expo-

nent-pair was close to the diagonal (Fig 3). We had similar observations also for other species

[29]. Was there a biological reason for this? This question was our starting point and we ini-

tially studied the exponent-difference b – a. However, for blue tits, the ratio was found to be

more sensitive to biological signals, and for great tits the sample size (12 individuals of each

gender) was too small for reliable findings about the exponent-difference.

We conclude that complex models, even if not parsimonious, allow to recognize interesting

geometric patterns in avian growth (as with the ratio for blue tits). However, to identify param-

eters that quantify differences in growth patterns and that are not distorted by high variability,

sufficiently large samples in terms of both birds and mass-at-age data are needed.

Supporting information

S1 File. Excel file with explanations of the columns in rows 1–2. Columns A-D provide the

bird IDs together with general information, E-Q provide the brood-specific and environmen-

tal data for each nestling (and nest), R-Y list the bird-mass at days 1 to 15 (odd days, only), and

AA-AH provide for each bird the best-fit parameters of its five-parameter BP-model together

with additional information about the model.

(XLSX)
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14. Kempenaers B., Borgström P., Loës P., Schlicht E., Valcu M. Artificial night lighting affects dawn song,

extra-pair siring success, and lay date in songbirds. Current Biology 2010, 20: 1735–1739. https://doi.

org/10.1016/j.cub.2010.08.028 PMID: 20850324

PLOS ONE Models for avian growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0250515 April 26, 2021 15 / 18

https://doi.org/10.3389/fevo.2017.00082
https://doi.org/10.1111/eva.13081
https://doi.org/10.1111/eva.13081
http://www.ncbi.nlm.nih.gov/pubmed/33519957
https://doi.org/10.1186/s12862-020-01712-6
http://www.ncbi.nlm.nih.gov/pubmed/33129255
https://doi.org/10.1111/j.0014-3820.2002.tb00175.x
http://www.ncbi.nlm.nih.gov/pubmed/12583590
https://doi.org/10.1186/s12983-017-0213-1
http://www.ncbi.nlm.nih.gov/pubmed/28559918
https://doi.org/10.1371/journal.pone.0166748
https://doi.org/10.1371/journal.pone.0166748
http://www.ncbi.nlm.nih.gov/pubmed/27851816
https://doi.org/10.1111/j.1420-9101.2006.01191.x
https://doi.org/10.1111/j.1420-9101.2006.01191.x
http://www.ncbi.nlm.nih.gov/pubmed/17210025
https://doi.org/10.1186/s40657-020-00198-6
https://doi.org/10.1186/s40657-020-00198-6
https://doi.org/10.1016/j.cub.2010.08.028
https://doi.org/10.1016/j.cub.2010.08.028
http://www.ncbi.nlm.nih.gov/pubmed/20850324
https://doi.org/10.1371/journal.pone.0250515


15. Da Silva A., Samplonius J.M., Schlicht E., Valcu M., Kempenaers B. Artificial night lighting rather than

traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Beha-

vioural Ecology 2014, 25: 1037–1047.

16. Francis C.D. Vocal traits and diet explain avian sensitivities to anthropogenic noise. Global Change Biol-

ogy 2015, 21: 1809–1820. https://doi.org/10.1111/gcb.12862 PMID: 25688983

17. Halfwerk W., Holleman L.J., Lessells C.K., Slabbekoorn H. Negative impact of traffic noise on avian

reproductive success. Journal of Applied Ecology 2011, 48: 210–219.

18. Schroeder J., Nakagawa S., Cleasby I.R., Burke T. Passerine birds breeding under chronic noise expe-

rience reduced fitness. PloS ONE 2012, 7, published online: https://doi.org/10.1371/journal.pone.

0039200 PMID: 22808028

19. Gladalski M., Banbura M., Kalinski A., Markowski M., Skwarska J., Wawrzyniak J., et al. Effects of

human-related disturbance on breeding success of urban and non-urban blue tits (Cyanistes caeru-

leus). Urban Ecosystems 2016, 19, published online: https://doi.org/10.1007/s11252-015-0519-8

PMID: 27453682

20. Bańbura J., Bańbura M. Blue tits Cyanistes caeruleus and great tits Parus major as urban habitat breed-

ers. Inter Studies Sparrows 2012, 36: 66–72.
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