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Synopsis
Gap-junction channels (GJCs) communicate the cytoplasm of adjacent cells and are formed by head-to-head asso-
ciation of two hemichannels (HCs), one from each of the neighbouring cells. GJCs mediate electrical and chemical
communication between cells, whereas undocked HCs participate in paracrine signalling because of their permeab-
ility to molecules such as ATP. Sustained opening of HCs under pathological conditions results in water and solute
fluxes that cannot be compensated by membrane transport and therefore lead to cell damage. Mutations of Cx26
(connexin 26) are the most frequent cause of genetic deafness and it is therefore important to understand the
structure–function relationship of wild-type and deafness-associated mutants. Currently available connexin HC ex-
pression systems severely limit the pace of structural studies and there is no simple high-throughput HC functional
assay. The Escherichia coli-based expression system presented in the present study yields milligram amounts of
purified Cx26 HCs suitable for functional and structural studies. We also show evidence of functional activity of
recombinant Cx26 HCs in intact bacteria using a new growth complementation assay. The E. coli-based expression
system has high potential for structural studies and high-throughput functional screening of HCs.
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INTRODUCTION

Gap-junction channels (GJCs) are formed by head-to-head asso-
ciation of hemichannels (HCs, connexin hexamers, connexons),
one from each of the neighbouring cells [1–3]. GJCs are aqueous
channels that mediate electrical and chemical coupling between
cells due to their insulation from the extracellular fluid and their
permeability to hydrophilic molecules of up to 400–800 Da, de-
pending on the isoform [2,4,5]. Undocked HCs that are ’free’
at the plasma membrane (not forming GJCs, referred to as HC
hereafter) communicate two compartments of very different com-
position (intracellular and extracellular fluids). Even though HCs
are mostly closed, they still play roles in physiologic processes
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by mediating the transmembrane fluxes of hydrophilic molecules
such as ATP, NAD+ , glutamate, glutathione and prostaglandin
E2 [6–9]. However, sustained opening of HCs under pathological
conditions (e.g., during ischaemia/hypoxia) results in water and
solute fluxes that cannot be compensated by the cells (metabol-
ite loss, Ca2 + influx, equilibration of ionic gradients, colloid-
osmotic cell swelling) and lead to cell damage [10–13].

Approximately 1/1000 infants have profound hearing impair-
ment and a large fraction of these cases can be ascribed
to Cx26 (connexin 26) mutations [5,14,15]. Significant pro-
gress has been made in recent years, but the information
available is insufficient to understand the mechanisms of the
functional effects of most of the mutations associated with
deafness [5,14].
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Experiments ’in vivo’ are fundamental to understand biolo-
gical processes, but ‘in vitro’ studies using isolated systems un-
der well-controlled conditions are also an essential component
for a complete understanding of normal function and the mo-
lecular mechanisms of diseases. Most frequently recombinant
connexins are expressed in mammalian cell lines, insect cells
and frog oocytes. The insect-cell–baculovirus expression system
is the only available system that can yield the amounts of purified
connexins necessary for detailed biochemical and biophysical
studies [16–20]. In the present paper, we present a Cx26 E. coli-
based expression–purification system that also yields milligram
amounts of functional human Cx26 HCs.

MATERIALS AND METHODS

Protein expression and purification
We expressed and purified wild-type human Cx26 fused to a poly-
histidine–tag [His6] at the C-terminal end, preceded by a TEV
(tobacco etch virus) protease cleavage sequence [21]. XL10-Gold
cells (Agilent Technologies) were transformed with human Cx26
DNA subcloned into the NcoI/HindIII sites of the bacterial protein
expression vector pQE60 (Qiagen). Expression from the human
Cx26 DNA sequence was very low and difficult to detect, but
expression from the E. coli-optimized Cx26 sequence in Fig-
ure 1(A) was higher (pQE–Cx26 plasmid). The cells were grown
at 37 ◦C in modified M9 minimal medium (180 mM Na2HPO4,
75 mM KH2PO4, 30 mM NaCl and 65 mM NH4Cl) supplemen-
ted with 10 mM MgSO4, 1 % glucose and 0.4 mg/ml ampicillin.
The overnight cultures were diluted 25-fold, grown at 37 ◦C to an
A600 ∼2 and induced with 0.5 mM IPTG (0.5 mM) for 2 h. Har-
vesting of the cells and all subsequent procedures were performed
at 4 ◦C unless specified otherwise. The cell pellets were resus-
pended in buffer A (300 mM NaCl and 50 mM Tris/HCl, pH 8)
with 0.5 mM 4-benzenesulfonyl fluoride hydrochloride (Pefab-
loc), 10 mM MgCl2 and 25 μg/ml DNAse I (Sigma–Aldrich) and
lysed on a microfluidizer. Crude membranes were prepared by
centrifugation at 100 000 g for 1 h. The efficiency of the solu-
bilization of Cx26 from membranes was determined by Western
blotting, comparing the amounts of Cx26 in the supernatants (sol-
ubilized material) and pellets after centrifugation at 100 000 g for
30 min. Membranes were solubilized for 4 h at 4 ◦C with 1 % An-
zergent 3–12 in 1 M NaCl, 50 mM Tris/HCl, 10 % glycerol and
1 mM PMSF, pH 8, at a total protein concentration <2 mg/ml.
Following ultracentrifugation at 100 000 g for 30 min, the sol-
ubilized material in the supernatant was loaded onto a Talon
Co2 + column (Talon Superflow, Clontech) pre-equilibrated with
1 M NaCl, 10 % glycerol, 50 mM Tris/NaOH, pH 8, for im-
mobilized metal-affinity chromatography (IMAC). The protein-
bound resin was washed with 10 column volumes of 1 M NaCl,
10 % glycerol, 0.05 % n-dodecyl-β-D-maltoside (DDM), 50 mM
Tris/NaOH, pH 8, followed by washing with 150 mM NaCl, 10 %
glycerol, 5 mM imidazole, 0.05 % DDM and 50 mM Tris/NaOH,
pH 8. Elution proceeded with a buffer of the same composi-

tion, except that imidazole was increased to 300 mM. Fractions
containing Cx26 were pooled and, in most cases, the histidine–
tag was removed by incubation with TEV protease (1:10 w/w)
for 12 h, at 4 ◦C. After removal of the tag, purified Cx26 was
isolated by gel-filtration chromatography on a Superdex 200HR
column (GE Healthcare) run on an APLC system (LabAlliance,
State College). Basically, IMAC-purified Cx26 in 0.05 % DDM,
150 mM NaCl, 10 % glycerol and 10 mM HEPES/NaOH, pH 7.5,
was injected into the column equilibrated with the same buffer
and run at a flow rate of 0.5 ml/min. The oligomerization of sol-
ubilized Cx26 was determined as previously described [22], by
gel filtration and dynamic light scattering measured at 90◦ using
a BI-200SM (Brookhaven Instruments). Protein concentrations
were determined from the A280 nm.

Reconstitution of Cx26 HCs
Reconstitution was performed in a mixture of phos-
phatidylcholine (PC) and phosphatidylserine (PS) at a 2:1 ratio
(w/w), essentially as described [20,22]. Briefly, lipids and solubil-
ized Cx26 were mixed, generally at a protein–lipid ratio of 1:50
(w/w), and the mixture was run through a gel-filtration column
(Zeba columns, Thermo Fisher Scientific) pre-equilibrated with
a solution containing 100 mM KCl, 0.1 mM EGTA and 25 mM
HEPES, pH 7.6. In some experiments, this procedure was fol-
lowed by extrusion (Mini-Extruder, Avanti Polar Lipids). For the
sucrose-transport experiments, the liposomes were prepared as
described [20,22] and contained traces of phosphatidylethano-
lamine headgroup labelled with lissamine rhodamine B (PE-R,
PC–PS–PE-R ratio of 2:1:0.03, w/w) and the buffer composition
was: 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 459 mM urea
and 10 mM HEPES, pH 7.6.

Transport assays
Permeabilities to sucrose and the fluorescent probes Alexa Fluor
350 and 647 (AF350 and AF647 respectively) were determined
by the transport-specific assay [20,22,23]. Liposomes and pro-
teoliposomes were loaded with 500 μM AF350 and 125 μM
AF647 and after removal of most extraliposomal dyes by gel
filtration chromatography (Superdex 200 5/150 GL column, GE
Healthcare) the samples were centrifuged on an iso-osmolar
(sucrose/urea) gradient. The position of the liposomes was de-
termined by the A280 nm or the fluorescence from PE-R. We
have demonstrated that the migration of the liposomes down
the sucrose gradient is the result of the presence of HCs [20].
Retention of dye trapped in liposomes was detected at excita-
tion and emission wavelengths of 345 and 445 nm for AF350
and 650 and 670 nm for AF647. Details on the transport assays
for ATP, Ca2 + and H+ equivalents have been published [22].
Basically, liposomes were loaded with the low-affinity Ca2 + -
sensitive probe Fluo-5N (pentapotassium salt, 25 μM, Life Tech-
nologies) for the Ca2 + influx assays, followed by removal of
the extraliposomal probe by gel filtration, as described above.
Since Fluo-5N is too large to permeate through HCs (958 Da)
it remains inside the liposomes independently of the presence
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Figure 1 Recombinant human Cx26 purified from E. coli
(A) DNA sequence of the human Cx26 used for E. coli expression. Comparison of the human Cx26 gene and the op-
timized (Opti-Cx26) sequence used in the present work. The highlighted bases indicate the mutations introduced in the
gene. The final unmatched sequence codes for the TEV protease sequence and the poly-histidine–tag. (B) Size-exclusion
chromatogram of purified Cx26. Approximately 250 μg of purified Cx26 solubilized in DDM was injected into the column.
Inset: Coomassie Blue-stained gel of the peak fraction (∼10 μg of protein). The positions of molecular-weight markers
are indicated on the left. The arrow points to Cx26 whose identity was confirmed by Western blots with anti-Cx26 and
anti-histidine antibodies. (C) Orientation of Cx26 HCs reconstituted in liposomes. The C-terminal histidine–tag accessibility
was assessed by comparing samples in the absence of TEV protease ( − ) and after treatment with the enzyme [ + ,1:10
(w/w) ratio, overnight at room temperature]. HCs (typically 20 μg of protein) were studied solubilized in detergent or recon-
stituted in liposomes. Top: Immunoblots using an anti-histidine–tag antibody (anti-Penta-His, Qiagen). Bottom: Coomassie
Blue-stained bands showing similar levels of protein. The data are representative of six similar experiments.

or absence of Cx26 HCs. For the determination of the Ca2 +

influx, free-[Ca2 + ] was increased from <10 nM to 500 μM by
rapid-mixing on a SX20 stop-flow device with a 20-μl cham-
ber and a dead time <0.5 ms (Applied Photophysics). We have

shown that the increase in Fluo-5N emission results from the
Ca2 + influx through HCs and analysis of the rate of fluorescence
increase can be used to estimate Ca2 + permeability [22]. Trans-
port of H+ equivalents (H+ /OH− and protonated/unprotonated
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HEPES) was determined from the rate of intraliposomal pH
changes in liposomes containing traces of a phospholipid
labelled with fluorescein at the headgroup. The fluorescein-
labelled phospholipid was N-(fluorescein-5-thiocarbamoyl)-1,2-
dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE-Fl,
headgroup–labelled, Life Technologies), used at a PC–PS–
DHPE-Fl ratio of 2:1:0.005 (w/w). Starting from an identical
solution inside and outside the liposomes (100 mM KCl, 0.1 mM
EGTA, 25 mM HEPES/KOH, pH 7.6), extraliposomal pH was
reduced to 6.4 by mixing with HCl in the stop-flow chamber.
We have shown that the decrease in the fluorescence from the
fluorescein-labelled phospholipids is linear with lowering pH
from 7.6 to 6.4 and the influx of H+ equivalents can be calculated
from the initial rate of pH change and the buffer concentration
and pKa. For the Ca2 + and pH studies excitation was at 470 nm
and emission was collected through a 500-nm long-pass filter,
with all experiments were performed at 20 ◦C.

Analysis of Cx26 HC function in intact bacteria
For these studies, we developed a simple growth complement-
ation assay using LB2003 cells. LB2003 cells deficient in K+

uptake mechanisms (knockout of the major uptake mechanisms
Kdp, Kup and Trk) were generously provided by Dr E.P. Bakker
from Osnabrük University in Germany [24]. These cells cannot
grow in low-[K+ ] medium, but growth can be restored by ex-
pression of K+ channels or supplementation of the medium with
K+ [25–28]. Since HCs are poorly-selective channels that per-
meate K+ , among other ions [4], we determined whether their
expression allowed LB2003 cells to grow in low-[K+ ] medium.
Competent LB2003 cells transformed with the empty pQE60
plasmid or the plasmid containing the human Cx26 DNA were
grown overnight in Luria–Bertani (LB) medium supplemented
with 100 mM K+ and 400 μg/ml ampicillin. The cells were
washed three times in low-[K+ ] medium [23 mM NaH2PO4,
46 mM Na2HPO4, 8 mM (NH4)2SO4, 0.4 mM MgSO4] and were
then resuspended to an A600 of 0.2 in the same low-[K+ ] sup-
plemented with 1 mM sodium citrate, 8 mM glucose and 1 mg/l
thiamine B1 [sodium liquid medium (NLM)] supplemented with
400 μg/ml ampicillin and 0.5 mM IPTG. We then seeded 3 ml of
samples in 24-well plates (931565-G-1X, Thompson Scientific
Co.), incubated the plates with shaking at 250 rpm in an incubator
and assessed cell growth from the A600 after 18 h (growth reached
fairly stable levels between 16 and 26 h). Studies on the depend-
ence of cell growth on medium [K+ ] showed 50 % of maximal
growth at ∼30 mM [K+ ] and based on these results we used the
NLM supplemented with 4 mM K+ for the growth complement-
ation assay. The initial A600 of 0.2 represented no growth and was
subtracted from all values.

Western blots
Cx26 expression was assessed from Western blots of cell lysates
using antibodies against the histidine–tag (anti-Penta-His, Qia-
gen) or the Cx26 intracellular loop region (Life Technologies).
Detection in Western blots was by imaging (Odyssey Infrared

Imager, Li-Cor Biosciences) of goat anti-rabbit IRDye 800 (Li-
Cor Biosciences) for the anti-Cx26 antibodies or goat anti-mouse
Alexa Fluor 680 (Life Technologies) for the anti-histidine anti-
body.

Statistics
Data shown are means +− S.E.M. Statistically significant differ-
ences were assessed by the Student’s t test for unpaired data or
one-way ANOVA, as appropriate.

RESULTS AND DISCUSSION

There are very few studies describing the expression of connexins
in E. coli [29,30]. In one study, human Cx43 fused to GST was
purified, but transport function was not assessed [29]. Although
not explored, it seems likely that the preparation consisted of
purified inside-out membranes containing the Cx43 fusion pro-
tein because detergents and centrifugation procedures to separate
membranes from soluble proteins were not used [29]. In an-
other study, human Cx26 and rat Cx46 were expressed in E. coli
[30]. In that study, a human Cx26 gene without optimization for
expression in E. coli was used, the expression conditions were
different and a strong anionic detergent (N-lauroylsarcosine) was
employed, with the resulting recovery of connexins as monomers.
In our study, we aimed at purifying functional Cx26 HCs, as we
have previously done from Cx26 expressed in Sf9 cells [22].
Using Anzergent 3–12 we were able to solubilize <50 % of the
Cx26 expressed in membranes, but essentially all was present
as HCs, similar to Cx26 purified from insect cells [22]. Cx26
expressed in E. coli (Figure 1A) was purified by metal affinity
chromatography based on the C-terminal histidine–tag, followed
by size-exclusion chromatography. Figure 1(B) shows a gel fil-
tration chromatogram of the purified protein and the inset cor-
responds to a Coomassie Blue-stained gel of the peak fraction.
Overloaded gels (standard denaturing and reducing SDS/PAGE)
show several bands corresponding to monomer and oligomers.
This is the result of the high-stability of purified Cx26 oligomers
that has been observed before [22]. However, dynamic light scat-
tering of the protein purified from E. coli in detergent solution
showed a single peak corresponding to a hydrodynamic radius
of 5.3 +− 0.3 nm (n = 4) and an apparent molecular weight of
230 +− 10 kDa by size-exclusion chromatography. These values
are indistinguishable from those of human Cx26 produced using
the baculovirus–Sf9 cells expression system [22]. The apparent
size of the protein–detergent complex is compatible with Cx26
HCs (hexamers) with 30 %–45 % (w/w) detergent, but not with
GJCs (dodecamers) [22]. The yield of purified Cx26 HCs was
0.25–0.5 mg/l of cell culture.

To assess the proportion of HCs in the cytoplasmic-side-out
(inside-out) orientation, we took advantage of the TEV pro-
tease cleavage site, located immediately N-terminal to the poly-
histidine–tag, to remove the tag by proteolysis. Figure 1(C)
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Figure 2 Permeability of purified and reconstituted Cx26 HCs to sucrose
(A) Typical migration of liposomes and proteoliposomes containing Cx26 HCs on an iso-osmolar sucrose-density gradient.
Picture of tubes after centrifugation showing liposomes without HCs (upper arrow, labelled 1) and proteoliposomes with
functional HCs (lower arrow, labelled 2). The lipid–protein ratio for reconstitution was 1:50 (w/w). The colour of the
liposomes is due to traces of PE-R. (B) Fluorescence from rhodamine B-labelled lipids measured in equal-volume fractions
collected from liposomes (No Cx26) and proteoliposomes (Cx26) gradients in panel (A). Rhodamine B fluorescence was
normalized to the total fluorescence. The 1 and 2 labels indicate the peak fluorescence corresponding to the bands
labelled in panel (A). (C) Distribution of reconstituted Cx26 in sucrose-permeable and -impermeable liposomes. Cx26
was reconstituted and run on an iso-osmolar sucrose gradient [see Cx26 tube on panel (A)]. Equal volumes of fractions
including the bands labelled 1 (liposomes impermeable to sucrose) and 2 (liposomes permeable to sucrose) were run on
an SDS/PAGE and stained with Sypro Ruby. UF, equivalent amount of unfractionated liposomes. The gel is representative
of four similar experiments. In all cases, the HCs studied were formed by Cx26 without the C-terminal poly-histidine–tag.

shows that essentially all the histidine–tag signal disappeared
when Cx26 solubilized in 0.05 % DDM (100 +− 0 %, n = 4) or
reconstituted (100 +− 0 %, n = 6) was digested with TEV pro-
tease. Therefore, it appears that all HCs insert inside-out. This
is similar to Cx43 [20,31], but different from the approximately
random insertion that we found in a previous work on Cx26 [22].
Since the lipids are the same, the difference is probably the result
of the method of reconstitution; dialysis in the previous work
[22] and/or gel-filtration/extrusion here. The precise reason for
the difference was not explored, but a single orientation is clearly
an advantage for some studies.

The Cx26 HCs expressed in bacteria were permeable to
sucrose (Figures 2A and 2B) as well as to AF350, but not to
AF647 (Figures 3A and 3B). For these studies, we used the
transport-specific fractionation technique developed by Harris
and Bevans [23], which allows for the separation of sucrose-
permeable from sucrose-impermeable liposomes [20,22]. Upon
centrifugation on an iso-osmolar sucrose gradient ([sucrose] in-
creasing from top to bottom, compensated by a reversed urea
gradient to maintain the osmolarity constant at all levels),
the heavier sucrose-loaded liposomes that contain sucrose-
permeable HCs, migrate as a narrow band to a higher-density
(lower) position in the tube (Figure 2A, arrow labelled 2). There
was no evidence for a significant population of non-functional
HCs since essentially all Cx26 was localized to the higher-density
band (band 2) of the sucrose gradient, with a very small fraction
at the lower-density upper band (Figures 2B and 2C).

For the Alexa-dyes permeability assays, we loaded AF350 and
AF647 into the liposomes, removed the extraliposomal fluor-
escent probes by size-exclusion chromatography and then per-
formed a transport-specific fractionation as described above.
Fluorescence was measured in equal-volume aliquots from the
lower-density (top of tube) to the higher-density (bottom of tube)
fractions to determine whether the probes remained inside the
liposomes (impermeable) or leaked out through the HCs during
the gel filtration and/or centrifugation (permeable). As expected
from the available information in cells and our studies of purified
Cx26 HC produced in Sf9 cells, the HCs produced in bacteria
were permeable to AF350 (molecular weight 349Da), but not to
AF647 (molecular weight 1300Da) (Figures 3A and 3B).

We also determined permeability to ATP by measuring the
fraction of the ATP retained inside liposomes pre-loaded with
the nucleotide. For these experiments, extraliposomal ATP was
removed by gel filtration in an ATP-free buffer and the nucleotide
retained in the liposomes was measured by luminescence as de-
scribed [22]. Figure 3(C) shows that ATP permeates through
the purified Cx26 HCs. We have also shown that Cx26 HCs
purified from Sf9 cells are permeable to Ca2 + and H+ equi-
valents (H+ /OH− and protonated/unprotonated HEPES) [22].
For the Ca2 + transport assay, we loaded the liposomes with
the low-affinity Ca2 + -sensitive fluorescent probe Fluo-5N and
estimated Ca2 + influx into the liposomes from the rate of in-
crease in Fluo-5N fluorescence upon increasing free-[Ca2 + ] from
<10 nM to 500 μM by rapid mixing in a stop-flow cell. Typical
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Figure 3 Permeability of purified and reconstituted Cx26 HCs to fluorescent dyes and ATP
(A) Permeability to Alexa Fluor probes. The liposomes were loaded with AF350 or AF647. After removal of the free
extraliposomal dyes by size-exclusion chromatography, the liposomes were subjected to an iso-osmolar sucrose-density
gradient such as that in Figure 2(A) and the samples were analysed as in Figure 2(B), for AF350 and AF647 fluorescence.
The fluorescence of each fraction was expressed as a percentage of the cumulative fluorescence of all fractions. AF350
and AF647 data are representative from four and seven similar experiments respectively. (B) Ratio of AF647–AF350
fluorescence in Cx26 proteoliposomes relative to the liposome value. Data are means +− S.E.M. (n = 4). Values were
calculated from experiments similar to those in panel (A). The AF647–AF350 ratio was obtained by dividing the AF647
fluorescence (probe retained in no Cx26 and Cx26 liposomes) by the AF350 fluorescence (probe lost from the Cx26
liposomes). *P < 0.001 compared with the liposome values. (C) Permeability of purified Cx26 HCs to ATP. Liposomes and
Cx26 proteoliposomes loaded with 1 mM ATP were subjected to gel filtration to separate free extraliposomal ATP from
ATP retained inside the liposomes. ATP retained was measured by luminescence using a luciferin/luciferase assay, as the
difference between total ATP (inside plus outside, measured after addition of Triton X-100 to 0.4 %) and extraliposomal ATP
(before Triton X-100). Data are expressed as means +− S.E.M. of the ATP retained/total ATP (n = 4). *P < 0.001 compared
with the liposome values. In all cases, HCs were formed by Cx26 without the C-terminal poly-histidine–tag.

records are shown in Figure 4(A), where an increase in Fluo-
5N emission upon rising free-[Ca2 + ] was observed only in the
proteoliposomes (red trace). Increasing [Ca2 + ] in liposomes did
not elicit net Ca2 + influx (black trace). The rate of increase in
intraliposomal [Ca2 + ], normalized to a 1 mM Ca2 + concentra-
tion gradient, was 2.88 +− 0.82 mM/s (n = 6), as calculated from
the increase in Fluo-5N emission and the dependence of Fluo-5N
emission on [Ca2 + ], as described [22]. H+ transport was eval-
uated in liposomes containing traces of a phospholipid labelled
with fluorescein at the headgroup [22]. As shown in Figure 3(B),
lowering pH from 7.6 to 6.4 in a stop-flow cell produced a fast
reduction in fluorescein emission only in the liposomes contain-
ing Cx26 that were exposed to the pH gradient (red trace). From
previous work [22], we know that the decrease in pH produces
a rapid quenching of fluorescence from fluorescein on the outer
leaflet, similar in liposomes and proteoliposomes (∼50 % of the
total). This change is very fast and becomes part of the baseline
in stop-flow experiments. The slower decrease in intraliposomal
pH due to influx of H+ through the HCs quenches the emission
from fluorescein in the inner leaflet. The latter is followed in the
stop-flow experiments and is observed only in the proteolipo-
somes (red trace). From the rate of decrease in fluorescence and
the dependence of fluorescein emission on pH, we calculated a
decrease in intraliposomal pH from 7.60 to 7.42 +− 0.01 in 10 ms
(n = 4). From the concentrations of protonated [HEPES] (using
a pKa of 7.55), the calculated rate of transport of H+ equival-

ents, normalized to a 1 mM HEPES concentration gradient, was
21 +− 1 mM/s (n = 4). Since the rate of H+ transport probably
exceeds that of HEPES and the [H+ ] gradient is 373 nM, the
above value is only a minimum estimate. The most important
observations are that the rates of Ca2 + and H+ transport are not
different from those calculated for Cx26 HCs purified from Sf9
cells [22]. These data also confirm the permeability of Cx26 HCs
to Ca2 + and ATP and support the idea that Cx26 HCs have a
role in Ca2 + influx and ATP efflux under physiological and/or
pathophysiological conditions [10–13,32,33].

The bacterial expression–purification system in the present
study yields purified Cx26 in milligram amounts and equivalent
purity to those obtained using the baculovirus–insect-cell expres-
sion system. Moreover, the purified Cx26 HCs obtained from
E. coli are functionally indistinguishable from those formed by
Cx26 purified from Sf9 cells [22]; they show the expected per-
meability properties: permeability to ‘large’ hydrophilic solutes
(sucrose, ATP and AF350) and ‘small’ ions (Ca2 + , H+ , K+ ,
Cl− ) and impermeability to ‘larger’ hydrophilic solutes (AF647,
Fluo-5N) [4,22].

The experiments described above indicate that purified hu-
man Cx26 HCs expressed in bacteria are functional. Therefore,
it may be possible to develop a functional HC assay in the intact
cells that will serve as bases for a future high-throughput screen-
ing assay for the discovery of HC blockers. Connexin HCs have
been proposed as drug targets [34–37], but commonly used HC
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Figure 4 Permeability of purified Cx26 HCs to Ca2 + and H+
(A) Rate of Ca2 + influx into liposomes containing purified Cx26 HCs. Proteoliposomes (red trace, Cx26) and liposomes
(black trace, no Cx26) were exposed to a 500 μM [Ca2 + ] gradient. Records from Cx26-proteoliposomes or liposomes in
the absence of [Ca2 + ] gradient were indistinguishable and did not show a change in fluorescence (similar to the black
trace). The black line superimposed to the red record is a multi-exponential fit to the data. The record is representative
of 22 measurements in six independent experiments. (B) Rate of pH change in Cx26 proteoliposomes. Proteoliposomes
(red trace, Cx26) and liposomes (black trace, No Cx26) were exposed to a pH decrease from 7.6 to 6.4. Records from
Cx26-proteoliposomes or liposomes in the absence of pH gradient did not show a change in fluorescence (similar to the
black trace). The black line superimposed to the red trace is a multi-exponential fit to the data. The record is representative
of 22 measurements in four independent experiments.

Figure 5 Functional assay of Cx26 HCs in intact bacterial cells
(A) Expression of Cx26 in LB2003 cells. EP: cells transformed with pQE-60 and grown in high-K+ medium (they do not
grow in 4 mM [K+ ] medium). Cx26: LB2003 cells transformed with pQE–Cx26. Equivalent amounts of lysed cells were
subjected to SDS/PAGE and probed with an antibody against the intracellular loop of Cx26. The two lanes are from the
same blot. The arrow points to Cx26 and the labels on the left indicate the position of molecular weight markers (in kDa).
(B) Growth complementation by expression of Cx26. The experiments were performed under the conditions described
in panel (A), except that the cells were grown in NLM with 4 mM [K+ ] at 30 ◦C. Complementation by Cx26 was also
observed at 37 ◦C, but the signal-to-background ratio was better at 30 ◦C. Growth was determined in the absence (plain
bars) or presence of kanamycin (50 μg/ml; 103 μM; hatched bars). EP and Cx26 were defined in (A); MVP: LB2003
cells transformed with MVP DNA cloned into pJ404. Data are means +− S.E.M. of 12 measurements in four independent
experiments for each condition. *P < 0.001 for the decrease in A600 compared with the corresponding condition in the
absence of kanamycin. (C) Dependence of the inhibition of Cx26-dependent growth complementation on [kanamycin]. The
line corresponds to a fit of the data to the Hill’s equation (the Hill coefficient was ∼2). Circles correspond to means +−
S.E.M. (n = 3 for each concentration); S.E.M.s smaller than the symbols are not shown.

inhibitors display low affinity and selectivity [38,39]. In addition,
there is no evidence that they act by direct binding to the HCs, as
opposed to working by indirect mechanisms. For the studies in
live bacteria, we used LB2003 cells, which are deficient in K+ up-
take mechanisms and do not grow in low-[K+ ] medium [24,28].
The cells transformed with human Cx26 DNA cloned into the
pQE-60 plasmid expressed Cx26 (Figure 5A) and grew in 4 mM
[K+ ] medium, whereas those transformed with the empty plas-

mid did not (Figure 5B). For these studies, we compared the com-
plementation by Cx26 HCs with that obtained by expression of
MVP (Methanococcus jannaschii voltage-gated potassium chan-
nel). MVP is a hyperpolarization-activated K+ channel that dis-
plays high open probability at the large cell-negative membrane
voltages characteristic of E. coli [40].

Very recently, aminoglycosides have been shown to inhibit
connexin HCs with better affinity than most inhibitors and
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without effect on GJCs [41]. The data in Figure 5(C) show
that kanamycin inhibits the growth complementation in cells ex-
pressing Cx26 HCs, with an IC50 of 14 μM. The effect was not
related to the antibiotic effect of kanamycin because LB2003 cells
are resistant to kanamycin [24] and there was no effect on growth
complementation by expression of MVP (Figure 5C). Ototoxicity
is among the most common adverse effects of aminoglycosides,
but its mechanism is still unclear [42]. It is presently unknown
whether the inhibition of Cx26 HCs is associated with the oto-
toxicity.

In additional studies, we found that Cx26 purified from
LB2003 cells was functional; the fraction of the ATP retained in-
side Cx26 liposomes pre-loaded with the nucleotide was 10 +− 1 %
of the value in liposomes without Cx26 (n = 3), a value indis-
tinguishable from that measured in liposomes containing Cx26
purified from XL10-Gold cells (Figure 3C).

In summary, we presented a robust E. coli-based Cx26 ex-
pression system that yields purified and functional Cx26 HCs in
amounts equivalent to those obtained in insect cells. One limita-
tion of the bacterial expression system is in the post-translational
modifications. However, connexins are not glycosylated and
there is no clear evidence of direct regulation of Cx26 by post-
translational modifications. This is in marked contrast with other
isoforms that contain a regulatory C-terminal domain, such as
Cx43 [43]. The observation that the Cx26 HCs purified from bac-
teria have similar properties than those expressed in eukaryotic
cells indicates that the bacterial expression system will be useful
to study the basic properties of wild-type and mutant HCs and
will be a useful complement to others currently in use. There are
few, if any, examples of expression in E. coli of properly folded
and functional human recombinant membrane proteins with mil-
ligram per litre culture yields. This new expression–purification
system has the potential to increase the pace of structural and
functional studies of connexins in a major way.
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