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Abstract

Reopening amid the COVID-19 pandemic has triggered a battle on social media. The sup-

porters perceived that the lockdown policy could damage the economy and exacerbate

social inequality. By contrast, the opponents believed it was necessary to contain the spread

and ensure a safe environment for recovery. Anatomy into the battle is of importance to

address public concerns, beliefs, and values, thereby enabling policymakers to determine

the appropriate solutions to implement reopening policy. To this end, we investigated over

1.5 million related Twitter postings from April 17 to May 30, 2020. With the aid of natural lan-

guage processing (NLP) techniques and machine learning classifiers, we classified each

tweet into either a “supporting” or “opposing” class and then investigated the public percep-

tion from temporal and spatial perspectives. From the temporal dimension, we found that

both political and scientific news that were extensively discussed on Twitter led to the per-

ception of opposing reopening. Further, being the first mover with full reopen adversely

affected the public reaction to reopening policy, while being the follower or late mover

resulted in positive responses. From the spatial dimension, the correlation and regression

analyses suggest that the state-level perception was very likely to be associated with politi-

cal affiliation and health value.

Introduction

A novel SARS-CoV-2 virus (COVID-19) that emerged in December 2019 has spread world-

wide and become a pandemic [1]. As of June 10, 2021, more than 33.4 million cases and

598,000 deaths were reported in the United States, and the number of new cases is still high

[2]. As the stay-at-home orders took effect in early April 2020, thousands of workforces were

shut down, sports events were canceled, and universities and schools moved online. Beginning

in mid-April, news media reported that anti-lockdown protests erupted across U.S. states [3].

Debates surrounding the necessities of lockdown orders and the appropriate time to reopen
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the country have raged for a long time. People were concerned that a prolonged lockdown

would damage the economy and exacerbate existing social inequality in education and work-

force environment [4], while others perceived that a temporal lockdown policy was necessary

for slowing down COVID-19 spreads as well as ensuring a safe economic recovery environ-

ment [5]. Understanding the public risk propensity and dissecting the rival perceptions on

reopening is of significance for the policymakers to cope with the challenges of enacting

reopening policies.

Policymakers follow various approaches to determine the appropriate time to implement

reopening phases. Premature reopening may increase the risks of contracting the virus in

communities [6], but individuals may choose to undertake the risks due to living pressures.

Tracking online perceptions on the reopening policy can provide meaningful insights for

policymakers to comprehend how the online public thinks and behaves amid the COVID-19

pandemic. As social media establishes timely channels for online users to communicate infor-

mation, crowdsourcing through social media plays a significant role in recognizing public

opinions [7]. The advantages of leveraging social media to investigate public perceptions are

manifold. First, social media offers policymakers opportunities to probe into a wealth of data

that reflect people’s emotions and behaviors during a pandemic [8]. Second, social media can

help construct a useful instrument to identify emergent responses, and therefore, policymakers

can tailor their policies to the public demands. Last, social media-based approach supports the

facilitation of timely track on online public perceptions that may exceed most conventional

survey methods.

Social media data from Twitter, Facebook, and other web platforms have provided a rich

source of information within the scientific community to investigate public perceptions rela-

tive to the COVID-19 crisis [9–11]. One broad application focuses on the areas of information

dissemination and public engagement [11–13]. These studies have revealed that social media

can support effective communication channels for government agencies or influencers to com-

municate important messages to the public. A recent survey based on 645 Italian clinicians

reported that 47% of respondents answered that information shared on social media had a

consistent impact on their daily practice [14]. Another study conducted by Chen et al. (2020)

demonstrated that the dialogic loop on social media could help facilitate engagement through

government accounts during the COVID-19 pandemic [12].

Social media postings contain a great deal of textual information. Textual analysis of vocab-

ulary, semantic structures, and other textual features (e.g., text sentiment) conveys information

that can be leveraged to assist in attitude survey, behavior analysis, and mental health detection

[15–18]. Iglesias-Sánchez et al. (2020) [19] selected the case of COVID-19 quarantine in Spain

and tracked the emotion changes based on online postings. Their study implied that isolation

measures could have a significant impact on residents’ emotions, particularly arouse a notice-

able response of anger emotion. Xue et al. (2020) [20] analyzed Twitter data in the early stages

of this crisis, and their sentiment analysis result revealed that fear for the unknown nature of

COVID-19 was dominant on Twitter.

Prior studies relative to the utility of social media in understanding public opinions show

temporal and spatial variations [21–24]. Through the investigation of the geography of Twitter

topics in London, Lansley and Longley (2016) [23] found that topics and attitudes expressed

through tweets varied substantially across places and were associated with the demographic

and socio-economic characters of the users. Koylu et al. (2018) [21] investigated the online

public discourse and sentiment across space and time towards an immigration policy imple-

mented in 2017, and their study manifested that such policy highlighted important partisan

division within U.S. states. The opinion variations on political topics can be attributed to the

inferred characteristics of online users. At this point, previous studies have also illustrated that
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demographic and socio-economic factors could exert an influence on public awareness, such

as age, area of residence, income, educational level, and party affiliation [25–27].

Since the outbreak of COVID-19, several studies have analyzed the impacts of government

policies on the public [28–30]. For example, Wei et al. (2020) [30] applied the interaction strate-

gies and the evolutionary game analysis of the actions taken by the government and the public.

Their study demonstrated that emergency response adopted by the government in the early

stages of the pandemic could effectively contain the spread. For reopening policy, Nguyen et al.

(2020) [31] quantified the effect of state reopening policies on daily mobility, and they observed

an increase in mobility patterns during the reopening phase. Kaufman et al. (2020) [32] applied

an interrupted time series to compare the rate of growth in COVID-19 cases after reopening to

growth prior to the reopening. Their results revealed that states should delay further reopening

until mask mandates were fully implemented. However, with the reviewed studies, the impacts

of reopening policies have not been thoroughly investigated with social media data.

Building on the existing body of knowledge relative to the temporal and spatial analysis for

online public opinions, this study aims to explore the potential of social media data (Twitter

postings) to investigate online perceptions on reopening policy and demonstrate how the

nature of the opinions varies according to the temporal and spatial characteristics. From the

perspective of temporal analysis, online opinions on supporting the policy could vary in the

appearance of influential news and events and might be affected by the timing (the first mover,

follower, or late mover) to reopen the economy. From the perspective of spatial analysis, online

perceptions might display significant differences geographically and could be associated with

demographic and socio-economic characteristics. This study conducts correlation and regres-

sion analyses to unfold the demographic factors that can help explain the discrepancy and the

consistency of public perceptions across U.S. states. As discussed, the findings of this study

provide meaningful insights to understand how the online public reacted to the policies and

further support policymakers to appropriately implement reopening policies.

Materials and methods

Data preparation and model framework

Twitter supports abundant data sources that can be accessed for capturing information given

any topics. We used Twitter Standard Search API with the search term “reopen” to scrape

tweets from April 17 to May 30, 2020. Other search terms, such as “open up,” “shut down,”

may also contain information that implies a user’s perception on reopening policies. However,

these terms were often used in tweets like “business were shut down,” and “the park will open
up next week,” which were not indicative of inclinations to support or oppose reopening pol-

icy. As a result, using these terms may bring a large amount of noise to the dataset. More

importantly, search terms including “lockdown” and “shut down” are not neutral terms as

they were often appeared in tweets describing negative emotions during the lockdown period.

For example, the tweet “I’m so tired of being in lockdown” describes the boredom emotion but

does not adequately illustrate the user’s inclination to support or oppose reopening policy.

Last, using other terms to download the data may result in a large variance of the textual infor-

mation (e.g., the common topics of “reopen” and “lockdown” could be very different), which

makes the machine classification process hard to implement.

For these considerations, we decided to use “reopen” as the search term to download tweet

data. Since almost all states were fully reopened after May 30 [33], we restricted the search

time range to May 30, 2020. Twitter provides two types of geographical data. One is the geo-

tagged location, which is available when a user decides to share the location at time of tweet.

However, only a small portion (<0.1%) of tweets were associated with geo-tagged locations in
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the dataset. The other type is registration location based on a user’s profile. Given that the

research goal is to investigate the online perceptions on U.S. reopening policy, we filtered out

those records with registration locations not implying a U.S. location. This filtering process

resulted in a dataset with a total number of 2,407,911 records, in which 760,646 are unique

tweets given that retweets are of the same textual content.

Then, we selected the 5,000 most frequently occurring unique tweets and manually classi-

fied each of them into support reopen (class 1), oppose reopen (class -1), or unrelated (class 0).

Although previous studies show that retweeting behavior is not random [34, 35], we selected

these tweets rather than a random subset to build the training dataset based upon two consid-

erations. First, these 5,000 tweets are most likely to be reflective of impactful twitter data on

the dataset as they received most retweets. More importantly, reviewing these 5,000 tweets

could ensure more accurate classifications on the whole dataset. It was worth noting that they

comprise 49.7% (1,196,274) of the full dataset (retweets have the same textual content). That

being said, once the trained model gets a high training accuracy, retweets of these most occur-

ring tweets are very likely to be correctly identified. Therefore, this treatment could ensure a

higher classification accuracy on the whole dataset. Last, the testing data were randomly

selected from the dataset so that the performance of the model (trained based on these selected

tweets) on the testing set objectively reflects the accuracy on the whole dataset. More details

regarding the training and testing process are presented in the S1 Appendix.

In the process of human labeling, two members from the research team labeled the same

tweet for the first step. Once a tweet received the same label from both team members, it was

considered as the final label for this tweet. Otherwise, another team member came to label this

same tweet. The class of this re-labeled tweet was determined following the majority of the

three manual labels. Among these 5,000 selected samples, 1,630, 1,950, and 1,420 samples were

classified into class 1, class -1, and class 0, respectively. Meanwhile, we followed the same pro-

cess and labeled another 2,339 unique tweets (different from the 5,000 tweets) that were ran-

domly selected from the dataset to build a testing dataset. As a result, 744, 1,060, and 535

tweets were manually labeled as class 1, class -1, and class 0. Examples of the labels of tweets

are attached in Table 4 in S1 Appendix.

As noted, “class 0” tweets contain the keyword “reopen” but do not imply the perception of

supporting or opposing reopening policy. Examples include “national parks are set to reopen,”

and “Gyms and fitness centers can reopen on May 26 if they can meet safety protocols.” In subse-

quent experiments, we found that a multi-class classification considering these tweets (class 0)

largely reduced the testing accuracy from 73.0% to 58.3% possibly because they contain a large

variance of textual information. Therefore, we determined to manually extract those textual

patterns from 1,420 class 0 samples to remove tweets not informative of reopening perception.

For example, we manually collected the word pattern “can reopen” from the tweet “Gyms and

fitness centers can reopen on May 26 if they can meet safety protocols,” and used it to clear up

“class 0” tweets from the dataset. Our manual collection of word patterns for filtering tweets is

attached in the Section of Data Availability. As a result, the dataset was reduced from 2,407,911

to 1,591,216 with 450,450 unique tweets, even though a small portion of tweets in the dataset

might not be fully cleaned. Correspondingly, we adjusted the training and testing datasets by

filtering out those “class 0” samples. The model framework for the implementation of the pro-

posed method is illustrated in Fig 1.

Text cleaning and sample balance

Before text augmentation, we applied several steps to clean the tweets, as presented in the

box “text cleaning” in Fig 1. We firstly removed short URLs, @username, RT @username,
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digits, emojis, and punctuations in a tweet. Then, we stripped those stop-words that were not

informative, such as “the,” “is,” and “and.” Next, we tokenized each tweet into a list of sepa-

rate words and characters. Since the words in a tweet can be written in different forms, we

converted tokenized words to their base forms (also known as lemmatization). This cleaning

process was completed with the aid of the Natural Language Toolkit (NLTK) python package

[36].

As observed from Fig 1, samples labeled as class 1 and class -1 constitute 45.6% (1,632 out

of 3,580) and 54.4% (1,948 out of 3,580) of the training dataset. Imbalance in the training data-

set may result in a worse prediction performance for the minority class. Therefore, we utilized

a simple text augmentation technique called Easy Data Augmentation (EDA) [37] to balance

the distribution of class 1 and class -1 and increase the training data size. This text augmenta-

tion technique requires no NLP model to be pre-trained on any external dataset and is capable

of improving the performance for a smaller dataset [37]. The EDA uses four operations 1) syn-

onym replacement, 2) random insertion, 3) random swap, and 4) random deletion to increase

the volume of labeled data [37]. Specific explanations and examples are presented in the S1

Appendix.

Following the recommendations by the study, we set the parameters for each of the four

operations as α = 0.1, where α is a parameter that indicates the percentage of the words in a

sentence that is changed [37]. However, the length of tweets can vary largely. Longer tweets

have more words so that they can absorb more noise while maintaining original content. To

compensate for this issue, as suggested by the research [37], the number of words changed in a

tweet is defined as n = αl, where l is the length of a tweet. For shorter tweets, this EDA tech-

nique ensures that at least one word in the text is changed [37]. Further, we set the augmenta-

tion for class 1 and class -1 as 5 times and 4 times while conserved the original tweets. As a

Fig 1. Model framework for the implementation of the proposed method.

https://doi.org/10.1371/journal.pone.0254359.g001
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result, the data size for class 1 and class -1 was increased to 9,780 and 9,750, respectively,

which were approximately equivalent in the training dataset.

Text vectorization and classification

We applied the Term Frequency-Inverse Document Frequency (TF-IDF) and Word

Embedding techniques to convert the tweets in the training dataset into vectors of features.

TF-IDF is a popular term weighting method implemented in text similarity, text classifica-

tion, and information retrieval [38]. Although TF-IDF cannot capture word positions or

semantic meaning in a text, it is an efficient and useful algorithm to deal with a broad set of

texts due to its simplicity and fast computation [39]. In TF-IDF, TF measures the number

of words and their frequencies on each document, while IDF is incorporated to reduce the

weights of common words in the corpus. The goal of using TF-IDF instead of the raw fre-

quencies of words in a text is to scale down the impact of words that occur frequently and

are hence empirically less informative. The representation of the TF-IDF method is given

below [38]:

w t; dð Þ ¼ tf t; dð Þ � idf t;Dð Þ ¼ ft;d � log
D
dt

� �

ð1Þ

where w(t, d) represents the word t’s weight in tweet d, ft,d denotes the frequency of word

t in tweet d, D is the total number of tweets, and dt is the number of tweets that word t
appears.

Unlike TF-IDF method, Word Embedding techniques can help capture the semantic mean-

ings of words in a context by converting each word into a pre-trained vector of features. They

are often applied to compute text similarity or text classification. In this study, we adopted a

popular Word Embedding technique called Word2Vec, which was released by the Google

research team in 2013 [40]. The Word2Vec model was made up of a group of two-layer shal-

low neural networks and deployed with two architectures of continuous Bag-of-words and the

Skip-gram to produce the vector representation for each word [40]. Word2Vec was trained

using Google news, and each word vector has 300 dimensions [40].

As each tweet was converted to a vector of features, we applied several classifiers provided

by scikit-learn python library to build the pipeline for text classification, including Bernoulli

Naïve Bayes (BNB), Support Vector Machine (SVM) with Stochastic Gradient Descent (SGD),

and Logistic Regression (LR) [41]. Since Multinomial Naïve Bayes (MNB) achieved the highest

testing accuracy (Table 1), we specifically explained this algorithm in this section. MNB is a

specialized Bayesian method assuming the data are multinomially distributed [42]. The distri-

bution is parametrized by θy = (θy1, θy2, . . ., θyn) for each class y, where y 2 {−1, 1}, and the

vectors of features can be obtained based on TF-IDF. y = 1 denotes that the tweet implies a per-

ception of supporting reopen, while y = −1 denotes a perception of opposing reopen. n is the

size of vocabulary (based on the number of words appeared in the tweets dataset). θyi = P(xi|y),

i.e., the probability of word xi appearing in a tweet given that the tweet belonging to class y.

Bayes theorem defines the following relation given the class y and word x1 through word xn
[43]:

P yjx1; x2; . . . xnð Þ ¼
P yð ÞP x1; x2; . . . xnjyð Þ

Pðx1; x2; . . . xnÞ
ð2Þ
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The naive conditional independence makes an assumption that [43]:

P xijy; x1; . . . xi� 1; xiþ1 . . . xn
� �

¼ P xijyð Þ ð3Þ

for all i, formula (3) can be simplified to [43]:

P yjx1; x2; . . . xnð Þ ¼ p yð Þ
Yn

i¼1
P xijyð Þ=Pðx1; x2; . . . xnÞ ð4Þ

As P(x1, x2, . . .xn) is a constant given the inputs, the estimation for P(y|x1, x2, . . .xn) can be

denoted as [43]:

P yjx1; x2; . . . xnð Þ / P yð Þ
Yn

i¼1
P xijyð Þ ð5Þ

ŷ ¼ argmaxy P yð Þ
Yn

i¼1
P xijyð Þ ð6Þ

In this study, P(y) was the relative frequency of class 1 and class -1 in the training dataset,

and P(xi|y) was estimated using TF-IDF technique.

Before applying the classifiers to opinion detection, we considered sentiment analysis given

that sentiment techniques can classify the text into one of positive, negative, and neutral emo-

tional categories. However, a prior study illustrated the differences between sentiment identifi-

cation and opinion detection [44]. In this study, we applied a sentiment tool (TextBlob python

package [45]) over the testing dataset and found that more than 60% of the classifications were

not aligned with our manual labels. In some cases, sentiment identification is in line with

reopening perception. For example, some users posted positive feelings when the restaurants

reopened. This positive emotion also implies that the user supported the reopening policy.

However, in other cases, sentiment identification may contradict with the opinion detection.

For example, many users expressed that they were unhappy about the lockdown extension.

This negative sentiment suggests a supportive attitude towards the reopening policy. Similarly,

the positive sentiment might imply that online users supported the stay-at-home order, while

the negative sentiment might indicate a surge in cases caused by reopening protests, both of

which represented an attitude of opposing reopening. In summary, sentiment classifications

could not represent users’ opinions towards the reopening policy and therefore were not

applied in this study. Specific tweet examples are presented in Table 5 in S1 Appendix.

Table 1. Performance of different classifiers on the testing samples.

MNB + BNB + SVM + LR + BNB + SVM + LR +

TF-IDF TF-IDF TF-IDF TF-IDF Word2Vec Word2Vec Word2Vec

Precision

Class 1 0.80 0.80 0.80 0.75 0.71 0.78 0.76

Class -1 0.65 0.63 0.64 0.60 0.53 0.59 0.58

Recall

Class 1 0.72 0.69 0.70 0.68 0.59 0.65 0.63

Class -1 0.75 0.76 0.75 0.69 0.65 0.73 0.72

F1-score

Class 1 0.76 0.74 0.75 0.71 0.65 0.71 0.69

Class -1 0.70 0.69 0.69 0.64 0.59 0.66 0.64

Training 93.9% 93.7% 93.5% 99.9% 68.6% 77.0% 78.0%

Testing 73.0% 72.0% 72.1% 68.1% 61.9% 68.2% 66.8%

https://doi.org/10.1371/journal.pone.0254359.t001
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Performance measurement

Precision, Recall, and F1-score were applied to assess the classification performance. Precision

measures the fraction of true positive cases over the retrieved cases that a model predicts, while

recall is the fraction of true positive cases over all the relevant cases. F-measure applied in this

research uses the Harmonic Mean, known as F1-score. F1-score is a rating of test accuracy,

representing a combination of Recall and Precision [46]. The mathematical formulas for Preci-

sion, Recall, and F1-score are presented in formula 7, 8, and 9, respectively. Performance on

the testing samples of these classification pipelines is exhibited in Table 1.

Precision ¼ True Positive=ðTrue Positiveþ False PositiveÞ ð7Þ

Recall ¼ True Positive=ðTrue Positiveþ False NegtiveÞ ð8Þ

F1 score ¼
2 Recall� Precision
Recallþ Precision

ð9Þ

Overall, models that were trained based on TF-IDF outperform the trained models based

on Word2Vec, demonstrated by both higher training accuracy and testing accuracy. A possible

explanation is that the Word2Vec was not pre-trained using COVID-19 related topics, and

thus it might not be able to capture the semantic meanings of some words in the dataset. More-

over, we simply took the average word embedding from each word vector to represent the

tweet, and thus the trained model might ignore the importance of key words in a tweet and

result in information loss. As a result, models trained on word embeddings might not discrim-

inate the distinctions between tweets in some context. Among the four classifiers that were

built on TF-IDF vectors, MNB slightly outperforms BNB and SVM, demonstrated by a higher

F1-score on both classes and a higher testing accuracy. Although LR classifier achieves the

highest training accuracy, it overfits the model and yields the lowest testing accuracy. For these

considerations, we selected TF-IDF + MNB to build the pipeline and applied it to the whole

dataset. However, it is apparent that those more sophisticated word embeddings and classifiers

could easily have been applied once their performance warranted their choice in other cases.

Results

Temporal analysis

Temporal results. First, we computed the national-level daily perception based on the

number of tweets supporting reopening divided by the total number of tweets each day. Fig 2

depicts the temporal changes in the study period. In particular, it presents a 5-day moving

average to show a smoother trend of the perception changes. On most of the days, the percep-

tion was less than 0.5, demonstrated by a larger number of tweets implying opposing reopen-

ing (the blue bar is higher than the orange bar). In late April to early May, a larger proportion

of online users perceived that it was too soon to reopen the country. However, when states

such as Texas and Florida announced their reopening policies around April 25, tweets sup-

porting reopening began to accumulate, and the volume exhibited a gradual increase. After

May 25, when most states partially or fully reopened, the level of perception presented another

increase. Overall, the perception after May 5 showed a more or less increase despite a short

downturn from May 21 to May 25. This observation suggests that online users tended to

switch to support reopening as the lockdown extended.

Analysis of Twitter data provide insights of online public’s responses to reopening policy.

However, prior studies have shown that social media data might be an overrepresentation of
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young, educated, and urbanized population [47–49]. Specifically, Mislove et al. (2011) [47]

raised a concern about whether Twitter could be representative of the overall population.

Their research discovered that Twitter users significantly overrepresent the densely population

regions. In subsequent studies, Barbera and Rivero (2015) [49] showed that Twitter users who

discussed politics are likely to be male gender, to live in urban areas, and to have extreme ideo-

logical preferences. Mellon and Prosser (2017) [48] also suggested that Twitter and Facebook

users are not representative of general population regarding political relevant discussions

including vote choice, turnout, age, gender, and education.

Therefore, we compared the estimated perception with national polls to figure out how

Twitter samples are biased in the representation of the public on reopening policy, as Fig 2

illustrated. We found that the estimated perception was different from national polls between

May 5 to May 15. At other time during the study period, the results based on Twitter data were

close to the national polls.

Popular news-driven tweets and their effects. News and events are of importance to

drive public perceptions and often discussed in tweets. Numerous studies have showed that

media coverage often exerts a significant impact on public perceptions by altering people’s

exposure to information [50–52]. Inspired by these studies, we investigated how the important

news especially political news and scientific news drove the discussion on Twitter and how

they affected public perceptions on temporal horizon. We probed into the top 214 most

retweeted tweets in the study period and extracted the news contents mentioned in the tweets.

The top 214 tweets were retweeted 483,336 times in the study period (483,336 of 1,591,216,

Fig 2. Daily perception and moving average. a. Daily perception and 5-day moving average for supporting reopening

from April 17 to May 30, 2020. A perception< 0.5 indicates that more online users opposed reopening, while a

perception> 0.5 implies that the majority supported reopening. The absolute volume of tweets indicating supporting

reopening or opposing reopening is also presented. b. Comparison between the 5-day moving average perception with

national polling results.

https://doi.org/10.1371/journal.pone.0254359.g002
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covering 30% data). Among these most retweeted 214 tweets, 152 are news-driven tweets, fea-

tured by a direct reference to a news event or the main text being followed by link to a news

article.

In order to identify the popular news-driven tweets and their impacts on public percep-

tions, we first classified the 152 news-driven tweets into different categories. Specifically, we

considered those tweet contents driven by news or reports mentioning political orders, plans,

guidelines, statements, or announcements made by the president, governors, or other politi-

cians as “political-news-driven.” In comparison, we considered those tweets containing scien-

tific-related news or evidence, including scientific research findings, experimental data and

reports, and guidance from experts, health officials, and research institutes as “scientific-news-

driven.” For example, the following tweet is “scientific-news-driven” as it opens up a discus-

sion based on the scientific evidence that the testing kits were not enough to guarantee a safe

reopening environment.

“We can’t safely reopen the economy until we can test millions of asymptomatic people and
find out who can spread the virus. That requires a massive testing infrastructure and robust
contact tracing we don’t yet have. The federal government must lead and stop blaming the
states. https://t.co/vYr3kAKMTz”

The following tweet reflects politics-related opinions that the administration shelved CDC

guidance on how and when to reopen:

“Reasons why CDC guidance was shelved: 1. Guidelines say states should not reopen while
their Covid cases are increasing. 2. Trump admin wants states to reopen regardless. 3. White
House does not want to be accountable, and guidelines would make them so. https://t.co/

6VXqDaQSFc”

The human labeling process of the types of news was similar to the tweet labeling, as

explained in Section 2.1 Data Preparation. A tweet was firstly labeled by two team members

and checked by the third one if there was an inconsistency. As a result, 95 of 152 were identi-

fied as relative to political news, while 24 of them were relative to scientific news. It was also

noted that some tweets could be driven by multiple types of news. Among the 152 tweets, five

referred to both political news and scientific news. In addition to the tweets relative to political

or scientific news, 38 of 152 were related to news that reported pandemic facts (e.g., death toll,

new cases, testing), social events (e.g., protests), economic impact (e.g., unemployment). For

example,

“14.7% unemployment. It’s time to reopen America. We’re not going to be able to protect our
elders or the sick if we have no economy.”

“Heads up re Alabama. . .’Alabama saw its largest single-day increase in new cases Monday,

a little more than three weeks after the stay-at-home order expired on April 30 and two
weeks after the state allowed restaurants and bars to reopen on May 11.’ https://t.co/

TwBHTWXb0L”

With the identifications of popular tweets, we summarized typical political (in red boxes),

scientific (in blue boxes), and other types (in grey boxes) of news or evidence, as illustrated in

Fig 3. We probed into the contents and the classifications (automatically classified by the

trained model) of these popular tweets and found that news or opinions relative to reopen
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policy plans, announcements, economic recovery, and controlled outbreak often resulted in

supporting reopening. However, news or opinions relative to pandemic outbreak, limited test-

ing capacity, data manipulation, concerns for increasing cases and deaths, and safe recovery

often led to a perception of opposing a premature reopening.

In addition, we noticed that 95 “political-news-driven” tweets were retweeted 175,908

times, while 24 “scientific-news-driven” tweets were retweeted a total of 56,573 times. Among

the 95 “political-news-driven” tweets, 26 tweets (27.4%) with a total of 36,929 (21%) retweets

express a positive sentiment of supporting reopening, while 69 tweets (72.6%) with a total of

138,979 (79%) retweets are negative about reopening. Among the 24 “scientific-news-driven”

tweets, 3 tweets (12.5%) with a total of 3,108 (5.5%) retweets support reopening, and 21 tweets

(87.5%) with a total of 53,465 (94.5%) retweets oppose reopening. This result manifests that

the majority of both political news and scientific news that were extensively discussed on Twit-

ter resulted in the view of opposing reopening on the temporal horizon. In particular, the sci-

entific news implies an attitude of opposing reopening even more than the political news does,

such as delivering alerts for premature reopen or highlighting data manipulation issues. As

these tweets were widely recognized, it reflects that a substantial number of Twitter users

acknowledged the same standpoint as the original tweet. Although this study did not cover all

the tweets that contained political and scientific news, we recognized that investigation of

these popular tweets could help support the analysis of how the political and scientific news

drove people’s perception on reopening policy in the Twitter community.

Be the first mover, follower, or late mover. The appropriate time of reopening can be an

additional driving factor on the temporal dimension that affected the perception. Being the

first mover, follower or late mover is a significant question for policymakers to consider. A

risk-based decision-making process should be taken into account to determine the appropriate

time to reopen the economy [53]. This question has been examined in the literature of business

Fig 3. Daily perception and breaking news.

https://doi.org/10.1371/journal.pone.0254359.g003
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strategy, and researchers raised the concern that being the first mover could result in potential

hazards [54]. In this section, we attempted to evaluate the impacts on the public perception

under multiple scenarios of reopening policies.

We categorized the reopening policies into three groups based on the date when a reopen-

ing policy took effect, including “first mover” (before May 5), “follower” (from May 5 to May

14), and “late mover” (after May 14). Such division is mainly based upon the following two rea-

sons. First, it generates three time periods with almost equal length. Second, we observed that

May 5 and May 14 were the two time points that multiple U.S. states altered their reopen sta-

tuses [33]. Then we investigated the policy’s effects on the perception level, as exhibited in

Table 2. Typical examples of dynamic perception changes are presented in Fig 4. The impact

on perception was evaluated based on a 3-day average trend analysis after the implementation

of a reopening policy, as presented below.

• Negative = more than 3 percentage of negative reaction within 3 days.<-3%

• Slight negative = 1 to 3 percentage of negative reaction within 3 days, -1~3%

• Neutral = less than 1 percentage change in perception within 3 days, -1 ~1%

• Slight positive = 1 to 3 percentage of positive reaction within 3 days, 1~3%

• Positive = more than 3 percentage of positive reaction within 3 days,>3%

Table 2. Public reaction to reopening policy.

Group a: Group b: Group c:

First Mover Follower Late Mover

State Partial Full State Partial Full State Partial Full

TX ++ - - CA / CT ++

OK ++ - - DE / MI ++

GA ++ - - RI / NY ++

MS ++ KY / NM ++

MT + - AR + ++ NH ++

TN ++ - AZ / + OR ++

UT - HI ++ VA ++

SC ++ PA + LA ++

MO - WA + FL ++

WV ++ VT / / ID ++

NJ - - NC + MA ++

IL - - SC + MD ++

IN - - WI ++ WY ++

OH - - NH ++ KS ++

MN - - FL ++ IN - -

KS - - NV - - WV - -

WI - - OH - -

WY - - NC - -

ND + KY - -

AL ++

NE ++

(Note: “++”: positive, “+”: slight positive, “/”: neutral, “-”: slight negative, “- -”: negative.).

https://doi.org/10.1371/journal.pone.0254359.t002
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For the “first mover” group, the pattern manifests that, for 10 out of 21 states, the percep-

tion emerged on Twitter supported an early partial reopening policy (allowing some major

sectors to reopen) but adversely reacted to a full early reopening policy (allowing every major

sector to reopen). One possible explanation is that Twitter users were aware of the risks of

increasing cases that might result from an early full reopening policy even though such policy

aimed to reinvigorate a slumping economy. Moreover, 8 out of 21 states in the “first mover”

group reacted negatively even to an early partial reopen, while only 3 out of 21 states (“AL,”

“NE,” and “ND”) displayed a positive reaction to a fully early reopening policy. For the “fol-

lower” group, the observed pattern appeared to be consistent. A neutral or slightly positive

reaction to reopening policies was reported from 16 out of 17 states in this group excepting

“NV” state where an adverse reaction was observed. For the “late mover” group, the overall

response was positive. 14 out of 19 states in this group showed a positive sentiment on the

Fig 4. The impact of reopening policy on perception level. a. Group a: first mover (partially reopen or fully reopen before May 5).

b. Group b: follower (partially reopen or fully reopen between May 5 and May 14). c. Group c: late mover (partially reopen or fully

reopen after May 14). The upward arrow corresponds to the time of full reopen, and the downward arrow corresponds to the time of

partial reopen.

https://doi.org/10.1371/journal.pone.0254359.g004
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partial or full reopening policy. However, 5 states (“IN,” “WV,” “OH,” “NC,” and “KY”) dis-

played a negative reaction to a full reopening policy. In conclusion, the perception towards

reopening policy exhibited a shift from negative to positive as the lockdown extended.

Overall, a partial reopening policy was likely to result in a more or less favorable increase

on the perception level, possibly because people were concerned about the economic pressure

under the COVID-19 pandemic. The result also suggests that in many U.S. states, the public

willingness expressed on Twitter was not inclined to support a swift reopening strategy. By

contrast, being the follower or late mover rather than the first mover of reopening policy was

likely to be favored by Twitter users. However, the trends of different U.S. states could show

variations as the COVID-19 outbreak hit with varying severity and time.

Spatial analysis

Spatial results. From the spatial perspective, we focused on the analysis of state-level per-

ception. We firstly binned the data and calculate the state-level perception based on the total

number of tweets with users’ registration locations indicating the same state (e.g., “California,

USA,” “Los Angeles,” “California,” and “Santa Monica CA” all indicate the California state).

As shown in Fig 5, the average perception in the study period ranges from the lowest 33.8% to

the highest 54.7% across the U.S. states. The five states with the highest perception for support-

ing reopening policy were West Virginia (WV, 54.7%), Missouri (MI, 54.6%), Tennessee (TN,

54.5%), Idaho (ID, 53.4%), and Oklahoma (OK, 53.1%). In comparison, the five states with the

lowest perceptions were Vermont (VT, 33.8%), Washington (WA, 36.7%), Maryland (MD,

37.8%), Oregon (38.2%), and Massachusetts (38.2%). Overall, states located in the West, Mid-

west (especially East North Central), and Northeast region had a higher perception in compar-

ison to states located in the South and Middle areas. Moreover, we presented the geographical

distribution of state-level perception on a weekly basis in Fig 5. A continuous and consistent

pattern observed from Fig 5 manifests that the majority of states located in the South and Mid-

west, especially West North Central held a higher perception to support reopening.

Correlation analysis. We extended the spatial analysis to focus on the relations between

the state-level perception and geodemographic attributes. This analysis aims to figure out

geodemographic factors that were associated with the changes of the state-level perception.

Previous studies revealed that socio-economic and political factors could affect the public

perception, such as age, gender, race, income, educational level, party affiliation, and area of

residence [25–27]. Therefore, we firstly performed a correlation analysis with nine selected

geodemographic factors, including educational level (bachelor’s degree %) [56], health (health

value 2018) [57], party affiliation (net democratic) [58], household income (average household

income 2018) [59], age (median age 2018) [60], gender (male to female ratio 2018) [61], ethnic

group (non-white percentage 2018) [62], and some factors related to the pandemic including

the reported case rate (as of June 2) [63] and unemployment change (unemployment change

from May 2019 to May 2020) [64]. The correlation results are exhibited in Fig 6.

According to Fig 6, the state-level perception exihibited a moderate and negative correla-

tion with health value (R = -0.66, p-value < 0.001), bachelor degree (R = -0.69, p-value <

0.001), net democratic (R = -0.61. p-value < 0.001), and average household income (R = -0.54,

p-value < 0.001). Twitter users in the states with higher health value, higher educational level,

higher average household income, and more democratic inclined were less likely to support

reopening policy. For those two selected factors directly referring to the COVID-19 pandemic,

the state-level perception showed a weak correlation with unemployment change (R = 0.35,

p-value = 0.013) and case rate (R = -0.27, p-value = 0.060). In a state with a higher case rate,

Twitter users felt less inclined to support reopening policy. However, we observed that the
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perception appeared to be weakly and positively correlated with the unemployment rate

change, indicating that users were likely to support reopening policy when the state had a

lower unemployment rate. Among these investigated factors, the perception level didn’t show

a significant correlation with median age, male to female ratio, and non-white ratio, demon-

strated by p-value > 0.05. One interesting observation for Fig 6 was that the state-level percep-

tion showed a moderate correlation with those socioeconomic or political factors (education,

party affiliation, health, income) within a state, weak correlation with the factors relative to the

pandemic (unemployment change rate, case rate), and no significant correlation with demo-

graphic attributes (gender, age, ethnic group).

Regression analysis. Some selected geodemographic factors might be inter-correlated

(e.g., bachelor degree, health value, household income, and net democratic). Therefore, we

suspected that the selected attributes might not be statistically significant to estimate the

Fig 5. State-level average perception. a. Overall state-level average perception from April 17 to May 30, 2020. b. State-level average perception from

April 17 to April 23. c. State-level average perception from April 24 to April 30. d. State-level average perception from May 1 to May 7. e. State-level

average perception from May 8 to May 14. f. State-level average perception from May 15 to May 21. g. State-level average perception from May 22 to

May 28. The figure was generated using the python choropleth graphing libraries (the code was released under MIT license) [55]. If the figure is similar,

this figure is not identical to the original image and is therefore for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0254359.g005
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perception level. Therefore, we performed a regression analysis to identify what identified

socioeconomic and political factors (independent variables) could explain the changes of the

perception level (dependent variable).

Ordinary Least Squares (OLS) was applied to fit a multi-linear regression model. The OLS

model minimizes the sum of the squares of the differences between the calculated dependent

variable (perception level) in the dataset and those predicted by the function. Since the OLS

model assumes non-multicollinearity and homoscedasticity, we performed two diagnostic

tests on the model, including the multicollinearity test and the heteroscedasticity test. Prior to

feeding the data into the model, we selected the six features that showed moderate to strong

correlations (explained in Section 3.2.2. Correlation analysis) with perception levels and

applied the min-max scaling approach to normalize these input values into the range of (0, 1)

to avoid that features in greater numeric ranges dominate those in smaller ranges.

The Variance Inflation Factor (VIF) quantifies the severity of multicollinearity. It provides

an index that measures how much the variance (the square of the estimate’s standard devia-

tion) of an estimated regression coefficient is inflated due to collinearity [65]. A VIF exists for

Fig 6. Correlation analysis with selected factors. a. Correlation with bachelor degree % (R = -0.69, p-value< 0.001).

b. Correlation with health value (R = -0.66, p-value< 0.001). c. Correlation with net democratic (R = -0.61, p-

value< 0.001). d. Correlation with average household income (R = -0.54, p-value< 0.001). e. Correlation with

unemployment change rate (R = 0.35, p-value = 0.013). f. Correlation with case rate (R = -0.27, p-value = 0.060). g.

Correlation with median age (R = -0.098, p-value = 0.497). h. Correlation with male to femal ratio (R = -0.06, p-

value = 0.677). i. Correlation with non-white % (R = -0.037, p-value = 0.801).

https://doi.org/10.1371/journal.pone.0254359.g006
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each of the independent variable in a multiple regression model, and the VIF for ith indepen-

dent variable is represented as [65]:

VIFi ¼
1

1 � R2
i

ð10Þ

where R2
i is the R-square value obtained by regressing the ith independent variable on the

remaining independent. A VIF of 1 implies that there is no correlation between the ith inde-

pendent variable and the remaining variables, and thus the variance is not inflated. As a rule of

thumb, VIF > 5 is caused for concern, and VIF > 10 indicates a serious collinearity problem

[65]. In this study, we performed the VIF analysis on these six selected factors, and the VIF

score for each factor is listed Table 3. The VIF score for the variable “bachelor degree %” is

7.297, which raises a concern about the colinearity issue for the regresssion model. Therefore,

we removed this variable for subsequent regression analysis.

Meanwhile, the OLS model assumes that the observations have the same error variance. We

performed a heteroscedastic analyiss using the White test [66]. Heteroscedasticity refers to the

circumstance in which the conditional variance is not constant (Conditional variance is the

variability of dependent variable for each value of the independent variables) [67]. According

to the White test result, the F-statistic is 0.909, and the p-value is 0.581. This result does not

reveal a significant goodness-of-fit and thus accepts the null hypothesis that the residuls are

homoscedastic.

Based on the results of these two diagnostic tests, we selected the independent variables,

including health value, net democratic, average household income, and unemployment rate, to

perform the regression analysis. The number of observations is 50 (each U.S. state is consid-

ered as a data point in the model). As a result, the R-squared value is 0.55, implying that these

identified independent variables can explain 55% of the dependent variable–perception level.

The specific result of each independent variable is presented in Table 3.

According to Table 3, the t scores and p-values were used for the hypothesis testing of the

coefficients–the variables of net democratic (p-value = 0.004) and health value (p-value =

0.001) have statistically significant p-value. It also means that these two variables were statisti-

cally significant in explaining the state-level perception.

From correlation and regression analyses, it is reasonable to conclude that the state-level

perception was likely to be associated with the changes of party affiliation (net democratic)

and health condition (health value), as these demographic characteristics within a state could

affect its public perception of supporting reopening policy.

Discussion

The COVID-19 pandemic has posted significant health threats to the U.S. society and weak-

ened the domestic economy since its outbreak in March 2020 [68]. Reopening the country

Table 3. Regression results.

Variable VIF Coef. Std. Error t P > |t| 95% CI

bachelor’s degree 7.30

health value 3.83 -0.514 0150 -3.43 0.001 [-0.817, -0.212]

net democratic 3.25 -0.527 0.173 -3.04 0.004 [-0.876, -0.178]

household income 4.45 0.159 0.206 0.77 0.443 [-0.256, 0.573]

unemployment rate 2.31 -0.113 0.140 -0.80 0.426 [-0.395, 0.170]

case rate 1.67 -0.027 0.135 -0.20 0.841 [-0.299, 0.244]

https://doi.org/10.1371/journal.pone.0254359.t003
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after the shutdown was a challenging decision for the policymakers to cope with. Premature

reopening might trigger a second wave of widespread infections that could invalidate previous

efforts [5], but a prolonged lockdown could dampen the economy and cause severe mental

problems for people [69, 70].

The government’s decision to reopen the country should be subject to the inspection of

public concerns, thoughts, and behaviors. Social media presents a rich source of informa-

tion for the government agencies to detect the impact of their policies on the public. This

study anatomizes the debate on Twitter surrounding the reopening policy from temporal

and spatial perspectives. The goal of this study is to provide policymakers insights to under-

stand the perception emerged on social media and its association with geodemographic

factors.

In this study, we investigated more than 1.5 million tweets and employed NLP and machine

learning techniques to classify the tweets into supporting or opposing reopening. With these

classifications, we computed the perceptions and conducted the analysis from temporal and

spatial dimensions. From the temporal dimension, our results show that popular political-

news-driven and scientific-news-driven tweets could result in a view of opposing reopening.

On top of that, we divided the reopening policies into three scenarios: first mover (before May

5), follower (May 5 ~ May 14), and late mover (after May 14). The result manifests that an

early full reopening policy often exerted a negative influence on supporting reopening, but a

late reopening policy or an early partial reopening policy could result in the positive sentiment

on supporting reopening.

From the spatial dimension, we explored the correlations between the state-level perception

and geodemographic factors. Our findings reveal a significant difference on the average state-

level perceptions. The state-level perception showed a moderate negative correlation with

socioeconomic and political factors, including education, health, party affiliation, and income.

The state-level average perception also showed a weak correlation with factors relative to the

COVID-19 pandemic, including the unemployment change rate and reported case rate. How-

ever, the perception was unlikely to be correlated with intrinsic demographic attributes on

population, such as age, gender, and ethnic groups. More importantly, through the regression

analysis, we found that the state-level perception was likely to be associated with the changes of

party affiliation and health condition.

In this study, we demonstrate the feasibility of using social media data to track online public

perceptions of reopening policy, and present a quantitative process to develop a pipeline to

classify the tweets. This social media-based approach can be generalized to quantify the level of

online perceptions on a policy or an event and has the advantages of rapidity, quantity, and

spatial coverage. From practical perspectives, this study provides an instrument for the govern-

ment agencies to detect the perception and insights on the public risk propensity, which fur-

ther supports them to formulate a well-thought-out strategy.

Despite the aforementioned benefits, some limitations need to be highlighted. First, a small

portion of unrelated tweets (class 0) might not be fully cleaned from the dataset since some tex-

tual patterns were not present in the collected samples. Second, using the key term “reopen” to

download the data might result in some information loss. For example, this filtering would

eliminate tweets, such as “I don’t think the government should lift the stay-at-home order too
soon,” which expresses an opinion towards reopening but does not contain the key word.

Third, since the testing accuracy is 73%, misclassifications could lead to biases in the result

analysis. However, it was observed that the F1-scores of class 1 and class -1 were close, and

therefore the impacts from misclassified tweets might be offset. Moreover, a large set of

retweets were aligned with the same manual labels so the actual accuracy of labels could be

much higher.

PLOS ONE Reopening amid the COVID-19 pandemic on Twitter

PLOS ONE | https://doi.org/10.1371/journal.pone.0254359 July 13, 2021 18 / 23

https://doi.org/10.1371/journal.pone.0254359


Ongoing and future work will first pay attention to the improvement of text classification

models. One possible direction is to apply more sophisticated classifiers, such as deep neural

networks. Another piece of future work will incorporate social media data from Facebook or

Instagram into current findings and extend this study to establish a public perception tracking

system, which may benefit government agencies, health officials, research institutes, and the

residents.

Conclusion

This study utilized a social media-based approach to investigate public perceptions towards

reopening policy and anatomized the debate surrounding reopening policy on Twitter. This

study investigated more than 2 million Twitter postings related to reopening policy in the date

range from April 17 to May 30, 2020, and it built a pipeline for text classification using NLP

and machine learning techniques. The result analysis was investigated from both temporal

and spatial perspectives. From the temporal horizon, the results suggested that popular tweets

mentioning political news and scientific news expressed more negative sentiment on support-

ing reopening. Moreover, being the first mover to reopen the state was more likely to result in

a negative response to support reopening, while being the late mover triggered a more positive

response. From the spatial horizon, the state-level perception exhibited a moderate and nega-

tive correlation with socioeconomic and political factors, including education level, health

value, party affiliation, and household income. However, it did not show apparent correlations

with intrinsic attributes of population like age, gender, or ethical group. The research findings

provide the policymakers meaningful insights to track the public perception and understand

how it reacts and interacts with related policies or news events and thus enable policymakers

to enact appropriate solutions to implement reopening phases.
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