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SUMMARY

The power of single-cell RNA sequencing (scRNA-seq) stems from its ability to uncover cell type-

dependent phenotypes, which rests on the accuracy of cell type identification. However, resolving

cell types within and, thus, comparison of scRNA-seq data across conditions is challenging owing to

technical factors such as sparsity, low number of cells, and batch effect. To address these challenges,

we developed scID (Single Cell IDentification), which uses the Fisher’s Linear Discriminant Analysis-

like framework to identify transcriptionally related cell types between scRNA-seq datasets. We

demonstrate the accuracy and performance of scID relative to existing methods on several published

datasets. By increasing power to identify transcriptionally similar cell types across datasets with batch

effect, scID enhances investigator’s ability to integrate and uncover development-, disease-, and

perturbation-associated changes in scRNA-seq data.

INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) (Hashimshony et al., 2012; Jaitin et al., 2014; Macosko et al., 2015;

Picelli et al., 2014; Ramskold et al., 2012; Zheng et al., 2017) is now being routinely used to characterize cell-

type-specific changes in development, disease, and perturbations (Regev et al., 2017), which require

analysis of cross-data comparison (Butler et al., 2018; Haghverdi et al., 2018; Kiselev et al., 2018). However,

there are technical and biological variations between the different datasets that may hamper the joint anal-

ysis of these data (Butler et al., 2018; Haghverdi et al., 2018; Kiselev et al., 2019).

Batch correction approaches such as canonical correlation analysis (CCA) (Butler et al., 2018),mutual nearest

neighbours (MNN) (Haghverdi et al., 2018), and single cell variational inference (scVI) (Lopez et al., 2018)

have beendesigned to integrate scRNA-seqdatasets. The advantage of thesemethods is that batch correc-

tion allowsmerging of datasets that providemore power to resolve cell types (Heimberg et al., 2016), partic-

ularly those that are rare. In both CCA and MNN, cells that have similar local correlation or neighborhood

structure in the datasets are paired. However, when the data are significantly imbalanced in the number of

cells and library size per cell, both of which influence accuracy of clustering, it is unclear how these methods

perform. Moreover, depending on the extent of technical bias or extent of overlap in cell types between the

data, untangling technical from biological variation between data may not be possible and runs the risk of

over-correcting, i.e., the biological variance between the data may be lost.

As deeply characterized, extensively validated, and annotated tissue-, organ-, and organism-level atlases are

increasingly being generated (Regev et al., 2017), it is worthwhile to reuse such high-quality information to iden-

tify known populations of cells in the target data with lower quality. In addition to the propagation of cell labels

and metadata across datasets, reference data can also be used to group cells in the target data in which unsu-

pervised clustering does not resolve consistently given the partial knowledge of the cell types in the literature or

with the clusters found in the superior quality reference data. In such cases, a biomarker-based approach for

identifying transcriptionally equivalent cells across datasets involves determining whether the top marker genes

derived from the reference clusters are present in the target cells. However, this biomarker-based approach

does not work effectively owing to the dropout problem with scRNA-seq data, i.e., for a large proportion of

genes, the expression values are not sampled (Bacher and Kendziorski, 2016; Stegle et al., 2015; Vallejos

et al., 2017). To map cells from target scRNA-seq data to a reference data, scmap (Kiselev et al., 2018) extracts

features from each reference cluster and uses a distance- and correlation-basedmetric to quantify the closeness

between each reference cluster’s centroid and the cell in the target data to assign target cells to reference clus-

ters. However, distance metrics in high-dimensional space may not work as expected (Aggarwal et al., 2001).
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CaSTLe uses genes with high expression in both the target and reference data or those that have high mutual

information to clusters identities in the reference datasets to identify equivalent populations (Lieberman et al.,

2018). However, CaSTLe’s accuracy has not been systematically assessed against newer developed methods.

Additional mapping methods have also been developed (de Kanter et al., 2019).

Here we present a novel method called scID for identifying transcriptionally related groups of cells across

datasets by exploiting information from both the reference and the target datasets without making any

assumptions regarding the nature of technical and biological variation in these datasets. More specifically,

scID extracts a list of cluster-specific genes (markers) from the reference dataset and weighs their relevance

in the target dataset by learning a classifier with respect to a putative population of cells either expressing

or not expressing those genes. Through extensive analysis of published datasets with batch effect and

strong asymmetry in cell number and library sizes per cell in which the independent clustering of the target

data via unsupervised method is not obviously similar to that in the reference, we show that scID is more

accurate than the above-mentionedmethods. Thus, scID helps uncover hidden biological variation present

between scRNA-seq datasets that can vary broadly in batch effect and quality (i.e., different number of

cells, dropout levels, and dynamic range of gene expression).
RESULTS

Identification of Transcriptionally Similar Cells across scRNA-Seq Datasets

Identifying target cells gj0s that match a reference cluster (C) can be seen as a binary classification problem

fC(gj) by treating the reference cluster of interest as one class (C) and the rest of the reference clusters as

another class (C�), i.e., f CðgjÞ ˛fC;C�g. Assuming that cell types can be linearly separable, one can, for

example, use Fisher’s linear discriminant analysis to learn a direction, wC = ðwC
1 ; w

C
2 ; .; wC

kC
Þ, from the

reference data that maximizes the separation between C and C� population where kC is the number of

signature genes or features for cluster C. Thus, to each target cell we can assign an ‘scID score’’:

sCj =

PkC

i = 1w
C
i ~g

j
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkC

i = 1w
C 2
i

q (Equation 1)

where ~gj
i is the normalized gene expression of feature i in cell j andwC

i is the weight that reflects the discrim-

inatory power of the i-th gene, such that in the projected space, theC and theC�populations aremaximally

separated. To mitigate the influence of batch effect, it may be more suitable to estimate weights from the

target data instead of the reference. Given putative c and c� populations selected from the target data, the

weights are estimated as

wC
i =

mc
i � mc�

i

sc2
i + sc�2

i

(Equation 2)

where mc
i ðmc�

i Þ represents the mean expression of the putative target cluster c (c�) and sci (s
c
i ) represents

standard deviation of gene expression within the putative target cluster c (c�). A target cell can then be

assigned to the reference cluster C by choosing a suitable threshold.

scID maps cells in the target data that are equivalent to clusters in the reference data in three key stages

(Figure 1A).

In the first stage, genes that are differentially expressed in each cluster (herein referred to as gene signa-

tures) are extracted from each cluster of the reference data. In the second stage, for each reference cluster

C, the weights of the genes in the respective gene signature (which reflect their discriminability) are

estimated either from the reference or from the target data, depending on the nature of the data, by iden-

tifying putative c and c� cells using an approach we term differential precision-recall (DPR). In the last stage,

the extracted features (i.e., the combination of gene signatures and their weights) are used to identify target

cells that are most concordant with extracted features. A finite mixture of Gaussians is used to model the

scores of the target cells. Cells with high likelihood of falling under the distribution with the highest average

score are assigned to the reference cluster from which the gene signatures were extracted. Ideally a target

cell should be assigned to only one reference cluster but when closely related cells are present in the refer-

ence data, it is possible that the features extracted are not able to highly discriminate between them leading

to assignment of a cell to multiple clusters in the reference. Conflicts in assignments are resolved using a

relative normalized score strategy. Further details are provided below and in the Methods section.
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Figure 1. Overview and Assessment of scID

(A) The three main stages involved in mapping cells across scRNA-seq data with scID are as follows: In stage 1, gene signatures are extracted from the

reference data (shown as clustered groups on a reduced dimension). In stage 2, discriminative weights are estimated from the target data for each reference

cluster-specific gene signature. In stage 3, every target cell is scored for each feature and is assigned to the corresponding reference cluster.

(B) Quantification of accuracy of DPR classification (stage 2 of scID). Boxplot shows interquartile range for TPR (black) or FPR (white) for all the cell types in

each published dataset listed in the x axis. See also Figure S1.

(C) Quantification of TPR and FPR of stage 2 (black) and stage 3 (white) of scID. Significance was computed using two-sided paired Kruskal-Wallis test for

difference in TPR or FPR between stage 2 and stage 3.

(D) Assessment of accuracy of scID via self-mapping of published datasets. The indicated published data (x axis labels) were self-mapped, i.e., used as both

reference and target, by scID and the assigned labels were compared with the published cell labels.

(E) Assessment of classification accuracy of scRNA-seq data integration. Human pancreas Smart-seq2 data (Segerstolpe et al.) were used as reference and

CEL-seq1 as target (white; Grun et al., 2016) or CEL-seq2 as target (black; Muraro et al., 2016). See also Figures S2 and S3.
As the accuracy of weights depends strongly on selection of true cells, we assessed the accuracy with which

the DPR approach identified true cells in several published reference data. We observed that the median

true-positive rate of the DPR approach was between 45% and 80% and the median false-positive rate was

between 0% and 5% (Figure 1B). Moreover, the estimated weights after the DPR approach were consistent

with weights from the reference data using published label (Figure S1). Thus, although the DPR approach is

stringent and misses higher-than-desired levels of true cells, its role in the overall scID methodology is the

recovery of true cells with very low false-positive rate so that the estimated gene weights are accurate. To

assess the accuracy of the scoring approach (stage 3 of scID) and to quantify its contribution to the improve-

ment in classification accuracy, we used the mouse retinal bipolar DropSeq data (Shekhar et al., 2016) and

compared the true-positive and false-positive rates of cells classified by the DPR approach to the subse-

quent weight-based classification. We find that, relative to the accuracy of the DPR approach (Figure 1B),

the accuracy of the weight-based classification of cells has a significantly higher true-positive rate without

increase in the false-positive rate (Figure 1C). To assess the stability and generalizability of scID across

scRNA-seq data across a range of quality and cell type composition, we performed self-mapping (i.e., using

the same dataset as reference and target) of four published datasets spanning different tissues and technol-

ogies. The accuracy of self-mapping, as assessed by Adjusted Rand Index, was relatively high (Figure 1D).
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Wenext testedourassumption thatdifferent targetdatawithdifferentbatcheffect lead todifferentgeneweights

andquantified its impact on classification accuracy.We selected two reference-target pairs fromsimilar tissue so

that the differences are largely due to technical factors rather than biological factors. To this end, we sought to

detect equivalent cells across multiple human pancreas datasets from different technologies (Smart-Seq2

[Segerstolpe et al., 2016], CEL-Seq1 [Baron et al., 2016], and CEL-Seq2 [Muraro et al., 2016]) in which the pub-

lished cell identity labels for each dataset is available. We used the Smart-Seq2 as reference data and CEL-Seq

or CEL-Seq2 as target. We confirmed that the two reference/target data pairs (i.e., Smart-Seq2/CEL-Seq1 and

Smart-Seq2/CEL-Seq2) had different extent of batch effect (Figure S2). As expected, the scID estimatedweights

of the same cell-type-specific genes calculated from the two target datasets are significantly different, yet the

overall accuracy of cell type classification for the two target datasets by scID were similar (Figure S3). scID was

one of the two most accurately and consistently well-performing methods (Figure 1E).

However, these datasets were relatively balanced in terms of cell number and quality and therefore with

mild batch effect. We next assessed these methods in dataset pairs with significant asymmetry in cell

number and cell coverage between reference and target datasets in cell number and coverage and

have stronger batch effect (Buttner et al., 2019) (Figure S2).

Reference-Based Identification of Equivalent Cells by scID across the Mouse Retinal Bipolar

Neurons scRNA-Seq Datasets

In general, a large number of cells despite shallow coverage per cell provides more power to resolve highly

similar cells than low number of cells with deep coverage per cell (Heimberg et al., 2016). We sought to identify

equivalent cell types in scRNA-seq data with strong imbalance in the number of cells or read coverage per cell.

Shekhar et al (Shekhar et al. 2016) generated scRNA-seq data from mouse retinal bipolar neurons using two

different technologies: Drop-seq (Macosko et al., 2015) (with �26,800 cells and �700 genes per cell) and the

plate-based Smart-seq2 (with 288 cells and �5,000 genes per cell). Unsupervised clustering of the full Drop-

seq data with Seurat resulted in �18 discrete clusters, whereas unsupervised clustering of the Smart-seq2

data with Seurat and several other clustering methods (data not shown) identified only 4 clusters (Figure 2A)

possibly due to low cell numbers.

To determine how the transcriptional signatures of the reference clusters are distributed in the target data,

we computed the average gene signature per cluster (Figure 2B; see Methods). The dominant diagonal

pattern in the gene signature matrix for the reference data indicates the specificity of the extracted

gene signatures. All the subtypes of bipolar cells (BCs) that were well separated in the reference Drop-

seq data co-clustered in the target Smart-seq data (Figure 2B). Surprisingly, despite over seven times

greater number of genes per cell in the target Smart-seq2 data compared with the reference Drop-seq

data, the biomarker approach of using top markers of clusters from the reference Drop-seq data resulted

in unambiguous assignment of only a small proportion of cells (Figure 2C).

Thus, we assessed the ability of scID and competing methods to assign cluster identity to cells in the target

Smart-seq2 data using Drop-seq data as reference. scID and CaSTLe assigned 100% (n = 288) of the Smart-

seq2 cells into 15 Drop-seq clusters, whereas scmap assigned only 63.2% (n = 182) of the Smart-seq2 cells

into 10 clusters. Using target cells that specifically expressed cell-type-specific markers (yellow, Figure 2C)

as ground truth, two independent metrics for accuracy suggested that scID was one of the two most

accurately performing methods on these datasets (Figures 2D and 2E).

Reference-Based Identification of Equivalent Cells in scRNA-Seq and Ultra-Sparse Single

Nuclei RNA-Seq from Mouse Brain

Inmany clinical settingswhereonlypostmortem tissues are available, single nuclei-RNAseq (snRNA-seq) (Habib

et al., 2017; Lake et al., 2016) may be possible. However, the transcript abundance in the nuclei is significantly

lower than in the cytoplasm and as a consequence the complexity of scRNA-seq libraries from nuclei-scRNA-

seq from the same tissue is significantly lower than in whole-cell scRNA-seq (Habib et al., 2017) thus making it

challenging to cluster despite large number of cells. To assess how well scID performs compared with alterna-

tives in this setting,weobtainedpublicly availableChromium10X (Zhenget al., 2017) -based scRNA-seqdata on

mouse brain cells and snRNA-seq on mouse brain nuclei (see Methods).

The brain whole-cell scRNA-seq data had �9K cells, and the brain nuclei snRNA-seq data had �1K cells.

Unsupervised clustering of the data separately identified different number of clusters, which did not
4 iScience 23, 100914, March 27, 2020
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Figure 2. Reference-Based Identification of Equivalent Cells across the Mouse Retinal Bipolar Neurons

scRNA-Seq Datasets

(A) t-SNE plot showing clusters in Drop-seq (reference) and Smart-seq2 (target) data of mouse retinal bipolar cells from

Shekhar et al. Cluster membership of reference cells (�26,800 cells) were taken from the publication. Smart-seq2 data

(288 cells) were clustered using Seurat, and cluster names were assigned arbitrarily.

(B) Heatmap showing Z score normalized average expression of gene signatures (row) in the clusters (column) of the

reference Drop-seq data (left) and in the target Smart-seq2 data (right). Red (khakhi) indicates enrichment and blue

(turquois) indicates depletion of the reference gene signature levels relative to average expression of gene signatures

across all clusters of reference (target) data.

(C) Identification of target (Smart-seq2) cells that are equivalent to reference (Drop-seq) clusters using marker-based

approach. The top two differentially enriched (or marker) genes in each reference (Drop-seq) cluster were used to identify

equivalent cells in the target (Smart-seq2) data using a thresholding approach. Bars represent percentage of classified

and unassigned cells using various thresholds for normalized gene expression of the marker genes as indicated on the

x axis. Gray represents the percentage of cells that express markers of multiple clusters, yellow represents the percentage

of cells that can be unambiguously classified to a single cluster, and blue represents the percentage of cells that do not

express markers of any of the clusters. These cells are referred to as orphans. X axis represents different thresholds of

normalized gene expression (see Methods).

(D) Assessment of accuracy of various methods methods for classifying target cells using Adjusted Rand Index.

(E) Assessment of accuracy of various methods methods for classifying target cells using Variation of Information.
have an obvious one-to-one correspondence (Figure 3A). As the whole-cell scRNA-seq data have more

cells than the nuclei-seq, we used the former as reference and obtained gene sets that are differentially

expressed in each cluster compared with the rest of the cells (Figure 3B). Efforts to identify cluster

membership of nuclei-seq data based on top markers in each of the clusters from the whole-cell scRNA-

seq data allowed unambiguous classification of only a small number of cells possibly due to

shallow coverage that leads to low dynamic range in gene expression. Not surprisingly, there was

significant number of orphan cells (i.e., those in which transcripts of cell markers were not captured)

(Figure 3C).

Thus, we assessed the ability of scID and competing methods to assign cluster identity to cells in the target

(snRNA-seq) data using scRNA-seq data as reference. scID assigned 99.5% (n = 949) of the snRNA-seq cells

into 14 scRNA-seq clusters, whereas scmap assigned 60.2% (n = 574) of the snRNA-seq cells into 11 clusters

and CaSTLe assigned 100% (n = 954) of the snRNA-seq cells into 15 clusters. Using target cells that specif-

ically expressed cell-type-specific markers (yellow, Figure 2C) as ground truth, two independent metrics for

accuracy suggested that scID had the highest accuracy (Figures 3D and 3E).
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Figure 3. Reference-Based Identification of Equivalent Cells in Single Cell and Nuclei RNA-seq from Mouse Brain

(A) t-SNE plot showing clusters in the mouse brain scRNA-seq data with �9,000 cells (left) and tSNE of the mouse brain

single nuclei RNA-seq (snRNA-seq) data with �1,000 cells (right). Data were clustered with Seurat (v3).

(B) Heatmap showing Z score normalized average expression of gene signatures (rows) in the reference (left) and in

the target (right) clusters (columns). Red (khakhi) indicates enrichment and blue (turquois) indicates depletion of

the gene signature levels relative to average expression of that gene signature across all clusters of reference (target)

data.

(C) Marker-based identification of cell types in target data. Data were binarized using different thresholds (see Methods)

that represent expression value of each marker gene relative to the maximum. Two most differentially expressed markers

from each reference cluster were used. Cells that express markers of multiple clusters (gray) are labeled as Ambiguous.

Cells that only express markers of a single cluster (yellow) are labeled as Classified. Cells that do not express markers of

any clusters (blue) are labeled as Orphans.

(D) Assessment of accuracy of various methods methods for classifying target cells using Adjusted Rand Index.

(E) Assessment of accuracy of various methods methods for classifying target cells using Variation of Information.
DISCUSSION

Comparison of multiple scRNA-seq datasets across different tissues, individuals, and perturbations is

necessary in order to reveal potential biological mechanisms underlying phenotypic diversity. However,

comparison of scRNA-seq datasets is challenging because even scRNA-seq data from the same tissue

but with different technology or donor can have significant batch effect confounding the technical with

the biological variability. scRNA-seq datasets generated from different scRNA-seq methods and quality

(i.e., similar number of cells and library depth per cell) are in general much easier to correct than data

generated from different methods and quality. Particularly, in cases of strong asymmetry in quality

between datasets to be compared, mapping target cells across data at the individual cell level rather

than performing batch correction can be a more appropriate route for identifying known transcriptionally

related cells.

We have developed scID that uses the framework of Fisher’s linear discriminant analysis to map cells

from a target data to a reference dataset (Figure 1A). scID adapts to characteristics of the target data

in order to learn the discriminative power of cluster-specific genes extracted from the reference in

the target data. scID down-weighs the genes within the signature that are not discriminatory in the

target data. Through extensive characterization of multiple published scRNA-seq datasets, we assessed

scID’s accuracy relative to alternative approaches in situations where the reference and target datasets
6 iScience 23, 100914, March 27, 2020



have strong asymmetry in quality and have shown that scID outperforms existing methods for recovering

transcriptionally related cell populations from the target data, which does not cluster concordantly with

the reference.

As the scale of single-cell RNA-seq data increases and the numbers of clusters obtained are so large

that manual annotation is cumbersome, scID can enable automatic propagation of annotations and meta-

data across clusters in these datasets. In addition, scID can be used for ordering single transcriptomes

based on an arbitrary user-specified gene list without the need for providing information on gene expres-

sion levels.

Limitations of the Study

scID can estimate gene signature weights from either the reference or the target data. When the reference

and the target data have strong batch effect, estimation of weights from the target appears to be more

accurate. However, in cases where there are very similar cell types in the datasets to be compared, estima-

tion of weights from the reference may be more suitable. Moreover, if the target data contain a cell type

that is only weakly related to but not exactly the cell type in the reference, scID is susceptible to falsely

classifying such cells.

Owing to reliance on gene signatures to discriminate between clusters, a limitation of scID is that it works

only for reference clusters that have distinct gene signatures. Additionally, the accuracy of scID depends

on the correctness of the labels of the reference data. For a dataset to serve as a reference, we expect

well-defined clusters by cell type such that cluster-specific gene signatures exist and they are mutually

exclusive as seen in Figures 2B and 3B. If neither of the two data is well clustered and contains good

gene signatures, scID is not a recommended approach for identification of equivalent cell types. Impu-

tation of gene expression (Zhang et al., 2019) particularly when the target scRNA-seq is highly shallow

may increase the power for identification of equivalent cells and is worth exploring in the future.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

No datasets were generated. The R implementation for scID is available on Github (https://batadalab.

github.io/scID/), and all the scripts to generate the figures shown in this manuscript are available at
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Supplemental Figures 

 
Figure S1. Assessment of accuracy of the DPR strategy for cell selection, related to Figure 1B. Y-axis 
shows Spearman rank correlation of weights estimated from the DPR strategy to weights estimated from the 
known labels from the reference data. Dataset sources used are listed on the x-axis labels.  
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Figure S2. Quantification of batch effect in the reference/target dataset pairs used in the manuscript, 
related to Figures 1, 2 and 3. Extent of batch effect as measured by kBET (Buttner, Miao et al., 2019)  is shown 
on the y-axis (normalized units). The larger the difference between the observed and expected rejection rate, the 
bigger the batch effect. Target datasets used are listed in the title of the panel. 
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Figure S3. Different target datasets with the same cell types have different weights, related to Figure 1E. 
Scatter of weights estimated from pancreas scRNA-seq data from CEL-Seq (x-axis) (GSE81076) and weights 
estimated from pancreas scRNA-seq data from CEL-Seq2 (y-axis) (GSE85241) using the pancreas Smart-seq2 
scRNA-seq data (Segerstolpe, Palasantza et al., 2016) (E-MTAB-5061) as reference. For each of the cell types 
in the reference dataset, weights were computed using DPR positive and negative set selection in the two target 
datasets. Spearman rank correlation is shown in the title of each panel. Divergence of the correlation from r=1 
suggests that the weights are not exactly the same in the two datasets for the same cell type. 
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Transparent Methods 
 
scID workflow 
Given a set of 𝑘" = 𝑘$" + 𝑘&" features (genes) that are positive (𝑘$") and negative (𝑘&") 
markers for a reference cluster 𝐶, scID selects target cells equivalent to reference 
cluster 𝐶 based on their score 𝑠*" , which is a weighted linear sum given by 

𝑠*" = 	
∑ 𝑤."𝑔0.

*12
.34

5∑ 𝑤."	612
.34

 (Eq. 1) 

for 𝑗 = 1,… , 𝑛 where 𝑛	is the number cells in the target data, 𝑔0.
* 	 ∈ [0,1] is the 

normalized gene expression value of the 𝑖-th gene in the 𝑗-th cell, and 𝑤." is a 
weighting factor that represents the discriminative power of gene 𝑖 to identify target 
cells equivalent to reference cluster 𝐶. To reduce sensitivity to outliers, the gene 
expression values are normalized to [0,1] by the 99th percentile instead of the 

maximum i.e. 𝑔0.
* = minD EF

G

HII
, 1J, where 𝑔.

* is the library depth normalized gene 
expression of gene 𝑖 in cell 𝑗	and 𝑃LL is the 99th percentile of the expression of gene 𝑖 
across all target cells. 
 
The weights can be computed from the reference data as follows  
 

𝑤." = 	
𝜇." − 𝜇."

O

𝜎."	6 +	𝜎."
O	6 (Eq. 2) 

where 𝜇." , 𝜎." (𝜇."
O, 𝜎."

O	6) represent the mean and standard deviation, respectively, of 
gene 𝑖 in the cluster 𝐶 (all clusters except 𝐶). Each term of the weight of gene 𝑖 is in 
turn calculated as follows: 

𝜇." = 	
1
𝑙"R �̃�.

*

*∈"

 

𝜇."
O = 	

1
𝑁 − 𝑙" R �̃�.

*

*∈"O
 

𝜎."	6 = 	
1
𝑙" 	R(

*∈"

�̃�.
* − 𝜇.")6 

𝜎."
O	6 = 	

1
𝑁 − 𝑙" 	 R (

*∈"O
�̃�.
* − 𝜇."

O)6 

 
where 𝑙" is the number of cells in cluster 𝐶, 𝑁 is the total number of cells in the 
reference data, and �̃�.

* 	 ∈ [0,1] is the normalized gene expression value of the 𝑖-th 
gene in the 𝑗-th cell in the reference data.  
 
This definition of the weights (Eq. 2) is a solution to Fisher's linear discriminant 
analysis assuming diagonal covariance, where the separation between the two 
classes is defined as the ratio of the variance between the classes to the variance 
within the classes. Ideally, we would like to include the full covariance matrix in order 
to better capture the relationships among clusters. However, we have chosen to 



approximate the covariance matrix as diagonal for computational efficiency but also 
due to limitations posed by the nature of scRNA-seq data. When datasets have 
sparse coverage, the covariance matrix is not full rank and cannot be inverted. 
Additionally, when the list of genes is long, computing the full covariance matrix is 
error prone due to insufficient number of samples.  
 
Choosing the weights in this way penalizes high variability and low mean expression 
in order to account for the following cases:  

a. When a positive marker is not expressed uniquely in the 𝐶 population, 𝜇.	"  will 
increase, reducing the weight as it does not provide sufficient evidence of 
belonging to the cells of interest. 

b. When a positive marker is expressed only within a subpopulation of 𝐶, 𝜎."	6 
will increase, reducing the weight so that a cell’s score does not drop sharply 
when the gene is missing. This also accounts for genes with high dropout rate 
even though they might be specific and sensitive markers. 

c. Finally, non-discriminative genes will be down-weighted, as the numerator 
𝜇.	" − 𝜇."

O  will be low. 
 
Although we can compute these weights from the reference, computing them from 
the target data can lead to improved accuracy, due to adjustments to the data quality 
and cell type composition in the target data. However, to do this we need to select 
target cells that are likely equivalent to the reference cluster 𝐶. The target cells 
(denoted as 𝑐) that express the 𝑘$" signature genes precisely and specifically and do 
not express the 𝑘&" signature genes are selected as equivalent to the reference 
cluster 𝐶 by clustering the data in the differential precision–differential recall domain 
which we refer to as differential precision recall or DPR approach.  
 
In general, precision of a cell expressing a set of genes is defined as the total 
number of expressed genes that belong to the given set divided by the total number 
of expressed genes and recall is defined as the number of expressed genes that 
belong to the set divided by the total number of genes in the set. 
So, for the set of positive markers (𝑘$") 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ = 	
𝑛$[\
𝑛\

 

 
𝑟𝑒𝑐𝑎𝑙𝑙$ = 	

𝑛$[\	
𝑛$[

 

where 
𝑛$[\: number of upregulated signature genes expressed 
𝑛$[: total number of upregulated signature genes 
𝑛\: total number of expressed genes 
 
A cell expressing all positive markers will have 𝑟𝑒𝑐𝑎𝑙𝑙$ = 1 and a cell expressing only 
positive markers (and no other genes) will have 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ = 1. Thus, cells 
equivalent to cluster 𝐶 will be in the first quadrant of the (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$, 𝑟𝑒𝑐𝑎𝑙𝑙$) space 
close to (1,1) and other cells not expressing the positive markers will be close to 
(0,0).  
 



For the set of negative markers (𝑘&")  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛& = 	

𝑛&[\
𝑛\

 

 
𝑟𝑒𝑐𝑎𝑙𝑙& = 	

𝑛&[\	
𝑛&[

 

where 
𝑛&[\: total number of downregulated signature genes expressed 
𝑛&[: total number of downregulated signature genes 
𝑛\: total number of expressed genes 
 
Similar to precision-recall for positive markers, a cell expressing all negative markers 
will have 𝑟𝑒𝑐𝑎𝑙𝑙& = 1 and a cell expressing only negative markers will have 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛& = 1. Thus, cells equivalent to cluster 𝐶 should be in the third quadrant of 
the (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛&, 𝑟𝑒𝑐𝑎𝑙𝑙&) space close to (0,0). 
 
To identify target cells equivalent to reference cluster 𝐶, we have combined the 
precision and recall for positive and negative markers via a differential precision (𝐷𝑃) 
and differential recall (𝐷𝑅) metric as follows: 

𝐷𝑃 = 	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛[ − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ =
𝑛$[\ −	𝑛&[\

𝑛\
 

𝐷𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙[ − 𝑟𝑒𝑐𝑎𝑙𝑙$ =
𝑛$[\
𝑛$[

−	
𝑛&[\
𝑛&[

 

 
Thus, target cells equivalent to cluster 𝐶 will be close to (1,1), cells very different 
from cluster 𝐶 will be close to (-1,-1), and cells belonging to clusters that are similar 
to cluster 𝐶 and share markers will be around (0,0). This will help separate cells 
equivalent to cluster 𝐶 from cells belonging to very similar clusters that could be 
otherwise grouped together if we were only using the positive markers.  
 
To select putative positive and negative training populations from the DP-DR space, 
we cluster the cells using different Gaussian finite mixture models(Scrucca, Fop et 
al., 2016)  and select the model with the lowest Bayesian Information Criterion (BIC). 
The clusters with highest DP and/or DR are selected as candidate matching clusters. 
From the candidate clusters, we select as 𝑐 the one with the closest to (1,1) centroid 
as measured by Euclidean distance. All other candidate clusters are discarded from 
the training set and the remaining clusters are used as training non-matching 
clusters (𝑐`). 
 
Analogous to computing the weights in the reference data, they can be computed 
from the target data using the training sets of cells (𝑐 and 𝑐`).  
 

𝑤." = 	
𝜇.a − 𝜇.a

O

𝜎.a6 +	𝜎.a
O6 (Eq. 2) 

where 𝜇.a, 𝜎.a represent the mean and standard deviation, respectively, of gene 𝑖 in 
the cluster 𝑐  and 𝜇.a

O, 𝜎.a
O represent the mean and standard deviation, respectively, 

of gene 𝑖 in the cluster 𝑐`. Each term of the weight of gene 𝑖 is in turn calculated as 
follows: 



𝜇.a = 	
1
𝑙aR𝑔0.

*

*∈a

 

𝜇.a
O = 	

1
𝑙aO R 𝑔0.

*

*∈aO
 

𝜎.a	6 = 	
1
𝑙a 	R(

*∈a

𝑔0.
* − 𝜇.a)6 

𝜎.a
O	6 = 	

1
𝑙aO 	R(

*∈aO
𝑔0.
* − 𝜇.a

O)6 

 
where 𝑙a, 𝑙aO are the number of cells in clusters 𝑐 and 𝑐` respectively.  
 
The weights estimated from the target data reflect the cellular composition of the 
target data and quality (i.e. the distribution of dropout and dynamic range of gene 
expression) of the target data both of which influence the discriminatory power of the 
features. 
 
Then, to identify target cells equivalent to reference cluster 𝐶, we fit different finite 
mixtures of Gaussians on the score 𝑠*"  (Eq. 1) and assign cells that belong to the 
population with highest average score to reference cluster 𝐶. 
 
When the reference data contains clusters that are highly similar transcriptionally, 
the features from a cluster can be correlated with the features from another cluster 
which in turn lead scID to assign target cells to multiple reference classes. To 
resolve this, the scores of target cells 𝑠*"  is first z-score normalized and the 
ambiguous cell is assigned to the reference cluster with the highest normalized score 
over all other reference clusters it was assigned to.  
 
Data source 
Human Metastatic Melanoma immune cells from Tirosh et al. 2016 (Tirosh, Izar et 
al., 2016).  This Smart-seq2(Picelli, Faridani et al., 2014) data consists of malignant, 
immune and stromal cells from metastatic melanoma tumours from 19 patients, a 
total of 4,645 cells. We have used the 3,254 immune (CD45+) cells for our analysis, 
which on average had 3,925 genes per cell. Data was downloaded from the Broad 
Institute Single Cell Portal. 
 
Mouse Retinal Bipolar Neurons from Shekhar et al. 2016(Shekhar, Lapan et al., 
2016): This study performed Drop-seq and Smart-seq2 experiments on Vsx2-GPF 
mouse retinal cells. The Drop-seq data had 27,499 cells with an average of 880 
genes per cell. The Smart-seq2 data had 288 cells with an average of 4,556 genes 
per cell. Gene expression data was downloaded from the Broad Institute Single Cell 
Portal. 
 
Brain cells from E18 mouse: This 10X data consists of brain cells from the cortex, 
hippocampus and subverticular zone of an E18 mouse. The scRNA-seq dataset had 
9,128 cells with an average of ~2,500 genes per cell and the single nuclei RNA-seq 
data have 954 cells with an average of 2,832 genes per cell. Both these datasets 



were downloaded from 10X Genomics (https://support.10xgenomics.com/single-cell-
gene-expression/datasets). 
 
Murine tracheal epithelium cells from Montoro et al. 2018 (Montoro, Haber et al., 
2018): This combination of plate-based and droplet-based scRNA-seq data of 
murine airway epithelial cells consists of 7,193 cells with an average of 1,712 genes 
per cell. The cells were partitioned into seven clusters annotated post hoc using a 
biomarker approach by the authors. Data was downloaded from the Broad Institute 
Single Cell Portal. 
 
Mouse brain cells from Hu et al. 2017 (Hu, Fabyanic et al., 2017): This Drop-seq 
single nuclei RNA-seq data from cortical tissues of adult mice consists of 18,194 
cells with 1,649 genes per cell on average that were partitioned into 40 annotated 
clusters. Data was downloaded from the Broad Institute Single Cell Portal. 
 
Unstimulated and stimulated PBMCs from Kang et al. 2018 (Kang, Subramaniam et 
al., 2018): This 10X data consists of 14039 human PBMCs from eight patients, split 
into two groups; one control and one stimulated with interferon-beta (IFN-β). Seurat 
CCA was used to align and cluster the data in order to obtain gold standard cell 
identities as shown in Butler et al (Butler, Hoffman et al., 2018).   
 
Human pancreatic islet cells from Segerstolpe et al. 2016 (Segerstolpe et al., 2016): 
This Smart-Seq2 data consists of pancreatic tissue and islets from six healthy 
individuals and four type 2 diabetes patients. RPKM-normalized gene expression 
data and cell labels were downloaded from ArrayExpress (E-MTAB-5061). 
 
Human pancreatic islet cells from Grün et al. 2016 (Grun, Muraro et al., 2016): This 
CEL-seq data consists of pancreatic cells from deceased organ donors with and 
without type 2 diabetes. Gene expression data and cell labels were downloaded from 
NCBI GEO (GSE81076).  
 
Human pancreatic islet cells from Muraro et al. 2016 (Muraro, Dharmadhikari et al., 
2016): This CEL-seq2 data consists of islets from cadaveric pancreas. Gene 
expression data and cell labels were downloaded from NCBI GEO (GSE85241).  
 
Data Normalization 
When datasets were obtained as UMI counts, Counts Per Million (CPM) library-depth 
normalization was performed prior to the analysis. For the biomarker-based 
approach we further normalized the gene expression to [0,1] by the 99th percentile in 
order to use the same threshold between marker genes that can differ significantly in 
their expression level.  
 
scID implementation 
The R implementation and tutorial for scID is available on Github 
(https://batadalab.github.io/scID/). 
 
scID has the following user-specified options: 

1. logFC: Log-fold-change threshold for extracting cluster-specific genesets 
from the reference data. The logFC used for extracting gene signatures for 
the reference datasets used in the figures are as follows: For Hu et al. 2017 



(Hu et al., 2017) logFC was set to 0.3; for Montoro et al. 2018 mouse 
tracheal epithelium data (Montoro et al., 2018) logFC was set to 0.5; for 
Shekhar et al. 2016 (Shekhar et al., 2016) logFC was set to 0.7; for Tirosh et 
al. 2016 (Tirosh et al., 2016) metastatic melanoma Smart-seq2 data  logFC 
was set to 0.5; for Segerstolpe et al. 2016 (Segerstolpe et al., 2016) Smart-
seq2 human pancreas  data  logFC was set to 0.5; for 10X E18 mammalian 
brain data (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/neuron_1k_v2) logFC was set to 0.6. 

2. estimate_weights_from_target: Estimate weights using the target data 
by selecting training sets using the precision-recall-like approach. For all 
figures in the paper we set this to TRUE. 

3. only_pos: Select only upregulated genes from each reference cluster. For 
all figures in the paper we set this to FALSE in order to select both 
upregulated and downregulated genes.  
 

 
Software tools and parameter settings 
We used the following R packages and parameters:  
 
Seurat (Buttner et al., 2019) (version 3.0.1)  
We used UMI count data when available and followed the standard Seurat workflow 
for clustering and data integration with default settings. When normalized data was 
provided instead, we skipped the NormalizeData() function of the workflow. 
 
scran (version 1.10.2) 
For running MNN (Haghverdi, Lun et al., 2018) we used log-transformed CPM-
normalized gene expression values. Aligned and merged expression matrixes were 
clustered using Seurat with default parameters. 
 
scmap (Kiselev, Yiu et al., 2018) (version 1.4.1) 
We used log-transformed CPM-normalized gene expression values for both 
reference and target data. We selected number of highly variable to genes to be 
used so that the maximum possible number of target cells can be classified. 
Specifically, for the data pairs of Figure 1E and Figure 3 we used 500 highly variable 
genes and for the data pairs of Figure 2 we used 150. 
 
CaSTLe (Lieberman, Rokach et al., 2018) 
For running CaSTLe we used the code provided in 
https://github.com/yuvallb/CaSTLe/blob/master/CaSTLeMultiClass.R with all 
predefined parameters. We used log-transformed CPM-normalized gene expression 
values for both reference and target data. 
 
Biomarker-based classification of cells 
To assign labels to target cells using the biomarker-based approach we first 
extracted the top two highly enriched markers (referred to as biomarkers) from each 
reference cluster, sorted by average log fold change. Then binarized the 99th-
percentile-normalized gene expression data using different thresholds (0.10, 0.25, 
0.50 and 0.75) and checked which marker genes are present in each cell. Cells that 
expressed biomarkers of different cell types were labelled as “ambiguous”. Cells that 
expressed biomarkers of a single cell type were assigned to the respective cell type 



and cells that did not express any biomarker were labelled as “orphans”. Only the 
uniquely classified cells were used to assess the performance of other methods.  
 
Quantification of batch effect between pairs of scRNA-seq data 
To measure the extent of batch effect between the reference-target pairs of data 
used in the manuscript, we used kBET (Buttner et al., 2019)(version 0.99.5). High 
rejection rate indicates poor mixing of the data. 
 
Statistical tests 
For testing the improvement of scID Stage 3 versus scID Stage 2 (Figure 1C), we 
tested the difference in True Positive (TPR) and False Positive Rate (FPR) between 
the two stages for each reference cluster using two-sided paired Kruskal-Wallis test.  
For the comparison of the various methods classification of cells to their gold 
standard labels we have used the Adjusted Rand Index (ARI) and the Variation of 
Information (VI) metrics. High similarity between the testing method and the true 
classification results in high ARI and low VI values. 
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