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a b s t r a c t

Transcriptional Regulatory Networks (TRNs) are mainly responsible for the cell-type- or cell-state-specific
expression of gene sets from the same DNA sequence. However, so far there are no precise maps of TRNs
available for each cell-type or cell-state, and no ideal tool to map those networks clearly and in full from
biological samples. In this review, major approaches and tools tomap TRNs from high-throughput data are
presented, depending on the type of methods or data used to infer them, and their advantages and limita-
tions are discussed. After summarizing the main principles defining the topology and structure–function
relationships in TRNs, an overview of the extensive work done to map TRNs from bulk transcriptomic data
will be presented by type of methodological approach. Most recent modellings of TRNs using other types
of molecular data or integrating different data types, including single-cell RNA-sequencing and chromatin
information, will then be discussed, before briefly concluding with improvements expected to come in the
field.
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1. Introduction

Transcriptional Regulatory Networks (TRNs) can be defined as
the complete set of transcriptional regulatory information [1,2].
These networks mainly describe the interactions between tran-
scription factor (TF) proteins and the genes they regulate, by bind-
ing to specific DNAmotifs in their vicinity (Fig. 1). TRNs thus define
the gene expression programs that control cell-type-specific pro-
tein expression, and condition early development, as well as term-
inal fate and response to environmental changes. This regulation
involves formation of a chromatinian landscape, that can be inher-
ited by daughter cells as an encoded ‘‘memory” of the fate of the
cells. TRNs should be robust enough in order to maintain the iden-
tity of the cell and pass it on, but should also allow dynamics in
order to respond to signaling cues. They play fundamental roles
in maintaining homeostasis, and their perturbation can lead to dis-
eases. Multiple approaches have been developed to try to decipher
TRNs but none of them has yet perfectly solved the general map-
ping of their complexity in diverse organisms and conditions.

Generation of molecular data being no longer a limitation, mod-
elling and representation of biological networks become the next
challenges of Systems Biology. Description of TRNs should provide
understanding of their functions and predict their behaviors. It
should also help identification of new cellular reprogramming can-
didates, oncogenes and drug targets. Advances in the field have
been encouraged by the Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM) project [3], which provided evalua-
tion of biomolecular network inference methods through
successive challenges. In this review, advantages and limitations
of different computational biology approaches and 34 tools to infer
TRNs (Table 1) will be discussed. This work relies on examples of
significant research work in the field, and do not intend to be
exhaustive. After discussing TRN topology, the extensive work
done to map TRNs from bulk transcriptomic data, which was the
first layer of data available for such inference, will be presented.
As gene expression can be regulated at the genetic, epigenetic,
transcriptional, post-transcriptional or proteic levels, multiple
molecular data sets are now available to reconstruct TRNs
(Fig. 1B). Methods to infer TRNs using other types of data, such
A) 4 representations of the same Transcriptional Regulatory Network (TRN) mad
NA regulatory sequences. TF1 binds to the regulatory sequences of TF1 and TF2 co
ds to the regulatory sequences of TF1 and TF3 coding genes. B) Data sets availab
of the gene expression steps of a Transcription Factor.
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as genetic perturbation or chromatin conformation, or integrative
methods using multiple data types will then be discussed.

2. TRN topology

TRN topology is classically represented by a graph on which
genes are depicted by nodes, and their regulatory interactions by
edges between those nodes. In this section, I will summarize ele-
mentary structures of TRNs, and will discuss TRN conservation
and hierarchical structure.

2.1. Motifs

Pioneer work on gene regulatory circuits in Escherichia coli
(E. coli), evidenced that these contain small sets of regulatory pat-
terns, and the recurrence of these motifs in networks suggested
putative functions associated to them [4,5]. Network motifs have
been found in many other organisms since then, from yeast [6,7]
to mouse and human [8–10], showing that TRNs can generally be
decomposed in basic building blocks with putative functions. This
extends the notion of structure–function relationship, best known
at the level of molecules, to the level of network patterns. Even if
the existence, enrichment and significance of these motifs can be
arguable, in particular as these are dependent on data availability
[11], some general patterns have been identified. In TRNs, most
genes are regulated just one step away from their activator [12].
The main types of recurring motifs described in yeast, mouse and
human [9,13–15], can be depicted as follows. Simple regulation
consists of a TF that regulates the expression of a gene, either pos-
itively or negatively, with no intermediates (Fig. 2A). It is simple
auto-regulation when a gene regulates its own expression
(Fig. 2B). At the cell population level, positive auto-regulation
induces a bimodal distribution that can maintain a mixed pheno-
type for better adaptation, and negative auto-regulation speeds
up the response time of gene circuits and reduce inter-cellular
variation in protein levels [12]. Feedforward loops (FFL) consist
of three genes: a regulator, x, which regulates y, and a gene z,
which is regulated by both x and y (Fig. 2C and D). As each of
the regulatory interactions in the FFL can be either positive or neg-
e of 3 genes, which TF proteins bind to each other’s DNA binding motifs present in
ding genes. TF2 binds to the regulatory sequences of TF1, TF2 and TF3 coding genes.
le to infer TRNs used in the research works described in this review, placed on the



Table 1
Computational biology tools to map Transcriptional Regulatory Networks.

Tools Full names (when available) Links to tool (when available) Approaches and data used References

ARACNe-AP Algorithm for the Reconstruction of Accurate
Cellular Networks

http://sourceforge.net/
projects/aracne-ap

Information theory, bulk transcriptomics, tested
on single-cell RNA-seq

[56 60]

CLR Context Likelihood of Relatedness Information theory, bulk transcriptomics, tested
on single-cell RNA-seq

[57]

ANOVerence http://www2.bio.ifi.lmu.de/
~kueffner/anova.tar.gz

Correlation, bulk transcriptomics [58]

CoExpNetViz http://bioinformatics.psb.
ugent.be/webtools/coexpr/

Information theory, bulk transcriptomics [59]

GeneXPress Module Networks algorithm https://pypi.org/project/
GeneXpress/#files

Regression, bulk transcriptomics [38]

GENIE3 GEne Network Inference with Ensemble of trees https://bioconductor.
org/packages/release/bioc/
html/GENIE3.html

Regression, bulk transcriptomics, tested on
single-cell RNA-seq

[39]

GRNBoost Gene Regulatory Networks Boost http://arboreto.readthedocs.
io

Regression, bulk transcriptomics, tested on
single-cell RNA-seq

[40]

TIGRESS Trustful Inference of Gene REgulation using
Stability Selection

http://cbio.ensmp.fr/tigress Regression, bulk transcriptomics [42]

LiPLike Linear Profile Likelihood https://gitlab.com/
Gustafsson-lab/liplike

Regression, bulk transcriptomics [41]

Banjo Bayesian Network Inference with Java Objects Source code and simulated
data are available upon
request

Bayesian inference, bulk transcriptomics [63]

LeMoNe http://bioinformatics.psb.
ugent.be/software

Bayesian inference, bulk transcriptomics [64]

TWNs Transcriptome-Wide Networks https://github.com/battle-
lab/twn_tsn

Bayesian inference, splicing isoforms, bulk
transcriptomics

[66]

NIR Network Identification by multiple Regression ODEs, bulk transcriptomics [67]
Inferelator freely available upon request ODEs, bulk transcriptomics [68]
GINsim Gene Interaction Network simulation suite http://ginsim.org/ Logical modelling, bulk transcriptomics [70 71]
GNA Genetic Network Analyzer http://www-helix.inrialpes.

fr/gna
Piecewise linear equations, bulk transcriptomics [72]

Network
Deconvolution

Network Deconvolution http://compbio.mit.edu/nd/
index.html

Network deconvolution, bulk transcriptomics [73]

RegulonDB http://regulondb.ccg.unam.
mx

TF regulatory information, relational database,
bulk transcriptomics

[34 28]

GRAM Genetic Regulatory Modules TF regulatory information, bulk transcriptomics [26]
DISTILLER Data Integration System to Identify Links in

Expression Regulation
TF regulatory information, bulk transcriptomics [35]

SEREND SEmi-supervised REgulatory Network Discoverer http://sb.cs.cmu.edu/ecoli/ TF regulatory information, logistic regression,
bulk transcriptomics

[36]

DeMAND Detecting Mechanism of Action by Network
Dysregulation

Bioconductor package or web
based geWorkbench module

TF regulatory information, logistic regression,
bulk transcriptomics

[37]

SIRENE Supervised Inference of REgulatory NEtworks http://projects.cbio.mines-
paristech.fr/sirene/

TF regulatory information, SNV classifiers, bulk
transcriptomics

[33]

DREM Dynamic Regulatory Events Miner http://sb.cs.cmu.edu/drem/ TF regulatory information, HMM based, bulk
transcriptomics

[32 29]

Flynet http://compbio.mit.edu/
flynet/

Evolutionary conserved sequence motifs
integrated with TF binding and chromatin
modification data

[77]

SCENIC Single-CEll regulatory Network Inference and
Clustering

https://aertslab.org/#scenic Single-cell RNA-seq, based on GENIE3 and
GENEBoost

[62]

SCINET Single-Cell Imputation and NETwork
construction

https://github.com/
shmohammadi86/SCINET

Single-cell RNA-seq and a reference global
interactome

[85]

PIDC Partial Information Decomposition and Context Single-cell RNA-seq, information theory, bulk
transcriptomics, partial information
decomposition

[86]

SCNS toolkit Single-Cell Network synthesis http://scns.stemcells.cam.ac.
uk/

Single-cell RNA-seq, boolean logical rules [87]

SCODE scRNA-seq performed on differentiating cells by
integrating the transformation of linear ODEs
and linear regression

https://github.com/
hmatsu1226/SCODE

Single-cell RNA-seq via regulatory dynamics
based on ODEs

[88]

CSHMM-TF Continuous-State Hidden Markov Models TF https://
github.com/jessica1338/
CSHMM-TF-for-time-series-
scRNA-Seq

Single-cell RNA-seq and TF-gene interaction,
Continuous-State Hidden Markov Models

[89]

MARINa Master Regulator Inference Algorithm http://califano.
c2b2.columbia.edu/marina-
license

Differential expression and protein-protein
interactions

[93]

GNAT http://mostafavilab.stat.ubc.
ca/gnat/

Bulk transcriptomics using hierarchy of tissues,
Gaussian Markov Random Fields

[95]

CRCmapper Core transcriptional Regulatory Circuitry
mapper

https://github.com/
ViolaineSaint-Andre/
CRCmapper

Graph theory, enhancer information (H3K27ac
or relevant TF ChIP-seq) and optionally
expression and/or ATAC-seq data

[15]
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Fig. 2. Transcriptional Regulatory Network motifs. A) Simple regulation B) Auto-
regulation C) Coherent type-1 Feed Forward Loop D) Incoherent type-1 Feed
Forward Loop E) Positive Feedback Loops F) Negative Feedback Loops G) Single-
Input Module with positive regulation H) Single-Input Module with negative
regulation I) Dense Overlapping Regulon J) Feedback Loop comprising two positive
transcription interactions K) Feedback Loop comprising two negative transcription
interactions L) Core transcriptional Regulatory Circuitry.
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ative, eight structural types of FFL are possible. Coherent FFLs have
two arms with the same net sign of actions and have been shown
to filter out brief spurious pulses of signal. Incoherent FFLs have
two arms with different net signs of action and have been shown
to generate pulse-like response dynamics. Among all FFLs, the
coherent type-1 FFL (Fig. 2C) and the incoherent type-1 FFL
(Fig. 2D) were shown to occur more frequently in yeast TRNs than
the other types [16]. The possible specific dynamical function of
these loops are described in details in [13]. Feedback Loops are
simple circular chains of interactions, that can be either positive
(Fig. 2E) or negative (Fig. 2F), depending on the product of the signs
of their constitutive interactions. Positive circuits were shown to
be involved in the generation of differentiated states, whereas neg-
ative circuits may be important for homeostasis or sustained oscil-
latory behavior [14]. Single-Input Modules (SIMs) consist of a
protein that regulates a group of target genes, positively (Fig. 2G)
4887
or negatively (Fig. 2H). This motif can allow coordinated expres-
sion of a group of genes with shared function, and can even gener-
ate a temporal expression program, depending on its target
activation thresholds [13]. Dense Overlapping Regulons (DORs)
consist of a set of regulators that control a set of output genes
[5] (Fig. 2I). This topology has probably evolved to enable prompt
response to environmental changes, considering it can take up to
one cell generation time to pass a signal down each step of a cas-
cade [13].

In addition to the motifs described above, work on the sea
urchin and yeast, revealed that developmental TRNs show specific
motifs of regulation that enable cell-fate decisions to last in time
[13,17]. These specific motifs may thus be the most important
motifs to regulate cellular identity at steady state, and can be
described as follows. Feedback Loops comprising two transcrip-
tion interactions are positive-feedback loops of mutually regu-
lated TFs. These can be double-positive loops (Fig. 2J) or double-
negative loops (Fig. 2K). In both cases, a transient signal x can
cause the loop to lock irreversibly into a steady state [17]. This net-
work motif can thus provide memory of an input signal long after
the input signal has stopped. Often, y and z also positively regulate
themselves, strengthening the memory effects. Finally, a motif that
plays a fundamental role in establishment and maintenance of cel-
lular identity is the Core transcriptional Regulatory Circuitry
(CRC) (Fig. 2L). The CRC consists of TFs that regulate each other’s
expression forming an interconnected auto-regulatory loop of reg-
ulation [9,15]. The TFs that compose the CRC, or ‘‘core TFs”, bind to
the regulatory sequences of their target genes and regulate their
expression, generally positively. However, in some cases, these
TFs can act as repressors. CRCs have been identified and charac-
terised as major regulators of cell identity in multiple human and
mouse cell-types [8,9,18–20]. Among the few, generally between
3 and 30, core TFs that compose the CRCs [15], are the TFs that
are able to reprogram another cell-type into the cell-type in which
they are identified. With this property of containing reprogram-
ming TFs, CRC can be thought of as the most upstream motif of
TRNs [15,21]. As core TFs collectively bind to most expressed genes
in each cell-type,their targets can be identified to extend the net-
works [15]. The CRC motif highlights the fact that when multiple
TFs cooperate synergistically, it potentiates their ability to induce
changes in cell fate [22]. On a broader level, cross-regulatory inter-
actions among the core TFs could facilitate the integration of com-
plex cellular signals, while conferring robustness to these circuits.

2.2. Modules

Studies of TRNs have shown that cellular functions are likely to
be carried out in a modular manner [2,23–25]. In general, modular-
ity in graphs refers to clusters of nodes that participate to common
biological processes [26,27]. The network potential modularity can
be reflected by the clustering coefficient, which, if modularity
exists in the network, should be different from the one of
randomised networks. Multiple methods have been developed to
identify modules, also called communities [26–42]. Regulatory
modules are most often identified as a set of co-expressed genes
whose expression vary with the expression levels of regulators
[38–42] or to which the same set of TFs binds [26,29,32,33,35–
37,43]. These methods will be described in more details in section
2) and 3). A DREAM challenge recently allowed to test and compare
module identification methods on protein–protein interaction
(PPI) data in human using Genome-Wide Association Studies
(GWAS) data [44]. Kernel clustering leveraging a new diffusion
state distance instead of the shortest-path metric that is usually
used to predict function using PPI structure [31], was identified
as the top performing method for this challenge. Modularity opti-
misation, with a resistance parameter that controls the granularity
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of modules, and random-walk based on Markov clustering, with
locally adaptive granularity to balance module sizes, were also
among the top performing methods, and the value of applying
multiple methods to detect complementary types of modules
was emphasized [44]. Module identification is still an active field
of research. For example, following this DREAM challenge bench-
mark, Didier et al. showed that a randomization procedure, as well
as the consideration of weighted edges and layers, increases the
number of trait and disease community detected [30].

2.3. TRN conservation

Structural properties of TRNs seem to be conserved across spe-
cies [10,45] and tissues [10,15]. Comparison of TRNs across 394
human samples and 662 TFs on the basis of edges overlap, showed
that developmentally and functionally related lineages consis-
tently grouped together, indicating that they share regulatory com-
ponents [46]. Interestingly, between different cell-types or species,
the regulatory link of TF to gene is more conserved than are the
sequences [10,47–49]. In many cases, it seems that evolution has
converged independently on the same regulation circuit [50]. Net-
work motifs may have been ’rediscovered’ because they perform
important functions, they are robust, and use the least number of
components to carry out biological functions [13].

2.4. Hierarchy in TRNs

Reprogramming experiments in human andmouse show that as
few as 3 to 5 TFs, when expressed ectopically, have the ability to
rewire the gene expression program of a cell towards the one of
another cell-type [21,51]. However, TRNs are often represented as
hairy balls of large number of interactions, in which it is not obvious
to identify a hierarchy in the information flow. With these net-
works, it is difficult to read how reprogramming factors, when
introduced in a cell, could easily rewire its TRN. A few studies
included hierarchy in the design of TRN mapping [15,52]. When
organized into a hierarchy, genomic binding information of 119
human transcription-related factors in over 450 distinct experi-
ments, showed that factors at different levels have different binding
properties [52]. By identifying a Core transcriptional Regulatory
Circuit upstream of the full TRN, CRCmapper [15] helps understand
how a few TFs only are sufficient to fully reprogram a cell and dur-
ably change its phenotype. In addition, ‘‘hierarchy” is sometimes
confused with ‘‘connectivity”. Indeed, numerous methods for map-
ping TRNs use ‘‘in-degree”, ‘‘in betweenness” or ‘‘centrality degree”
as metrics to identify ‘‘hub” genes, which are often considered
‘‘master regulators” of transcription. In- and out-degree degree
are respectively defined as the number of edges arriving to a node
and the number of edges leaving a node. In a random network,
the in- and out- degrees would follow a Poisson distribution, as
most nodes would have roughly the same number of links. In TRNs
however, the in-degree distribution, is best approximated by an
exponential, showing that most genes are regulated by few TFs,
and the out-degree, by a power law distribution, showing that most
TFs regulate a few genes [5,53,54]. Thus, ‘‘in-degree”, ‘‘hub” or ‘‘cen-
trality” metrics are not necessarily good criteria to identify master
regulators of transcription and hierarchy of factors should be better
considered in the design of TRN mapping.
3. Modelling TRNs from bulk transcriptomic data

Use of DNA micro-arrays enabled quantification of messenger
RNA (mRNA) molecules under many experimental conditions and
provided a base to develop methods to analyse TRNs. These algo-
rithms can now be applied to RNA-sequencing (RNA-seq) data,
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which have become more and more affordable. Most methods to
model TRNs from transcriptomic data are based on machine learn-
ing approaches. They include supervised and non-supervised
methods and various types of models, as for example, artificial
neural networks, decision trees, regressions or Bayesian networks
[55].

3.1. Correlation and mutual information

Correlation methods can be used on time series or when multi-
ple conditions are available. These correlate the variation in mRNA
levels of a TF with sets of mRNA levels for other genes. Mutual
information has been introduced to consider non-linear dependen-
cies between TFs and their targets [56]. For correlation and mutual
information methods, partial correlation coefficient and data pro-
cessing inequality can be applied to distinguish direct and indirect
dependencies. Examples of correlation and mutual information
methods include, ARACNE (Algorithm for the Reconstruction of
Accurate Cellular Networks) [56], CLR (Context Likelihood of Relat-
edness) [57], ANOVerence [58] and CoExpNetViz [59]. ARACNE was
designed to scale up to the complexity of regulatory networks in
mammalian cells. Even if it is sensitive to loops and complex
topologies, it seems to work pretty well on human samples. A
new version of ARACNe, ARACNe-AP [60], is less computationally
demanding. The CLR algorithm, using mutual information, and
controlling for false positive interactions, showed a 60% true posi-
tive rate on 3,216 known E. coli regulatory interactions. ANOVer-
ence [58], which uses a non-parametric, non-linear correlation
coefficient, is an interesting alternative to other measures of
dependency, and was rated the best performer on real expression
compendia in the DREAM5 challenge. Finally, a recent tool adapted
to TRN mapping in plants, CoExpNetViz [59], uses mutual informa-
tion and a set of query or ‘‘bait” genes to predict TRNs.

3.2. Regressions

Contrary to correlation and information theoretic methods,
regression methods can predict directed interactions. Regression-
based approaches rely on the assumption that RNA levels of a TF
and their direct target genes vary linearly. This assumption is
clearly not optimal, as TF are transcriptionally and post-
transcriptionally highly regulated, and their binding to DNA motifs
depend on the accessibility of the chromatin, as well as their inter-
actions with co-factors. Feature selection methods are generally
used to select for the TFs to be used in the regularised regression
models. Multiple TRN mapping methods are based on this
approach. This is the case of one of the first tool to map TRNs, Gen-
eXPress [38]. This method identifies the small set of TFs which
expression is predictive of the expression level of modules of co-
expressed genes using a regression tree. Later developed, GENIE3
(GEne Network Inference with Ensemble of trees) [39] is also based
on regressions. It trains random forest models to predict the
expression of each gene in the data set from the expression of
TFs passed in input. The models are then used to derive weights
for the TF-target pairs, depending on their respective relevance.
Interestingly, the use of random forest regression added value of
allowing non-linear co-expression relationships between a TF
and its candidate targets and GENIE3 was the top-performing
method for network inference in the DREAM4 and DREAM5 chal-
lenges [61]. A faster alternative to GENIE3, GRNBoost [40,62], is
based on a regression model using gradient boosting. Another
great example of regression method is TIGRESS (Trustful Inference
of Gene REgulation with Stability Selection) [42], which also
ranked among the top methods in the DREAM5 challenge. TIGRESS
performs a collection of feature selection for each target gene, and
uses randomization-based techniques to score the evidence of reg-
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ulatory interactions. The main differences with the other methods
are that TIGRESS aggregates the features selected by least angle
regression (LARS) and not by decision tree, and introduces a novel
scoring technique for stability selection, which improved the per-
formance of LARS. Finally, in order to tackle the persistent obstacle
of high correlation in expression between regulatory elements in
TRNs, a recent tool, LiPLike (Linear Profile Likelihood) [41],
assumes a regression model and iteratively searches for interac-
tions that cannot be replaced by a linear combination of other pre-
dictors. The overall good results obtained by regression methods
suggest that, despite their basic assumption of linear relationship
between regulator and target RNA levels, regression-based formal-
ism can be highly relevant for TRN inference.

3.3. Bayesian inferences

A Bayesian network is a probabilistic graphical model that rep-
resents a set of random variables and their dependencies. In the
context of TRNs, edges represent the conditional dependencies
between genes. In a first step, the structure of the network is learnt
and possible model improvements, such as changes in topology,
are evaluated. In a second step, TF activities are predicted from
the network model, and a likelihood score is used to assign addi-
tional target genes for which the expression can be predicted by
the TF activity profile. Such models are attractive for their ability
to learn from observations. However, searching the space of all
possible conditional dependencies is very computationally inten-
sive. To render the task manageable, heuristic approximation
methods, that use locally constraint search techniques, have been
developed. An influence score for dynamic Bayesian networks that
attempts to estimate both the sign and relative magnitude of inter-
actions among variables was used in Banjo (Bayesian Network
Inference with Java Objects) [63]. When faced with limited quanti-
ties of observational data, the authors found that combining this
influence score with moderate data interpolation reduced a signif-
icant portion of false positive interactions in the recovered net-
works. Another Bayesian inference tool, LeMoNe [64] infers TRNs
using a centroid clustering approach to assign genes and condi-
tions to modules and subsequently assigns a regulatory program
to the gene sets. The authors show that reliably detecting
condition-specific or combinatorial regulation is particularly diffi-
cult in a single optimum, but can be achieved using ensemble aver-
aging. Too often, TRN analyses do not consider the large variety of
transcripts isoforms corresponding to splicing variants, while
alternative splicing critically contributes to the transcriptome
diversity of most eukaryotes. In particular, alternative splicing
can be a way to promptly respond to stimulation by modifying
the transcription output, using epigenetic information present in
coding genes [65]. Interestingly, a recently developed framework
named TWNs (Transcriptome-Wide Networks) [66], based on a
Bayesian bi-clustering model, focused on the regulation of relative
isoform abundance and splicing, using human samples from the
Genotype-Tissue Expression (GTEx) project.

3.4. Ordinary differential equations

Methods based on Ordinary Differential Equations (ODEs) allow
to consider quantitative and dynamic interactions between genes,
and are thus particularly well suited to time-course data. An ODE is
a differential equation containing one or more functions of an inde-
pendent variable and the derivatives of those functions. The term
ordinary is used in contrast with the term partial differential equa-
tion, which implies more than one independent variable. For
example, NIR (Network Identification by multiple Regression)
[67] and Inferelator [68] use ODEs. The NIR method is based on
multiple linear regression analysis of steady-state transcription
4889
profiles. It was used to retrieve a first-order model of regulatory
interactions in a nine-gene subnetwork of the SOS pathway in
E. coli. Inferelator uses multiparametric logistic regression to
search for co-expressed modules enriched for genes that are highly
connected in metabolic and functional association networks, or
that contain over-represented de novo-detected motifs. It was used
to successfully predict a large portion of the regulatory network of
the archaeon Halobacterium NRC-1.

3.5. Qualitative modelling

Biological regulatory interactions being usually non-linear,
qualitative representation of regulatory networks are of interest
to map TRNs [1,69]. Logic modelling is based on the idea that a
variable can take a discrete number of states or values, two in
the case of Boolean models, and that the state of a variable is deter-
mined by a logical combination of the states of other variables.
Logical modelling provides a qualitative dynamical description of
the corresponding regulatory system, which can help simplify
the complexity of TRNs. GINsim (Gene Interaction Network simu-
lation suite) [70,71], is a great example of logical modelling tool.
It simulates qualitative models of genetic regulatory networks
based on a discrete logical formalism. Piece-wise linear differential
equations have also been used to describe gene regulatory net-
works [69]. Piece-wise linear models capture the regulatory effects
by means of step functions that change their value in a switch-like
manner at threshold concentrations of the regulatory proteins.
GNA (Genetic Network Analyzer) [72] is based on these models
for the simulation of genetic regulatory networks that can combine
gene expression data with knowledge about regulatory interac-
tions from multiple sources.

3.6. Network deconvolution

Recognizing direct relationships between variables connected
in a network is a recurrent problem in TRN mapping. To surround
this difficulty, network deconvolution can be used. Work from the
Kellis lab presented a method, using a reverse approach of network
convolution, by exploiting eigen-decomposition and infinite-series
sums, for inferring the direct dependencies in a network [73]. The
advantage of this method is that the transitive effects that result
from indirect effects are subtracted in a single operation, and the
effectiveness of this algorithm was demonstrated on several
large-scale networks.
4. Modelling TRNs from other data types or integrating multiple
data types

Approaches considering transcriptomic data only, globally lack
directness and typically require large number of samples to build
a network. In the following section, I will describe methods using
other types of data or data integrative approaches to model TRNs,
by highlighting some examples.

4.1. TF regulatory information

Early work using Chromatin Immuno-precipitation (ChIP) tech-
nology helped progresses in TRN mapping [74,75]. Methods inte-
grating TF-gene physical interaction knowledge are particularly
interesting compared to approaches based on expression only,
because, as mentioned in 2.2), TF RNA levels are not very good sur-
rogates of their activities. One of the first tool integrating TF regu-
latory information is RegulonDB [34]. The latest version of this
well-maintained relational database including TF-genes interac-
tions information in E. coli, RegulonDB v9.0, integrates interactions
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with small RNAs [28]. Another pioneer algorithm to infer TRNs by
using TF regulatory information is the GRAM algorithm [26]. It was
applied to 106 TF ChIP-Chip data and 500 expression profiles to
construct a genome-wide TRN in yeast Saccharomyces cerevisiae
(S. cerevisiae). Other methods, such as DISTILLER (Data Integration
System To Identify Links in Expression Regulation) [35], combine
expression data with motifs, ChIP-chip or ChIP followed by
sequencing (ChIP-seq) data, to search for co-regulated modules.
Supervised (or semi-supervised) methods, such as SEREND
(SEmi-supervised REgulatory-Network Discoverer) [36], DeMAND
(Detecting Mechanism of Action by Network Dysregulation) [37]
and SIRENE (Supervised Inference of REgulatory NEtworks) [33]
have also been developed to integrate expression with TF binding
information. The first two use models based on logistic regression
to predict the probability that genes belong to the same regulon,
and SIRENE splits network inference into multiple binary
classification problems for each TF, training Support Vector
Machine (SVM)-based classifiers. Computational work using
GeneXPress [38] on 38 purified populations of human hematopoie-
tic cells integrated gene expression with cis-elements in gene
promoters, to identify 276 TFs differentially expressed across
hematopoietic states, and modules of highly co-expressed genes
[43]. This led to graphs, on which nodes represent TFs, and edges
are colored according to the correlation between the expression
patterns of the nodes in the specific lineage (Fig. 3A). Integration
of TF binding information also led to other interesting representa-
tions of TRNs. For example, a representation based on ChIP-seq
combined with expression data from the induction of the same fac-
tors in Mycobacterium tuberculosis was proposed [53] (Fig. 3B). It
was made using DREM [29,32] to model gene expression, which
is a HMM-based approach to integrate static interaction data with
time series gene expression. Altogether, methods coupling gene
expression with TF regulatory information are efficient, but these
methods generally do not consider chromatin accessibility, long-
range interactions permitted by the 3D structure of the genome,
or combinatorial interactions between TFs and cofactors.
4.2. Evolutionary conserved DNA binding motifs for TFs

Transcriptional enhancers, which are DNA regulatory elements
able to recruit TFs and the transcriptional apparatus to activate
expression of their target gene, are more likely to be functional
when they are under purifying evolutionary selection [76]. This
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conservation feature of regulatory sequence, in addition to gene
expression, TF binding and chromatin marks, was used as input
to map TRNs from 12 Drosophila melanogaster species with flynet
[77]. In contrast to methods which require training data for each
considered TF, flynet trains a global classifier to predict regulatory
interactions by integrating motif, binding, chromatin, and expres-
sion data as input features. Interestingly, this analysis showed that
chromatin profiles were more informative than the commonly
used expression profiles.
4.3. Genetic perturbation

Genetic knockout and perturbation were also used to recon-
struct TRNs and won the DREAM3 challenge [78]. More recently,
Kemmeren et al. monitored mRNA expression using micro-arrays
after individual deletions of one-quarter of S. cerevisiae genes
[79]. From this data, positive and negative regulations could be
identified and the resulting network was displayed with Cytoscape
[80] (Fig. 3C). Genetic perturbations can be interesting for mapping
or validating TRNs, but it is important to note that these
approaches can only capture expression changes compatible with
viability and may induce deregulation of the TRNs of the cells.
4.4. eQTL data

Some studies used inter-individual variation in gene expression,
defining eQTLs (expression Quantitative Trait Loci), to infer TRNs
[81,82]. For example, Fairfax et al. created TRNs based on eQTLs
identified upon monocytes stimulation, which revealed multiple
master regulators of innate immune responses [81]. Another
example, is recent work performed on adult brain cell samples
across 1866 individuals, for which regulatory connections were
identified by relating the activity of TFs to target genes through
eQTL mapping [82]. For each TF, a regulatory link was created if
the TF had a DNA binding motif within 1 kb of the promoter or
associated enhancers of the target and if it had a high coefficient
in a regularised elastic net regression relating TF activity to target
expression. The final TF-enhancer-target gene list constitutes the
gene regulatory network. Linkages from the full network targeting
cell-type-specific biomarker genes, were displayed with Circos
[83], as exemplified for excitatory neurons (Fig. 3D).
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4.5. Single-cell RNA-seq data

Recent advances in microfluidics have opened opportunities for
generating single-cell RNA-seq (scRNA-seq) data sets. Computa-
tional biology approaches to map TRNs from these data have to
adjust to their inherent stochastic variation and sparsity. These
approaches are designed to map TRNs at the level of unique cells
[62,84–86] or to help reconstruct dynamic cell trajectories or puta-
tive TF order of action [87–89]. SCENIC (Single-Cell regulatory Net-
work Inference and Clustering) [62] identifies sets of genes that are
co-expressed with TFs, using GENIE3 [39] and the faster variant of
it, GRNBoost [40]. Also, to reduce false positive and indirect targets
found with GENIE3, SCENIC performs cis-regulatory motif analysis
on each co-expression module, and only modules with significant
motif enrichment of the correct upstream regulator are retained.
Another computational framework, SCINET (Single-I mputation
and NETwork construction) [85], enables inference of single-cell
interactomes by integrating a reference protein interactome with
single-cell gene expression data (Fig. 3E). PIDC (Partial Information
Decomposition and Context) [86] uses partial information decom-
position to identify potential regulatory relationships between
genes, and outputs a weighted network from an expression matrix.
Finally, SCODE (scRNA-seq performed on differentiating cells by
integrating the transformation of linear ODEs and linear regres-
sion) [88], SCNS (Single-Cell Network Synthesis) [87] and
CSHMM-TF (Continuous-State Hidden Markov Models TF) [89]
interpret scRNA-seq as time-course expression data, where the
pseudo-time corresponds to the time information, and are relevant
for biological systems undergoing dynamic transcriptional
changes. A recent benchmark was performed on six scRNA-seq net-
work inference methods, primarily developed for bulk RNA-seq,
based on their ability to infer similar networks when applied to
two independent data sets for the same biological condition [90].
For networks with up to 100,000 links, GENIE3 resulted to be the
most reproducible algorithm and, together with GRNBoost2,
showed higher intersection with ground-truth biological interac-
tions. However, even the best performing methods showed repro-
ducibility scores that were below 54%, indicating that further
improvements are still needed in the design of network inference
methods for scRNA-seq data. Other benchmarks including both
methods targeting bulk RNA-seq data and methods specifically
designed for scRNA-seq data [91,92], also concluded a rather lack
of accuracy of these methods, even for approaches specifically
developed for single-cell data, and that methods that do not
require pseudo-time-ordered cells are generally more accurate.

4.6. Protein interactomes

Protein interactome have also been used for TRN mapping. For
example, MARINa (Master Regulator Inference Algorithm) [93]
generates a TRN and infers master regulators, from a regulatory
model of protein–protein interactions and a list of genes ranked
by their differential expression in two phenotypes. Others have
used whole-exome sequencing and a global proteome network
aggregated from different network resources [94], or integrated a
reference protein interactome with scRNA-seq data [85], for TRN
inference.

4.7. Hierarchy of tissues

The GTEx Project generated RNA-seq expression data for more
than 30 distinct human tissues. Within the frame of this project,
GNAT [95] addresses the problem of having a small number of
samples for a majority of the tissues, by inferring tissue-specific
gene co-expression networks using a hierarchy of tissues. The net-
works are modelled for each tissue in the hierarchy, using a Gaus-
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sian Markov Random Field (GMRF) transfer learning approach,
which increases the accuracy with which networks are learnt.
The resulting networks from this original approach show that
tissue-specific TFs are hubs that preferentially connect to genes
with tissue-specific functions.

4.8. Chromatin conformation

Recent evidences suggest a reciprocal interplay between fine-
scale 3D genome structure and transcription [96]. 3D structure
high-throughput methods such as chromosome conformation cap-
ture (Hi-C) or Chromatin Interaction Analysis by Paired-End Tag
sequencing (ChIA-PET), have revealed Topologically Associating
Domains (TADs) [97,98] and insulated neighborhoods [99] medi-
ated by specific proteins, such as CTCF, for insulation and regula-
tion of transcription. ChIA-PET is a method enriching for
chromatin interactions involving a specific protein. It was used to
examine RNA polymerase-II-associated chromatin interactions in
human cells [100]. Interacting genomic sites were defined as nodes
of a TRN and connected as per their connectivity in the ChIA-PET
data set. The resulting graph consists of a giant network, organized
into chromatin communities (Fig. 3F). The color gradient repre-
sents the structural organization of the chromatin communities,
that were found to be enriched in specific functions and syntenic
through evolution. Chromatin conformation data may be useful
to consider for TRN inference, especially for accurate identification
of enhancer-promoter interactions, but do not per se permit a full
reconstruction of transcriptional regulatory interactions.

4.9. DNase hyper sensitivity

Study of the chromatin state, which modulates DNA accessibil-
ity, has provided essential information to understand gene expres-
sion regulation in space and time, and is highly relevant for
inferring TRNs. Chromatin openness can be measured by DNase I
hypersensitivity followed by sequencing (DNase-seq). DNase I
treatment preferentially cleaves the genome within highly accessi-
ble DNA regions, called DNase I-hypersensitive sites (DHSs), leav-
ing ‘‘footprints” that can be used to infer TF occupancy. Genome-
wide maps of DNase I footprints were used to assemble a human
regulatory network, and to analyse the dynamics of these connec-
tions across 41 cell samples [101]. DNA elements in all DHSs
within a 10 kb interval centered on the transcriptional start site
were screened for TF binding motifs. Repeating this process for
every sample, disclosed a total of 38,393 edges between 475 TFs,
with an average of 11,193 edges per cell sample, that were ren-
dered with Circos [83] for 6 cell-types (Fig. 3G). This study identi-
fied many widely expressed factors that impact TRNs in a cell-
selective manner. These results also show the ability of DNase I
footprinting to generate TRNs without the use of gene expression
data. However, the predicted regulatory links may be overesti-
mated, as all motifs, even located in open chromatin regions are
not bound by their cognate TFs. Also, only a subset of TFs is
included on these networks, and yet they can be difficult to read.

4.10. ChIP-seq for histone marks

Work from consortium, such as ENCODE [102], have compiled
wide arrays of ChIP-seq samples and detailed genomic annota-
tions. Most recent compendium, Epimap [48] assembled epige-
nomic data with the aim to identify trait-relevant tissues and
putative causal nucleotide variants. For Epimap, active enhancers
were defined as the intersection of DHS consensus elements, deter-
mined from 733 DNase-seq experiments, which collectively span
more than 20% of the genome, with imputed enhancer annotations,
and importantly, high signal of H3K27ac. Pearson correlations
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between gene expression and six histone mark activity of nearby
enhancers, for the samples with paired expression data, enabled
prediction of 3.3 million tissue specific enhancer-gene links. For
this integrative work, the large majority of samples were imputed.
Imputation may result in increased homogeneity, especially for
marks that are highly cell-type specific, and is less accurate for
broad chromatin marks, such as H3K27ac, than for ChIP-seq data
with sharp peaks. Rather than providing clear transcriptional reg-
ulatory circuitry maps for a large number of cell-types, the major
interest of this study is to predict causal variants and trait-
relevant tissues. Resolution of such resource should soon be
improved with increasing availability of single-cell datasets and
more tissue types or environmental perturbations related samples.

4.11. Enhancer information

Enhancer information was recently used to anchor maps of Core
transcriptional Regulatory Circuitry (CRC) [15], the small network
of TFs that was shown to be most upstream of multiple cell-
type’s gene expression programs. In the cell-types in which they
have been identified, the TFs forming the CRC bind to each-
other’s DNA regulatory sequences (Fig. 2L) [8,9,15,18,19,21]. These
core TFs also co-bind the regulatory sequences of most cell identity
genes in a given cell-type [15] and contribute to the formation of
super-enhancers (SEs) in the vicinity of their targets, including
their own genes [15,103]. Since core TFs are not known for most
cell-types, ChIP-seq targeting H3K27ac, the best chromatin mark
to identify active enhancers [104], can be used as a surrogate to
identify SEs with the ROSE program [103,105]. In Saint-André
et al. [15], we used SE information and motif binding data for
1207 TFs, to predict CRC models for 85 human samples, corre-
sponding to 75 cell and tissue types. A CRC example of human
embryonic stem cells and first layer of target genes is shown in
Fig. 3H. These models recapitulate and expand on previously
described CRCs for well-studied cell-types and provide novel and
readable TRN models for a broad range of human cell-types. Over
hundreds of mouse and human samples, when computing TF inter-
actions, a CRC (fully interconnected regulatory loop of at least 3
TFs) is always found from any ChIP-seq sample of sufficient
sequencing depth and quality. Interestingly, there are not multiple
independent loops identified, but rather one major CRC is emerg-
ing from each sample, with sometimes some regulatory edges
missing, but always made of about the same TFs, supporting the
idea that one CRC per cell-type or cell-state may be a general rule.
Predicted CRCs contain already characterized master TFs, proto-
oncogenes, and terminal TFs of signaling pathways, and are largely
supported by ChIP-seq data and functional tests in corresponding
cell-types [15]. The CRCmapper program [15] has been designed
so that users just need to input a ChIP-seq track to get a CRC
map of a sample of interest. The program performs DNA motif
analysis of the sum of the promoter and the enhancer sequences
within SEs (not the full SE) to predict regulatory interactions, uses
a graph algorithm to compute all maximal cliques from a graph,
and identifies the most representative fully interconnected loop
of TFs as the CRC. For a refined analysis, gene expression data, such
as RNA-seq, and DNA accessibility data, such as Assay for Trans-
posase Accessible Chromatin followed by sequencing (ATAC-seq),
can be passed to the program, to respectively, improve enhancer
to gene associations, and reduce the search space for motifs within
the individual enhancers that compose a SE. To best use ATAC-seq
information, the corresponding peaks should be passed to the pro-
gram instead of the peaks output from MACS. CRCmapper was suc-
cessfully used to map core TRNs in normal [20,106] or cancer
samples [107,108]. Importantly, as SEs cluster in the cell to form
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phase-separated condensates, these can be targeted with drugs
to rewire transcriptional addictions in cancer [109–111].
5. Summary and outlook

Over the last 20 years, multiple approaches have been devel-
oped to map TRNs. They mostly followed technological develop-
ments allowing production of different types of molecular data.
First based on bulk transcriptomic data, different mathematical
modelling methods have been tested and compared, in particular
during the DREAM challenges. Following ChIP-seq development,
TF regulatory information has then been integrated to improve
accuracy of the models. Other types of data, such as genetic pertur-
bation, eQTL data, chromatin conformation or chromatin accessi-
bility data have also been used on their own, more or less
successfully, to model TRNs. Most recent developments adapted
to integrate multiple data types to gain in prediction quality. In
particular, approaches integrating chromatin derived information
have proven to be extremely useful in mapping TRNs, transcrip-
tional networks derived from enhancer information accurately
predicting master regulators of cell identity, or proto-oncogenes
when applied to cancer samples.

TRN mapping has made great progresses with more data being
available, but the field still faces a number of limitations. One of
them concerns the use of DNA binding motifs for TFs, which are
defined for a subset of the TFs only, and are not great predictors
of TF binding, unless these are present in open chromatin regions.
Indeed, for example in the human genome, about 2% only of the
motifs are bound by their cognate TF when picked randomly, while
around 30 % of the motifs are bound by the corresponding TF when
these occur in active enhancer regions [15]. Another limitation is
that, even when TF binding is observed though experimental
assays, such as ChIP-seq, this does not necessarily mean actual
binding of the factor at the identified genomic location, nor auto-
matically regulation of the closest gene [11,99]. It is also important
to keep in mind when making predictions from specific data sets
that chromatin accessibility is cell-type specific and condition
dependent [15,101]. Finally, reproducibility still often remains a
challenge for these approaches [90] and integration of multi-
layers of data asks the question of convergence of the results
[11] and of some data types being much more informative than
others.

Multiple technological and analytical developments should help
improve current mapping of TRNs. New developments in identifi-
cation of TF and transcription co-regulator binding motifs
[112,113], in indirect TF binding [114,115], and availability of
high-quality motif databases [116-118], should allow better reso-
lution of TRN mapping. Improvement in chromatin conformation
identification techniques [119] may also allow better association
of enhancers to the genes they regulate. In addition, integration
of diverse regulatory elements, such as non-coding RNAs, and of
signaling pathways, post-transcriptional regulation, or metabolic
data, should add additional layers of complexity to already avail-
able TRN models. Altogether, these expected improvements should
lead to help better interpret transcriptional signatures [120-122],
and identify actionable targets [109]. Detailed TRN maps of cell
and tissue types and disease- or condition-specific networks,
may also help better understand GWAS variant functions [46,48].
Future approaches to map TRNs will necessarily be integrative, to
make best use of the amount of available data. Although individual
networks, such as TRNs, protein–protein, metabolic or signaling
networks, are far from being extensively mapped yet, comprehen-
sive whole-cell models are developed to integrate multiple layers
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of regulation together [123]. In particular, data integration using
multiple networks are promising to bring insight in systemic
understanding of cancer [90]. Up-coming deep learning
approaches should also develop to help stratify patients based on
gene regulation [124]. The ability to make accurate predictions
from TRNs should thus continue to further our understanding of
disease circuitries and favor future advances in precision medicine.
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