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Abstract

Background: One of the most important and often neglected components of a successful RNA sequencing (RNA-Seq)
experiment is sample size estimation. A few negative binomial model-based methods have been developed to estimate
sample size based on the parameters of a single gene. However, thousands of genes are quantified and tested for
differential expression simultaneously in RNA-Seq experiments. Thus, additional issues should be carefully addressed,
including the false discovery rate for multiple statistic tests, widely distributed read counts and dispersions for different
genes.

Results: To solve these issues, we developed a sample size and power estimation method named RnaSeqSampleSize,
based on the distributions of gene average read counts and dispersions estimated from real RNA-seq data. Datasets from
previous, similar experiments such as the Cancer Genome Atlas (TCGA) can be used as a point of reference. Read counts
and their dispersions were estimated from the reference’s distribution; using that information, we estimated and
summarized the power and sample size. RnaSeqSampleSize is implemented in R language and can be installed from
Bioconductor website. A user friendly web graphic interface is provided at http://cqs.mc.vanderbilt.edu/shiny/
RnaSeqSampleSize/.

Conclusions: RnaSeqSampleSize provides a convenient and powerful way for power and sample size estimation for an
RNAseq experiment. It is also equipped with several unique features, including estimation for interested genes or pathway,
power curve visualization, and parameter optimization.
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Background
RNA sequencing is a powerful NGS tool that has been
widely used in differential gene expression studies [1]. One
of the most important steps in designing an RNA sequen-
cing experiment is selecting the optimal number of bio-
logical replicates to achieve a desired statistical power
(sample size estimation), or estimating the likelihood of
successfully finding the statistical significance in the dataset
(power estimation). An insufficient number of replicates
may lead to unreliable conclusions, whereas too many rep-
licates may result in a waste of time and resources. The tra-
deoff between cost and study power needs to be carefully
balanced. To address this issue, several attempts have been
made to estimate power and sample size for RNA-seq
experiments.

Sample size and power analysis have been well-
established for traditional biological studies such as genome
wide association studies (GWAS) and microarray gene ex-
pression studies [2, 3]. In earlier RNA-Seq studies, the ana-
lysis was based on Poisson distribution, because RNA-Seq
data can be represented as read counts [4–6]. It was discov-
ered, however, that Poisson distribution does not fit the em-
pirical data due to an over-dispersion mainly caused by
natural biological variation [7, 8]. To address this issue, a
few negative binomial distribution-based methods have
been developed. These methods provide researchers with
more flexibility in assigning between-sample variations [9–
13]. Hart et al. [14] proposed a power analysis method
based on the score test for single-gene differential expres-
sion analysis. This method has been implemented in Bio-
conductor as RNASeqPower. To handle multiple gene
comparisons, Li et al. [15] proposed a power analysis
method while controlling for the false discovery rate. To in-
corporate the experiment’s budget into the power analysis,
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Wu et al. [16] introduced the concepts of stratified power
by coverage or biological variation and the cost of false dis-
covery, then proposed a simulation-based method for
power analysis. The method was implemented as a Biocon-
ductor package PROPER.
However, there are several limitations in the majority of

the previous methods, such as: the lack of properly ac-
counting for average read counts and dispersion in differ-
ent genes; the lack of proper reference data; and the lack
of easy and user friendly interfaces. The average read
counts of genes are distributed in a range of more than
four orders of magnitude, and their dispersions are highly
dependent on their gene expression level [17, 18]. Previ-
ous estimation methods were not designed for these dis-
tributions, so they often utilized one value chosen
conservatively or by experience [9, 10], which often re-
sulted in an over-estimated sample size. Yu et al. [18] have
introduced a simulation-based procedure which considers
dependence between gene expression level and its disper-
sion, but this method has not been made into an easy-to-
use software. Additionally, it is computationally expensive
to apply these methods to every gene in the dataset, be-
cause the individual power analysis for the exact test in-
volves infinite sums, and the study’s overall power is
estimated from a summation of the individual power. A
proper approach is to providing reference data with simi-
lar distributions to current experiments. We acknowledge
that such data may not be available for every project type
and that a significant amount of programming and data
processing effort is needed to utilize them.
To address the aforementioned problems, we used

previous methods [15] as the foundation for developing

RnaSeqSampleSize package, which controls the false dis-
covery rate (FDR) of multiple testing, and utilizes the
average read count and dispersion distributions from
real data to estimate a more reliable sample size. The
package is also optimized for running efficiency and pro-
vides additional features, which we demonstrate using
real RNA-Seq data.

Results and discussion
The detailed feature list of RnaSeqSampleSize package
can be observed in Fig. 1:

Sample size estimation with single average read count
and dispersion
RnaSeqSampleSize was developed based on the sample
size and power estimation methods described in the pre-
vious study [10], and it greatly improved the compatibil-
ity and efficiency of older methods. In this new
implementation, a minimal average read count and a
maximal dispersion are used to represent all genes in
the RNA sequence experiments, and a conservative sam-
ple size or power can be estimated. More importantly,
RnaSeqSampleSize is compatible for large average read
counts and dispersions, supporting as much as a 2000
average read count. We optimized the running efficiency
of the method from 40 min to two seconds for most of
the widely used parameters (Additional file 1: Table S1).

Sample size estimation with real data
As previously stated, average read counts and disper-
sions for genes have wide distributions within a single
RNA sequencing experiment. A tiny fluctuation in the

Fig. 1 RnaSeqSampleSize package workflow
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average read count or dispersion will greatly influence
the estimated power or sample size (Fig. 2). For example,
in TCGA Rectum adenocarcinoma (READ) dataset, the
genes have a dispersion from 0 to 10, and the average
read counts range from one to numbers in the several
thousands (Fig. 2a). In such a scenario, the sample size
estimation from a single value is inaccurate. We com-
puted that the estimated sample size increased from 10
to 302 when the minimal average read count changed
from one to 30 and the maximal dispersion changed
from 0.1 to three (Fig. 2b).
Instead of relying on guessing to discover the future

data’s distribution, RnaSeqSampleSize uses data parame-
ters from previous studies. To demonstrate this feature,
we compared the usual sample size estimation approach
to RnaSeqSampleSize’s empirical approach. We used the
datasets from TCGA as the reference data to estimate the
true data distribution. TCGA is a cancer consortium data
set considered to be the most representative dataset for
cancer RNA-seq. Following common standards, we set
the minimum average read count as one or 10, and 95%
quantile in all gene dispersions as maximum dispersion,
while the empirical databased method utilized the empir-
ical average read count and dispersion distribution com-
puted from TCGA (Additional file 1: Table S2 and S3).
The estimated sample size obtained using the empirical
data-based method was smaller in all parameter combina-
tions (Additional file 1: Table S2 and S3). For example, the
estimated sample size for TCGA Rectum adenocarcinoma
(READ) dataset was 168 when the following parameters
were used: fold change at 2; desired power at 0.8; FDR at0.
05; minimal read count at 10; dispersion at 2.0 (Additional
file 1: Table S2, in boldface). This estimated sample size is

larger than the real sample size, because we used the low-
est read count and highest dispersion to represent all
genes, even if most of them were not very conservative
(Red line and green line in Fig. 2a).
In the empirical data-based method, the genes in the

reference dataset were randomly selected, and the pow-
ers were estimated respectively based on these genes
(Fig. 3). With the same desired power and FDR, the esti-
mated sample size was 42 (Additional file 1: Table S3, in
boldface). This result is a better representation of the
genes in RNA-seq experiment and it is substantially less
than the result that was obtained using the traditional
method. More importantly, the empirical data-based
method can reflect the differential gene expression pat-
tern in a different dataset. For example, genes in TCGA
Breast Invasive Carcinoma (BRCA) and READ dataset
have similar read count distributions (Fig. 3a), but genes
in BRCA dataset have a higher dispersion than in READ
(Fig. 3b). Thus, when analyzing genes in READ dataset,
we have a higher power distribution (Fig. 3c and d), sug-
gesting that less samples are needed to analyze rectum
adenocarcinoma samples with a desired power.

Sample size estimation for interested genes or pathways
In certain situations, researchers may be interested in a
subset of genes defined by certain features such as
shared pathways or gene ontology categories, rather than
the entire gene set. In such scenarios, the sample size es-
timation method needs to be adjusted, because the gene
subsets of interest may have distinct expression patterns
compared to other genes [19]. RnaSeqSampleSize was
designed to handle sample size and power analysis in
such experiment design by allowing users to provide a

a b

Fig. 2 Read counts and dispersion distribution greatly influence the estimated sample size and power. a The read counts and dispersion
distribution for all genes from TCGA Rectum adenocarcinoma (READ) dataset. The red lines indicate read counts equal to one and 10. And
the green line indicates the 95% quantile of all gene dispersions. b The estimated sample size required to achieve 0.8 power in different
combinations of read counts and dispersions
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list of interested genes or a KEGG pathway ID; this en-
sures that only the read count and dispersion distribu-
tion of interested genes or genes in the selected pathway
will be used for estimation.
As illustrated in Fig. 4a and b, genes in Proteasome

(KEGG pathway 03050), Calcium Signaling (KEGG path-
way 04020) and Pathways in Cancer (KEGG pathway
05200) have distinguishable read counts and a dispersion
distribution in TCGA READ dataset. The genes in Prote-
asome pathway have very high read counts and a low dis-
persion, whereas genes in Calcium Signaling pathway have
low read counts and a high dispersion, which may be a re-
flection of their functions related to Rectum Adenocarcin-
oma (Fig. 4c, and d, Additional file 1: Table S4).
Furthermore, we demonstrated that different sample

size estimations result in different TCGA datasets with
KEGG pathway “Pathways in Cancer” (Additional file 1:
Table S5). RnaSeqSampleSize estimated a sample size of
45 for “Pathways in Cancer” genes (Additional file 1:

Table S5, in boldface) vs 42 for all genes (Additional file 1:
Table S3, in boldface) in READ dataset if we use the same
parameters as previously.

Power curve visualization for different parameters
Power curves are widely used to analyze and compare
sample size estimation results. To demonstrate the
power curve visualization feature in RnaSeqSampleSize,
we produced three power curves based on different sce-
narios. As displayed in Fig. 5a, the X-axis indicates the
total number of samples used in two groups, and the Y-
axis indicates the estimated power. There are three types
of sample allocation design: 1:1 sample size in two
groups (red curve); 2:1 sample size in two groups (blue
curve); 3:1 sample size in two groups (purple curve).
The relationship between power and the number of
samples can be easily visualized. In the example dis-
played in Fig. 5a, the power curves indicate that the bal-
anced (sample size 1:1) experiment design (red curve)
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Fig. 3 Sample size estimation with real data. a The read counts distribution for all genes from TCGA Breast Invasive Carcinoma (BRCA) and
Rectum adenocarcinoma (READ) dataset; (b) The dispersion distribution for all genes from TCGA BRCA and READ dataset; (c) The power
distribution based on the count and dispersion distributions in TCGA BRCA dataset when sample size equals 71. The red lines indicate the
mean value of power distribution. d The power distribution based on the count and dispersion distributions in TCGA READ dataset when
sample size equals 71. The red lines indicate the mean value of power distribution
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will achieve the highest power when the same total
number of samples is used.

Parameter optimization for experiment design
The RNA-seq experiment design is often limited by the
availability of the budget. The optimization feature in Rna-
SeqSampleSize can be used to identify the optimal param-
eters that will achieve the highest power while staying
under the budget. To demonstrate the parameter
optimization feature, we attempted to optimize numbers
of samples and read counts while fixing all other parame-
ters (fold change: 2; dispersion: 1; FDR: 0.05) by generating
a power matrix (Fig. 5b). The estimated power was less
than 0.1 when 16 samples were used even if the read
count was as high as 96. When the number of samples in-
creased to 96, however, the estimated power increased to
0.8, even when the read count was as low as eight. This
matrix indicates that the number of samples plays a more
significant role in determining the power than the read
count, which is consistent with the previous report [20].

Material and methods
Software development and data acquisition
RnaSeqSampleSize was developed in R language [21]
and compiled into a software package following the
guidelines of Bioconductor [22].
The web interface of RnaSeqSampleSize was developed

using Shiny package (http://shiny.rstudio.com/) in R
language [21].
The TCGA data used as real data examples in RnaSeq-

SampleSize were downloaded from Genomic Data Com-
mons Data Portal (https://gdc-portal.nci.nih.gov/). The
gene expression data of 13 types of cancers were down-
loaded and included as references in RnaSeqSampleSize-
Data package in Bioconductor [22].

Algorithm
In previous research, we have reported a sample size cal-
culation method based the exact test for a single-gene
comparison [10]. In this method, we used the concept of
pseudo counts [23, 24]. Because the question of interest
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Fig. 4 Sample size estimation for interested genes. a The read counts distribution for genes in three KEGG pathways in TCGA READ dataset;
(b) The dispersion distribution for genes in three KEGG pathways in TCGA READ dataset; (c) The power distribution based on the count and
dispersion distributions in TCGA READ dataset for genes in Calcium signaling pathway when sample size equals 71. The red lines indicate the
mean value of power distribution. d The power distribution based on the count and dispersion distributions in TCGA READ dataset for genes in
Proteasome pathway when sample size equals 71. The red lines indicate the mean value of the power distribution
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is to identify the differential gene expression between
two groups, the corresponding testing hypothesis is.
H0 : γ0 = γ1vs H1 : γ0 ≠ γ1,
where γi represents the gene expression level of group

i (i = 0,1). In order to perform sample size calculations,
it is necessary to construct a power function for the test-
ing described above. The power of a test is the probabil-
ity that the null hypothesis is rejected when the
alternative hypothesis is true. For a given marginal type I
error level α to reject the null hypothesis, the power can
be expressed as

ε n; ρ; μg;φg ;ω; α
� �

¼
X

∞
y0¼0

X
∞
y1¼0 f nωρμg ;

φg

n

� �
f nμg;

φg

n

� �
I p y1; y0ð Þ < αð Þ

ð1Þ
Where g is the single gene in comparison; n is the

number of samples in each group; ρ is the fold change
between the two groups; μg is the average read count for
gene g in the control group; φg is the dispersion param-
eter for gene g in the control group; ω is the geometric
mean of normalization factors between the two groups;
α is type I error rate; y1 and y0 are pseudo counts [25] in
the two groups; f(μ, φ) is the probability mass function
of the negative binomial distribution with mean μ as well
as dispersion φ; and I(p(y1, y0) < α) denotes the indicator
function for the p value of the exact test [25].
In reality, thousands of genes are examined in an

RNA-seq experiment, and those genes are tested simul-
taneously for significance of differential expression. In
such cases, multiple testing problem should be

considered. We proposed a false discovery rate (FDR)
controlled method in previous research [10], which is
defined as the expected proportion of false discoveries
among rejected null hypotheses. In this method, the
marginal type I error level α will be adjusted to α∗ to
guarantee the expected number of true rejections at a
given FDR.
To calculate the sample size, we need to pre-

specific the parameters estimated from the differen-
tially expressed genes. However, we may not be able
to know or determine which genes were differentially
expressed in a real dataset. To deal this issue, we as-
sume the distribution of average read count in con-
trol group (μg in formula 2) and dispersion (φg in
formula 2) for differential expressed genes were the
same as all genes. Then we randomly selected genes
from the real data set and treated them as differen-
tially expressed. Functions in edgeR package were
wrapped and used to estimate the average read
counts and dispersion distribution. If M1 was the
number of differential expressed genes in the data-
set, we randomly selected M1 genes from all genes
and used their average read counts and dispersions
from the distribution to represent differential genes.
As a result, the power of detecting these M1 differ-
ential genes can be calculated:

Power ¼
PM1

g¼1ε n; ρ; μg;φg;ω; α�
� �

M1
ð2Þ

The value of power in formula (2) is highly dependent
on the selected differential genes. When the number of
differential expressed genes is small, different genes will

a b

Fig. 5 Power curve visualization and parameter optimization by RnaSeqSampleSize. a Power curves for balanced (same sample size in two
groups) and unbalanced (different sample size in two groups) experiment design. The power curves indicate that the balanced experiment
design (red line) will achieve the highest power with the same total number of samples; (b) Optimization of parameters in sample size
estimation. The dispersion and fold change were set as 0.5 and two, respectively. A power matrix with different pairs of numbers of samples
and read counts were generated. The power distribution indicates that the number of samples plays a more significant role in determining the
power, and suggests at least 96 samples should be used in RNA-Seq experiments with these parameters to get 0.8 power
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be selected in each replication and results in a significant
diversity among the power in replications. Motivated by
the ensemble method in machine learning, we average
all the powers calculated from the replications to obtain
a robust estimation of power.
This re-sampling process was repeated several times

(1000 by default) to get a power distribution and the
power distribution was summarized (averaged by de-
fault) to obtain a robust estimation of power. Then, Rna-
SeqSampleSize package will use the numerical approach
to find the n when the robust estimation of power is
equal to the desired level.

Conclusion
Sample size estimation is a critical step in RNA sequen-
cing experimental design. It provides an important solu-
tion for balancing the number of samples and the
statistical power. Here, we presented the power and
sample size estimation software RnaSeqSampleSize to
overcome the current limitations and provide a less con-
servative yet more accurate and reliable result. RnaSeq-
SampleSize provides more efficient computations
compared to previous methods; additionally, it provides
several novel visualization and optimization features as
well as a much desired graphical user web interface,
which allows investigators without a background in pro-
gramming to easily conduct sample size calculation
(Additional file 1: Figure S1).
What separates RnaSeqSampleSize from the other

RNA-Seq power analysis tools is its usage of reference
data, which can help generate a reliable read count and
dispersion distribution. We preloaded the TCGA data-
sets for users without reference data. The TCGA dataset
provides a comprehensive reference for cancer tissues
samples, but the reference datasets for non-cancer or
non-tissue samples are not currently included. As more
and more RNA sequencing datasets become publically
available, we will continually update the reference
dataset.

Availability
Home page:
http://www.bioconductor.org/packages/release/bioc/

html/RnaSeqSampleSize.html
Web interface:
http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/

Additional file

Additional file 1: Table S1. The improvement in efficiency in
RnaSeqSampleSize package. Table S2. Estimated sample size for RNA-Seq
experiments in different cancer types by single parameter method. Table S3.
Estimated sample size for RNA-Seq experiments in different cancer types by
real data distribution based method. For each cancer type, we used the

related TCGA dataset to estimate the read count and dispersion distribution.
Table S4. Estimated sample size for RNA-Seq experiments in different
cancer types by real data distribution based method, only the genes in
interested KEGG pathway were considered. Table S5. Estimated sample size
for RNA-Seq experiments in different cancer types by real data distribution
based method, only the genes in KEGG pathway ID 05200 (Pathways in
Cancer) were considered. Figure S1. A screen shot of user interface of
RnaSeqSampleSize package. (DOCX 217 kb)
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