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Abstract: Misfolding and aggregation of transthyretin (TTR) is widely known to be responsible
for a progressive systemic disorder called amyloid transthyretin (ATTR) amyloidosis. Studies
suggest that TTR aggregation is initiated by a rate-limiting dissociation of the homo-tetramer into
its monomers, which can rapidly misfold and self-assemble into amyloid fibril. Thus, exploring
conformational change involved in TTR monomer misfolding is of vital importance for understanding
the pathogenesis of ATTR amyloidosis. In this work, microsecond timescale hybrid-resolution
molecular dynamics (MD) simulations combined with Markov state model (MSM) analysis were
performed to investigate the misfolding mechanism of the TTR monomer. The results indicate that
a macrostate with partially unfolded conformations may serve as the misfolded state of the TTR
monomer. This misfolded state was extremely stable with a very large equilibrium probability of
about 85.28%. With secondary structure analysis, we found the DAGH sheet in this state to be
significantly destroyed. The CBEF sheet was relatively stable and sheet structure was maintained.
However, the F-strand in this sheet was likely to move away from E-strand and reform a new β-sheet
with the H-strand. This observation is consistent with experimental finding that F and H strands
in the outer edge drive the misfolding of TTR. Finally, transition pathways from a near native state
to this misfolded macrostate showed that the conformational transition can occur either through a
native-like β-sheet intermediates or through partially unfolded intermediates, while the later appears
to be the main pathway. As a whole, we identified a potential misfolded state of the TTR monomer
and elucidated the misfolding pathway for its conformational transition. This work can provide
a valuable theoretical basis for understanding of TTR aggregation and the pathogenesis of ATTR
amyloidosis at the atomic level.

Keywords: protein misfolding; transthyretin amyloidosis; molecular dynamics simulation; Markov
state model

1. Introduction

Transthyretin (TTR) is a globular protein whose misfolding and amyloid aggregation is related to
amyloid transthyretin (ATTR) amyloidosis that consists of wild-type ATTR (ATTRwt) amyloidosis
and variant ATTR (ATTRv) amyloidosis [1]. ATTRwt amyloidosis, traditionally called senile systemic
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amyloidosis, is caused by misfolding and aggregation of wild-type TTR [2], especially in people older
than 65, while ATTRv amyloidosis, also known as familial amyloidotic polyneuropathy, and familial
amyloidotic cardiomyopathy are due to various mutations [3,4] which can accelerate the misfolding and
aggregation of TTR. A common pathological feature of different ATTR amyloidosis is the deposition of
TTR amyloid fibril in various tissues, which causes significant damage to related organs [5,6]. However,
little is known about the pathogenesis of ATTR amyloidosis, which largelycontributes to the lack of
clarity about the misfolding and aggregation mechanism of TTR.

TTR is a 55 kDa homo-tetrameric protein, which acts as a carrier of the thyroid hormone thyroxine
and retinol-binding protein in vivo. The dissociation of the tetramer into TTR monomers is thought to
be the rate-limiting step for fibril formation [7–9]. Once the TTR tetramer is dissociated into monomers,
misfolding rapidly occurs and leads to aggregation into amyloid fibrils. The native state TTR monomer
is a 127 amino acid protein with eight β-strand chains and a short α-helix motif. As shown in Figure 1,
these eight β-strand chains form two four-β-stranded anti-parallel sheets, which are called DAGH and
CBEF, respectively. Despite the β-sheet-rich feature of the TTR monomer, it is the only form of TTR
that misfolds. Therefore, it is critical to explore the misfolding mechanism of the TTR monomer, as it
may provide significant clues for understanding the pathogenesis of ATTR amyloidosis.

Figure 1. The native structure of transthyretin (TTR) monomer (PDB ID: 4PVM) with labels on all
β-strands, constituting two four-β-stranded anti-parallel sheets called the DAGH and CBEF. The
cartoon at the bottom shows corresponding residue numbers for each strand.

In recent decades, the TTR monomer misfolding mechanism has been extensively investigated by
experimental methods and molecular dynamics (MD) simulations. Experimental studies by Quintas et
al. suggest that the TTR monomer tends to form partially unfolded intermediates which precede the
protofibril formation [10]. Lim et al., using nuclear magnetic resonance (NMR) relaxation dispersion,
found that localized structural fluctuations of TTR, especially in the DAGH sheets, can promote
conformational change to form amyloid fibril [11,12]. Their work also suggests that the amyloidogenic
precursor states of wild-type TTR may adopt native-like β-sheet conformations [13]. Dasari et al.
recently reported that depending on conditions, the aggregation pathway may involve native-like
β-sheet intermediates or largely unfolded states [14]. Interestingly, recent studies reported by Koike et
al. found that the morphology of TTR amyloid fibrils between early- and late-onset ATTR amyloidosis
patients shows a significant difference [15,16], which implies that the TTR at different stages may
have different misfolding and aggregation mechanisms. These experimental studies have provided
deep insights into the overall structural characteristics of the TTR monomer misfolding mechanism.
However, atomic-level information is still hard to obtain due to the limited spatiotemporal resolution
of experimental techniques.
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MD simulation has been a valuable technique for obtaining detailed information about structural
changes in biomolecules to complement experimental observations. MD simulation has also been
widely applied to investigate structural dynamics of TTR in recent years [17,18]. For example, based
on information from neutron crystallography, native mass spectrometry, and MD simulation, Yee et al.
proposed that TTR can form amyloid fibrils via a parallel equilibrium of partially unfolded species,
and that the unfolding process is initiated in a CD loop [19]. Rodrigues also reported a premature
disruption, with displacement of strands D and C from the core of the TTR monomer, during the
unfolding process [20]. In addition, Armen, et al. simulated the structural dynamics of TTR monomer
at different temperatures and acidic pH. They found the CBEF sheet was disrupted while an α-sheet
structure was formed in DAGH at low pH, which they proposed to be a key pathological conformation
during TTR amyloidogenesis [21].

While significant progress has been made in the computational investigation of the TTR misfolding
mechanism, the misfolding mechanism of TTR monomer remains unclear and many questions regarding
conformational transitions during TTR unfolding still need to be answered. These include: (1) What
happens at the atomic level? (2) What kind of pathway is preferred? (3) What are the structural
features of intermediates? Moreover, the protein folding and unfolding processes generally occur in
the microsecond to millisecond time scales [22,23] whereas simulation times in the aforementioned MD
studies are limited to only tens to hundreds of nanoseconds, a time scale too short to reveal biologically
relevant structural changes for systems, such as TTR, that have more than one hundred residues.

In this work, to investigate the mechanism and identify potential pathways and intermediates of
the TTR monomer misfolding, microsecond time-scale simulations were performed. To reduce
computational costs, a hybrid-resolution model, the protein in atomistic details coupled with
coarse-grained environment (PACE) was employed. PACE is a hybrid united-atom and coarse-grained
force field developed for protein folding [24–26], for which the protein is represented in atomic detail
(united-atom model) while the solvent is described by a Martini coarse-grained solvent model. The
PACE model has been previously shown to reliably maintain the native structure of proteins that are
either α-helix-rich or all-β [27]. This model has also been widely used to study protein folding [28,29].
Meanwhile, the Markov state model (MSM) is applied to analyze the mechanisms of TTR conformational
transitions and to identify conformational states during TTR monomer misfolding. MSM is a method
which can predict protein dynamics over a long time scale from many short discrete simulations [30,31].
More importantly, the MSM provides a way to model kinetic networks between different states in
conformational space based on kinetic criteria [32], from which we can gain insight regarding the
conformational transition pathway. By combining microsecond hybrid-resolution simulation and
MSM analysis, we sought to unravel the potential misfolding mechanism of the TTR monomer, as it
may provide a valuable theoretical basis for understanding the pathogenesis of TTR-related diseases.

2. Materials and Methods

2.1. Preparation of Initial Structures

In this work, the initial TTR monomer structure was extracted from the X-ray crystal structures
of human TTR tetramer taken from RSCB Protein Data Bank (PDB ID: 4PVM) [33]. As shown in
Figure 1, the TTR monomer contains eight β-sheet strands (labeled A through H), which constitute
the DAGH and CBEF sheets. The input files for subsequent hybrid-resolution simulation were
generated from the CHARMM-GUI [34] website using the PACE CG Solution Builder input generator
(http://www.charmm-gui.org/?doc=input/pacecg.solution) [27]. To validate the reliability of applying
the PACE model on TTR monomer simulation, an all-atom force field, with CHARMM 36 force
field [35], was also simulated for comparison. The input files for the all-atom simulation were prepared
using visual molecular dynamics (VMD) [36] (version 1.9.3).

http://www.charmm-gui.org/?doc=input/pacecg.solution
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2.2. Molecular Dynamics Simulations

All simulations, including hybrid-resolution and all-atom simulation, were performed in NAMD
2.9 [37] with a minor modification for using PACE parameters. For hybrid-resolution simulations,
the TTR monomer was represented by the PACE model which retains heavy atoms and most of the
polar hydrogen atoms [24]. The monomer was solvated in a box with Martini water and five Na+

were added to maintain electroneutrality. Switch functions were employed to Coulomb potentials
from 0 to 12 Å, and Lennard-Jones potentials from 9 to 12Å. During the simulation, pressure was
maintained at 1 atm by a Nosé–Hoover Langevin piston barostat with period of 200 fs and a decay rate
of 100 fs. The Langevin thermostat method was used to maintain a constant temperature of 300 K. The
simulation time step was set to 5 fs, which is a typical value used in PACE simulations [24]. Three
parallel runs were performed to confirm the reliability; each run was 2 µs long. For the all-atom
simulation, the monomer was solvated in a cubic box using the TIP3P water model [38]. A cut-off of
12 Å was used for Lennard-Jones interaction and the particle mesh Ewald (PME) method [39] was
used to treat electrostatics. The simulation was carried out with 100 ps minimization followed by 1 ns
structure equilibration. Finally, a 500 ns MD simulation with a 2 fs time step was run. All simulations
were performed at the physiological condition with pH of 7.

2.3. Markov State Model and Construction and Validation

A general problem for applying MD simulation to explore the transition mechanism of protein
folding is the challenge to reach a biologically relevant time scale. The MSM has been shown to be an
efficient solution to solve such rare-event simulation problems. It can be used to extract equilibrium
and dynamic information from general MD simulations, and it also enables the prediction of long
time-scale kinetics from many short simulation trajectories [40,41]. With MSM, the conformational
space is divided into a number of metastable states that share similar structural and kinetic properties.
It is also possible for the MSM to provide a way to model kinetic networks between different metastable
states to uncover potential transition pathways. Typically, a MSM is a memoryless process which
depends only upon the present state. These dynamics can be modeled by a first-order master equation
to give global long time scale dynamics:

P(nτ) = [T(τ)]nP(0) (1)

where P(nτ) is the vector of state populations at time nτ and T(τ) is the transition probability matrix
with lag time of τ. Implied time scales ti(τ) can be calculated to determine the appropriate lag time
and to check if the model is Markovian as well. The calculation formula of ti(τ) is as follows:

ti(τ) = −
τ

lnλi(τ)
(2)

where τ is the lag time and λi(τ) is the ith largest eigenvalue of the transition matrix with lag time τ. If
all the microstates generated are ideally Markovian, the implied time scales should remain constant
regardless of the choice of lag time [42].

To construct the MSM, we first clustered all sampled conformations into microstates by using the
k-means clustering method [43] and employing principal components to measure structural similarity
between conformations [44]. Before clustering, the Cα distances of backbone atoms were selected
as input features to reduce the dimension of conformational space. To remove the influence of
the rotation and translation of the protein, all conformations were aligned to the first frame. After
clustering, the implied time scales were calculated to determine lag time and number of macrostates
for MSM construction. Based on the plot of implied time scales, we then lumped all related microstates
into macrostates at a certain selected lag time based on the kinetic similarity using the Perron
Cluster Analysis method (PCCA+) [45]. To ensure the constructed MSM is indeed Markovian, the
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Chapman–Kolmogorov (C–K) test was further calculated since the convergence of lag time is not
sufficient for validation of Markovianity. The C–K test is calculated according to the following equation:

T(nτ) ≈ T(τ)n (3)

where T(τ) is the transition probability matrix with selected lag time τ and n is an integer number of
steps. The C–K compares the probability of the protein staying in a certain state predicted from the
constructed MSM, with that of MD trajectories at increasing time steps. All construction and validation
of the MSM was performed in the PyEMMA software package [46].

2.4. Dynamical Cross-Correlation Map Analysis

Dynamic cross-correlation (DCC) is a method used to describe the fluctuations in cross correlations
and the domain motions of Cα atoms during simulation [47]. This method has been largely applied to
quantify the correlation coefficients of motions between atoms [48,49]. The correlation coefficient Ci j of
the cross correlation matrix for two Cα atoms i and j is defined by the following equation [50]:

Ci j =

〈
∆ri∆r j

〉
[〈∆ri∆ri〉

〈
∆r j∆r j

〉
]
1/2

(4)

where ∆ri and ∆r j represent the displacement vectors of atoms i and j with respect to their mean
position, and the < . . . > denotes trajectory averages. Highly correlated motions are denoted by
positive Ci j, indicating residues move in the same direction, while negative Ci j denote anti-correlated
motions with residues moving in the opposite direction.

3. Results and Discussion

3.1. Comparison of PACE Simulation and All-Atom Simulation

Three parallel runs were performed for the hybrid-resolution PACE simulation; the results (Run1,
Run2, and Run3) are summarized in Figures 2 and 3. Each PACE run was 2 µs long. For comparison, a
500 ns all-atom simulation (Run-AA) was also performed to check if the PACE model was accurate. To
monitor the structural stability of simulated systems, we calculated the root-mean-square deviation
(RMSD) of Cα atoms of the TTR monomer from residues 10 to 124; results are shown in Figure 2a.
The top panel inset in Figure 2a shows larger RMSDs for PACE runs compared to Run-AA (~1.6 Å).
However, the RMSDs for the PACE runs are fairly stable at ~3 Å during the first 500 ns. This means
that the native structure of the TTR monomer is maintained during the first 500 ns.

Consistently, further root-mean-square fluctuations (RMSFs) analysis of Cα atoms of conformations
from 400 to 500 ns showed similar fluctuation for all runs, suggesting the similar structural flexibility for
PACE and all-atom simulations. As shown in Figure 2b, the flexibility regions corresponded to loops
in the TTR monomer, viz., residues 20-28 (A-B loop), residues 37–40 (B-C loop), residues 55–67 (strand
D and D-E loop), residues 79–90 (E-F loop), residues 98–102 (F-G loop), and residues 113–117 (G-H
loop). Interestingly, short β-strand D from residues 55 to 56 also show quite large fluctuation during
simulations, indicating an instability for this β-strand. This strand has been experimentally shown to
have native instability [13]. Hence, we can conclude that the hybrid-resolution PACE simulation was
reliable in our work.

Notably, it is worth noting that there was an obvious increase in RMSDs after ~1 µs as shown
in Figure 2a for all PACE runs, which indicated the potential structural transition of TTR monomer.
Therefore, we then performed a secondary structural analysis to monitor structural change during
simulations. As shown in Figure 3, the helix structure (residue 75–83) was well maintained in all runs.
For the eight β-strands, the most obvious structural change occurred in strand D in both PACE runs
and in Run-AA; in each case, the strand was partially or totally unfolded into disordered coil and



Biomolecules 2019, 9, 889 6 of 15

turn structures. These results are consistent with the above RMSF analysis showing large structural
flexibility of strand D. It is clear from Figure 3 that disruption in the DAGH sheet was more significant
compared to the CBEF sheet, suggesting the larger structural dynamics of DAGH sheet. Importantly,
the instability of the DAGH sheet has been previously shown experimentally [11,51]. For the all-atom
run, the structural dynamics of the DAGH sheet were not as obvious as in the PACE runs. This may
have been due to the shorter simulation time. On the other hand, a different force field and solvent
model may influence the structural dynamics of proteins more or less, e.g., the CHARMM 22 force
field overestimates the stability of helical structure [52], while the AMBER force field FF96 shows bias
favoring extended β-structure [53].

Figure 2. Structural features monitoring of TTR monomer calculated from coarse-grained environment
(PACE) (Run1, Run2, and Run3) and all-atom (Run-AA) simulations. (a,b) The root-mean-square
deviations (RMSDs) of Cα atoms relative to the initial TTR monomer structure for three PACE runs
and 500 ns all-atom run, (c) the RMSFs of Cα atoms as a function of residue number.

Overall, the aforementioned analyses suggest that PACE simulations are reliable and do capture
obvious structural changes in the TTR monomer. But this does not provide adequate information about
the pathway for TTR misfolding as well as the key intermediates during the misfolding process. To
solve this problem, a MSM was further constructed based on the discrete trajectories of three parallel
PACE runs over a 6 µs timescale.
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Figure 3. Graphical representation of secondary structure analysis for parallel PACE runs and
all-atom run.

3.2. Validation of Constructed Markov State Model

The resulting MSM with 200 microstates was obtained using the k-means clustering method as
described earlier. To validate the Markovian property of the obtained MSM, the implied time scales as a
function of the lag time was first plotted; see Figure 4. Clearly, the implied time scale curves level off at
lag time around 3 ns, suggesting the convergence of implied time scales with 200 microstates. However,
the convergence of implied time scales is not sufficient to show Markovianity [54], because it does
not test whether the eigenvectors are also independent of lag time. Hence, C–K test was performed
using the cktest function in the PyEMMA software [46]. According to the plotted relaxation time scales
shown in Figure 4, there were four slow processes separated from others, therefore the C–K test was
performed with 5 macrostates and lag time of 3 ns. As shown in Figure S1, the C–K curves estimated
from original simulations (black curves) matched quite well with the predicted ones (blue curves) from
the constructed MSM, indicating that our constructed MSM is indeed Markovian. Consequently, we
lumped all these 200 microstates into 5 macrostates by PCCA+ algorithm based on kinetic similarity to
predict the structural dynamics information of TTR monomer over a long time scale.
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Figure 4. Implied relaxation time scales of the constructed Markov state model (MSM) as a function of
lag time.

3.3. Structural Ensemble of Key States of Transthyretin Monomer Misfolding

To obtain the detailed structure information for each macrostate obtained from the MSM, 5000
conformations were extracted from each macrostate, and these macrostates are referred to below as
S0, S1, S2, S3, and S4. To check the structural change of obtained states relative to the native TTR
monomer structure, we plotted the RMSDs distribution of backbone atoms relative to the initial native
structure. As shown in Figure 5a, the RMSD of S0 was the smallest with a peak at around 3 Å, while
S4 had the largest RMSD relative to the native structure, indicating that S4 is the macrostate with the
largest structural change. As for S0, the backbone of the TTR monomer structure was retained quite
well. Figure 5b shows a superposition of the representative structure of S0 to the native structure
of TTR monomer to validate the well-maintained conformations. As expected, the representative
structure of S0 (shown in red) strongly resembled the native one (shown in gray). The position change
of conformations in S0, relative to the native structure, is mainly located in the flexible loop regions.

Figure 5. RMSD distribution of backbone atoms of conformations in obtained macrostates relative to
the native TTR monomer structure (a,b) structural superposition of native TTR monomer structure
(gray) and representative structure (red) of S0.



Biomolecules 2019, 9, 889 9 of 15

Further, to intuitively examine the structural details of each state, representative structures of each
MSM macrostate and the corresponding equilibrium probability are shown in Figure 6. As displayed,
except for S0, conformations of all other states were changed more or less, especially for macrostate S4,
which is consistent with the above RMSDs distribution as shown in Figure 5. Secondary structure
analysis of the β-sheet probability of each residue revealed that D-strand was destroyed in all states.
This instability of the D-strand makes it plausible as an initial site for TTR monomer unfolding as
reported by Ortore et al. [17]. The other β-strands of S0 were maintained quite well. For S2 and
S3, although the RMSDs relative to the native TTR monomer are larger than those for S0 (Figure 5),
the β-sheet structures remained quite well, indicating the native-like β-sheet property of these two
macrostates. In comparison, β-strands in S1 and S4 were disrupted significantly and partially unfolded
into disordered random coil and turn structures as shown in Figure S2, especially for the DAGH sheet,
consistent with the significant mobility of DAGH sheet found in the MD simulation study of Jitendra
et al. [18].

Figure 6. Representative structure of each macrostate obtained from MSM and their corresponding
equilibrium probability. The probability for each residue to adopt β-sheet structure within the
corresponding macrostates is also displayed below.

Interestingly, the β-sheet structure of most residues in the CBEF sheet remained even in S1 and
S4. However, as shown in Figure 6, there was a tendency for the F-strand to move away from the
E-strand and reform a β-sheet structure with the H-strand (see red cycle in the representative structure
of S4). These findings are in line with the H/D exchange rates of native TTR tetramer which show a
large mobility of strands at edge regions [55], including F-strand and H-strand. Rodrigues et al. also
observed the large structural dynamics of F-strand and H-strand by MD simulations. These appear to
be the most sensitive regions to thermal unfolding conditions [20]. More importantly, Saelices et al.
have previously proposed that F- and H-strands are the aggregation-driving segments of TTR and
residue replacements on the F- and H-strands can hinder TTR aggregation [56]. Therefore, we speculate
that this newly rearranged structure of F-strand with H-strand may an important conformational state
for TTR monomer misfolding.

It is also worth noting that S0, which most strongly resembles the native structure, has the
lowest equilibrium probability (about 2.40%), suggesting the instability for this near native state.
By contrast, S4, with the largest RMSDs compared to native structure, has the largest population
(about 85.28%), which means that this partially unfolded state is extremely stable and may serve
as an aggregation-prone state for further TTR aggregation, consistent with the findings of Conti et
al. [57]. Therefore, taking the above-obtained results together, we then treated S0 as the native state,
while treating S4 with partially unfolded conformations and the largest equilibrium probability as the
potential misfolded state to further explore the potential misfolding mechanism of TTR monomer.

3.4. Insights into the Misfolding Mechanisms of TTR Monomer

To evaluate the conformational change of the near native state S0 and the potential misfolding
state S4, dynamical cross-correlation map (DCCM) was employed (Figure 7). DCCM is useful for
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finding important structural insights into the function of biomolecules. It appears from Figure 7 that,
there was an increase of positive correlations between residues in S4, especially for the region from
residue 10 to 76, suggesting a reduced conformational flexibility and tighter packing of residues for
conformations in S4. We also calculated the radius of gyration (Rg) of conformations in these two states
to confirm the above observation. Consistently, the Rg of conformations in S4 had relatively smaller
Rg distribution compared to that of S0 (Figure S3), which indicates the more compact structures in
S4. This result is also in line with the previously proposed idea that amyloid formation by TTR is
triggered by tetramer dissociation to a compact non-native monomer [10]. Moreover, these compact
conformations also explain the extreme stability of S4.

Figure 7. Dynamical cross-correlation matrix analysis for near native state S0 and potential misfolded
state S4. Domains with obvious motion difference in two states were labeled with red box and oval.

Despite the overall increased positive correlations, a negative correlation from residue 66 to 100
containing strands E and F was observed for S4; negative values are represented with blue color in
the DCCM map. This suggests decreased coupling of the E-strand and F-strand, consistent with the
outer movement of F-strand from E-strand observed in Figure 6. Correspondingly, increased positive
correlations found between residues 90–102 and residues 103–120 (marked by the red ovals in the
DCCM map) are in accord with a newly formed β-sheet structure between the F-strand and H-strand.
Consequently, compared to the near native state S0, the misfolded state S4 is more compact with
obvious structural change.

We also applied transition path theory (TPT) on the constructed MSM to gain a mesoscopic view
of the potential misfolding pathway for the TTR monomer into the partially unfolded misfolded state.
TPT is a theoretical method to predict folding/unfolding pathways with reactive flux between folded
and unfolded states [58]. We used S0 which strongly resembles the native structure, to represent
the initial native state of TTR monomer, while S4, the most populated state with partial unfolded
conformations, was used to model the misfolded state of the TTR monomer. To distinguish the initial
state and final state from other macrostates in the transition pathway, we assigned S0 as SA, and S4
as SB, while, macrostates S1, S2, and S3 remained unchanged. The transition pathway analysis was
carried out using the coarse-gained TPT method [59]. A picture describing the relative position of each
macrostate in the free energy surface is displayed in Figure 8. From the free energy surface, initial
state SA (S0) is located in the lower left corner, while the final state SB (S4), with the lowest energy,
is located in the right. In addition, from the free energy surface, it is clear that the energy barrier of
interstates was relatively high. This is consistent with the Markovian property of a realistic MSM that
interstate transition is slow due to a high energy barrier [43,60].
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Figure 8. Free energy surface of TTR monomer with average location of corresponding macrostates
labeled. A (S0) and B (S4) represent the initial and final states in the transition pathways, respectively.
1, 2, and 3 represent macrostates S1, S2, and S3.

To visually describe the misfolding events of the TTR monomer, Figure 9, the transition pathways
connecting initial native state SA and final misfolded state SB are used to depict the conformational
transition. It is clear that there are three pathways for the conformational transition from SA to
SB: SA→S1→SB, SA→S3→S2→SB, and SA→S3→S1→SB. Just like the structural characterization we
shown in Figure 6, conformations in S2 and S3 maintain their β-sheet structure quite well, while
conformations in S1 are partially unfolded with part of DAGH sheet converted into disordered coil
and turn structures. Thus, the three pathways can be classified into two categories: (1) conformational
transition via native-like β-sheet intermediates (SA→S3→S2→SB) or (2) conformational transition
via partially unfolded intermediates (SA→S1→SB, SA→S3→S1→SB). These two categories for the
misfolding pathway have been deduced by Anvesh et al. from experimental solution and solid-state
NMR measurements [14]. Pathway percentage calculations reveal that it is more likely for the TTR
monomer to misfold via partially unfolded intermediates with a percentage of 83.96% as shown in
Figure 9. Based on the results of structural characterization and transition pathway network, we
speculate that the conformation transition pathway of TTR monomer misfolding is initiated at D-strand,
since this strand is quite unstable in all obtained macrostates. Subsequently, other strands in DAGH
sheet are partially unfolded to disordered coil or turn structure, and the F-strand moves away from
E-strand. Finally, the F-strand forms a new β-sheet structure with H-strand through appropriate
conformational rearrangement.

Figure 9. Structural transition pathways of the TTR monomer from the near native state SA (S0) to
the potential misfolded state SB (S4). The arrows represent the coarse-gained fluxes with arrow size
proportional to the main flux. Percentage of corresponding pathways is shown in the table.
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4. Conclusions

We explored the potential misfolding mechanism of the TTR monomer by combining microsecond
hybrid-resolution MD simulations and MSM analysis. By comparing PACE simulation and all-atom
simulation, we found that the PACE model can provide accurate data and both models revealed that
all the loops as well as D-strand in DAGH sheet are quite flexible. From the constructed MSM based
on PACE runs, we identified a potential misfolded state of TTR monomer with very large equilibrium
probability. By structural analysis, this misfolded state was found to be partially unfolded at the
DAGH sheet and was significantly converted into disordered coil and turn structure. In addition, we
found that the F-strand could move away from E-strand to form a new β-strand with H-strand in
the DAGH sheet, suggesting an important role for both F- and H-strands in TTR misfolding. Further
transition pathway analysis indicated that there are two main pathways for TTR monomer to misfold:
via native-like β-sheet intermediates or via partially unfolded intermediates. The later pathway is the
dominant one for TTR monomer misfolding. Our results have theoretically elucidated the misfolding
mechanism of TTR monomer and described the potential misfolding pathway at atomic resolution.
This should provide valuable theoretical insights for understanding the TTR aggregation and the
pathogenesis of ATTR amyloidosis.
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