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Abstract: As an efficient way to integrate multiple distributed energy resources (DERs) and the user
side, a microgrid is mainly faced with the problems of small-scale volatility, uncertainty, intermittency
and demand-side uncertainty of DERs. The traditional microgrid has a single form and cannot
meet the flexible energy dispatch between the complex demand side and the microgrid. In response
to this problem, the overall environment of wind power, thermostatically controlled loads (TCLs),
energy storage systems (ESSs), price-responsive loads and the main grid is proposed. Secondly, the
centralized control of the microgrid operation is convenient for the control of the reactive power and
voltage of the distributed power supply and the adjustment of the grid frequency. However, there is
a problem in that the flexible loads aggregate and generate peaks during the electricity price valley.
The existing research takes into account the power constraints of the microgrid and fails to ensure
a sufficient supply of electric energy for a single flexible load. This paper considers the response
priority of each unit component of TCLs and ESSs on the basis of the overall environment operation
of the microgrid so as to ensure the power supply of the flexible load of the microgrid and save the
power input cost to the greatest extent. Finally, the simulation optimization of the environment can
be expressed as a Markov decision process (MDP) process. It combines two stages of offline and
online operations in the training process. The addition of multiple threads with the lack of historical
data learning leads to low learning efficiency. The asynchronous advantage actor–critic (Memory
A3C, M-A3C) with the experience replay pool memory library is added to solve the data correlation
and nonstatic distribution problems during training. The multithreaded working feature of M-A3C
can efficiently learn the resource priority allocation on the demand side of the microgrid and improve
the flexible scheduling of the demand side of the microgrid, which greatly reduces the input cost.
Comparison of the researched cost optimization results with the results obtained with the proximal
policy optimization (PPO) algorithm reveals that the proposed algorithm has better performance in
terms of convergence and optimization economics.

Keywords: microgrid; energy storage; flexible load; reinforcement learning; deep learning; energy op-
timization

1. Introduction

With the development of power systems for a variety of distributed energy sources,
the traditional energy management system (EMS) is also expected to develop into a new
form called an integrated energy management system (IEMS). The construction of IEMSs
can optimize energy supply for microgrids and provide new decisions for optimal demand-
side scheduling [1,2]. The reasonable optimal scheduling of demand-side energy is the
most direct way for energy supply to play a significant role. The energy management
of microgrids mainly faces the problem of optimal scheduling. In the case of large-scale
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distributed energy resource (DER) intervention, the large-scale volatility of DERs and the
randomness of demand-side response have brought many problems of optimal allocation
and scheduling. With the development of artificial intelligence machine learning, deep
reinforcement learning can effectively solve the above problems.

From the perspective of the microgrid model, reference [3] can effectively manage
energy distribution for distributed power generation, energy storage systems and price
response users without day-ahead forecasts; reference [4] constructs wind power and a dis-
tributed energy storage system in which users achieve a certain degree of Nash equilibrium
without pre-experiment. Reference [5] considers demand response and energy storage sys-
tems. In the day-ahead scheduling stage, according to the short-term forecast information
of wind power, a day-ahead scheduling scheme is formulated with the minimum system
power generation cost as the objective function, and the day-ahead scheduling plan of the
system is revised. Reference [6] establishes a model for the thermostatically controlled
loads (TCLs) on the user’s demand side and uses reinforcement learning for optimal control
of energy-saving scheduling. Reference [7] simulates the microgrid environment of battery
energy storage combined with hydrogen storage devices and uses the deep Q-network
(DQN) reinforcement learning method to complete energy scheduling optimization. Com-
ponents such as DERs and ESSs are considered in [8] to form a small campus microgrid
combining power conversion and users, and a hierarchical reinforcement learning network
is used for optimal scheduling of microgrid energy. In [9], the microgrid model takes into
account distributed power sources, users and electric vehicles to reasonably coordinate the
load state to optimize the economical operation of the power grid. Reference [10] considers
price response and user participation in a microgrid model with wind and solar output and
uses intraday consumption for scheduling optimization. Reference [11] pointed out that
the real-time price signal formulated by the reinforcement learning algorithm (DRL) is used
as the dominant signal to manage the operation of the microgrid, and at the same time, the
deep neural network is used to learn the behavior of the user side of the microgrid.

From the aspect of microgrid optimization algorithm, references [12,13] used mixed-
integer linear programming, cooperative game and alternating direction multiplier methods
and at the same time cooperated with different time scales such as intraday rolling optimiza-
tion and real-time adjustment. The performance of the algorithm for the microgrid energy
optimization strategy was further improved. Reference [14] considers the DQN algorithm
to learn the real-time scheduling strategy of the microgrid, discretizes the battery energy
storage action, greatly reduces the range of optional actions and improves the efficiency
of the learning strategy. Reference [6] uses an improved DQN algorithm to carry out the
scheduling optimization of the microgrid composite model of energy storage and battery.
This algorithm uses the double-layer learning network of DQN to reduce the correlation of
network update parameters and improve the learning efficiency. Reference [15] shows that
the cost of the double DQN strategy is higher than that of the continuous action reinforce-
ment learning algorithm through the simulation case of real-time control of a residential
multienergy system. Therefore, from the perspective of the economy of management strat-
egy, it is necessary to introduce continuous action-type reinforcement learning algorithms.
Reference [16] proposed a method of optimizing comprehensive energy economic dispatch
by using the deep deterministic policy gradient (DDPG) algorithm for renewable energy
considering the time-varying characteristics of the load. This method addresses environ-
mental policy learning on continuous state actions. Aiming at the uncertainty of renewable
energy and load, reference [15] achieves robust optimization based on mathematical pro-
gramming (MP). Reference [17] integrates stochastic optimization for day-ahead optimized
energy management; however, although these factors are considered comprehensively,
there is still a deviation from the actual operation. Reference [18] constructed a multiagent
and multiobjective DRL architecture but did not consider the limitation of training abil-
ity. Reference [19] adopted the asynchronous advantage actor–critic (A3C) algorithm to
effectively manage microgrid units such as energy storage and power generation. This
algorithm greatly improves the speed of training and convergence.
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The above existing research on the optimal dispatch of microgrid energy, on the one
hand, includes ESSs, distributed energy resources, controllable loads, TCLs, power conver-
sion, price response loads and the main grid from the perspective of the microgrid model.
However, there are few studies on dispatch optimization of these combined microgrids in
current research. On the other hand, from the perspective of microgrid optimization algo-
rithms, the existing research [13–15] optimization algorithms include MP, Q-learning, DQN
and DDPG. Although they can solve the problem of high-dimensional decision-making of
various loads under nonconvex problems, there are still many drawbacks. For example,
deep Q-learning cannot select reasonable actions on consecutive actions. The DQN algo-
rithm uses the gradient algorithm to effectively solve such problems, but the update mode
of the algorithm adopts the mode of round update, which greatly reduces the learning
efficiency. Later, scholars proposed the DDPG algorithm, which based on the actor–critic
algorithm can not only efficiently solve the energy management problem of continuous
action space, but also improve the learning efficiency. However, the deterministic strategy
is not conducive to the exploration of actions, and easily falls into a local optimum.

Inspired by the previous studies, this paper not only combines distributed energy
resources, controllable loads, TCLs, power conversion, ESSs, price response loads and the
main grid from the perspective of the microgrid model, but also adopts priority to TCLs,
ESSs and price response loads to achieve control, increased flexibility in demand response
and improved energy utilization. From the perspective of microgrid optimization algorithm,
combined with the existing research, the experience playback pool M-A3C is introduced
on the basis of the A3C algorithm. This algorithm solves the effective management and
training of high dimensions and the speed of convergence and achieves higher model
performance and convergence of optimal policies.

The major contributions of this study are as follows:

1. This paper establishes a microgrid model, including battery packs, incentive response
user groups and related typical components that can participate in main grid power
dispatch.

2. In the flexible scheduling of battery packs and the participation of the main network,
considering the optimal scheduling strategy of daytime scheduling and real-time
scheduling, a method is proposed that considers the priority of the energy storage
system participating in the energy interaction between the main network and the
microgrid. When mapping the above uncertainty into the Markov decision pro-
cess (MDP) in the setting of the reward function, the minimization of the operating
cost of the microgrid system is regarded as the reward value maximization form of
reinforcement learning.

3. A memory library A3C algorithm is proposed to efficiently utilize data and reduce
the interaction time between agent and environment during training. The M-A3C
algorithm is compared with other algorithms (DQN, PPO, double DQN), and it is
verified that the strategy optimization ability of the algorithm is better than that of
the other algorithms in the same environment.

2. Microgrid Structure and Equipment Model

As shown in Figure 1, the microgrid model structure given in this paper mainly consid-
ers the infrastructure requirements with an independent supply and demand environment.
The power of the microgrid is generated by its own wind turbines, while at the same time
interacting with the main grid in both directions. The power of the main grid and the
power of the microgrid are purchased and sold through the implementation and fluctuation
of market electricity prices. Figure 1 mainly shows the physical layer, information layer
and control layer. For example, the state of charge of the battery, the purchase and sale
of electricity in the microgrid and the price of electricity can all be transmitted through
the information layer. The control layer mainly includes the charging and discharging
of the battery controlled by the microgrid, the purchase and sale of the residential price
response load power and the main grid power. It is generally divided into three types of
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control: thermostatically controlled load (TCL) switching control, energy storage system
(ESS) discharge and main network electricity trading.
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Figure 1. Microgrid architecture.

2.1. Objective Function

The goal of microgrid demand-side energy optimization is to achieve the lowest-
cost-oriented microgrid energy management decision under the time-scale scheduling
of rolling operation within the day. Considering the cost of DER power generation, the
depreciation of energy-storage-optimized batteries and the energy dispatch cost of the
main grid participation, the mathematical expression of the operating cost of the system is
as follows:

Y = min(CE + CESS + CG) (1)

CG =
T

∑
t=1

cb,t|δt|+ − cs,t| − δt|+ (2)

where CE is the power generation cost of DER; CESS is the depreciation cost of charging
and discharging of the battery in the energy storage system; T is the operating time period
within a day; δt is the amount of electricity exchanged between the microgrid and the main
grid at time t; when δtδt > 0, it means buying electricity from the main grid, otherwise it
means selling electricity to the main grid; cb,t is the price of purchasing electricity from the
main grid at time t; and cs,t means buying electricity at the main grid price of electricity.

The microgrid energy optimization operation constraints include power balance con-
straints, main grid energy supply constraints and related equipment operation constraints.

2.1.1. Power Balance Constraints

The electric power balance constraints of the microgrid and the thermal power balance
constraints of TCLs at time t in the day are as follows:

δt + Pwind(t)− PESS(t) + Pload(t) = 0 (3)

N

∑
i=1

PTCL,i(t) = Hload(t) (4)
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where Pwind(t), PESS(t) and Pload(t) are the wind power, energy storage battery power and
residential load power at time t, respectively; N represents the number of TCLs, PTCL,i(t)
represents the power of the i-th TCL at time t, and Hload(t) is the thermal power of the
microgrid at time t.

2.1.2. Interaction Power Constraints between Microgrid and Main Grid

Based on the stable operation of the demand side of the microgrid, there are upper
and lower constraints on the power interaction between the main grid and the microgrid:

Pmin
grid ≤ Pgrid(t) ≤ Pmax

grid (5)

where Pmin
grid and Pmax

grid are the upper and lower limits of the interaction power between the
microgrid and the main grid, respectively.

2.2. Model of Each Component of the Microgrid

This paper uses the real wind energy production data of a wind farm, and the data
volume is real-time data of 240 days and 5760 h. These data are shared with the microgrid
in real time, as the power of the wind farm is sent to the local microgrid. Pgt

t is the output
power of wind power at time t, βwind is the conversion efficiency of wind power and Pwind

t
is the maximum power of wind power; then,

Pwind
t = βwind ∗ Pgt

t (6)

In the ESSs model, ESSs serve as short-term reserves, and their charge–discharge
response signals are sent by the battery. ESSs in microgrids can maintain the balance
between supply and demand of microgrid energy. Sbat(t) represents the real-time energy
of the battery; Sbat(t− 1) is the energy before charging and discharging; Pcha

bat and Pdis
bat are

the charging and discharging powers, respectively; and ηb is the charging and discharging
efficiency. Then,

Sbat(t) =

{
Sbat(t− 1) + ηb

∫
Pcha

bat dt

Sbat(t− 1)−
∫ Pdis

bat
ηb

dt
(7)

The charge–discharge response behavior for a single ESS is provided and emitted by
the battery. For example, when the battery sends a discharge signal, the EMS accepts its
stored power and distributes it to the microgrid load, and when there is energy surplus,
the excess energy will be sold to the main grid. When the charging signal is released, if
the microgrid energy allocated by EMS cannot be satisfied, the rest will be automatically
supplied by the main grid. In addition, for the battery, the damage of charging and
discharging should also be considered. We use Bsoc(t) to represent the real-time state of
charge, so the battery has a certain range constraint:

Bmin
soc ≤ Bsoc(t) ≤ Bmax

soc (8)

Sbat,min ≤ Sbat(t) ≤ Sbat.max (9)

0 ≤ Pdis,t ≤ Pdis,max (10)

0 ≤ Pcha,t ≤ Pcha,max (11)

Bsoc(t) =
Sbat(t)
Sbat,max

(12)

where Bmin
soc and Bmax

soc are the upper and lower limits of the battery energy storage state;
Sbat,min and Sbat.max are the minimum and maximum battery capacities, respectively;
Pdis,max and Pcha,max are the maximum powers of battery discharge and charge, respectively.

The TCL model has a thermostatic control cluster and includes various temperature
control loads, and energy conservation provides a great possibility of flexible scheduling. It
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is assumed that each residential household is equipped with refrigerators, air conditioners,
heat pumps, water heaters, etc. These components are uniformly controlled by the TCL
manager, and the real-time temperature may be expressed as follows:

Tt
in = Hair ∗ (Tt−1

out − Tt−1
in ) + T∆t

b + Ptcl ∗ Sb,t ∗ Ht−1
in (13)

where Tt
in and Tt−1

out are the real-time indoor temperature and the temperature at the pre-
vious moment, respectively; Hair and Ht−1

in represent the air heat in the building and the
heating inside the building at the previous moment; T∆t

b is the temperature change in the
building; and Ptcl is the average power of TCL. For switches Sb,t, the following action
relationships exist:

St
b,i =


Tt

in,t > Tmax,i → Cooling
Tt

in,t < Tmin,i → Heating
Tmin,i < Tt

in,t < Tmax,i → Static
(14)

where Tmax,i and Tmin,i represent the upper and lower limits of the i-th TC temperature and
Tt

in,t represents the real-time control temperature of i at time t.
For many TCLs, there must always be a certain priority level, which we use SOCt

i
to denote:

SOCt
i =

Tt
in,t − Tmin,i

Tmax,i − Tmin,i
(15)

So for each TCL, we will only charge the cost of generating electricity for the energy
consumed. In order to ensure user comfort, temperature verification and switch operation
are carried out according to the priority EMS.

In the residential price response model, the microgrid cannot directly participate in
the control of residential load energy consumption. Assuming that the user’s electricity
consumption behavior follows the price rolling law within the day, we can change the real-
time response of residential load through the intervention of price. Therefore, each house is
given two constraints that affect power, load flow and response compensation, which can be
represented by ρ and τ. The load flow ρ represents the proportion of load loss and increase
under the condition of intraday price rolling, and ρ ∈ [0, 1]; the response compensation τ
represents the cost of the microgrid for users to reduce electricity consumption due to price
fluctuations. Then, the residential i power load Lt

i at time t can be modeled as follows:

Lt
i = Lsum,b − ρ ∗ Lsum,b ∗ µt + τ (16)

µt

{
> 0→ High− price
< 0→ Low− price

(17)

where Lsum,b represents the basic load of the house at time t. µt represents the price level
at this time; when it is positive, it represents a high price level, and when it is negative, it
represents a low price level, for the load caused by intraday price fluctuations. The churn
compensation cost τ can be expressed as follows:

τ =
T−1

∑
t=0

α ∗ ρ ∗ Lsum,b ∗ µt (18)

where α ∈ [0, 1] is a constant, which is the execution probability of the compensation load
under a certain time step; in order to balance the energy supply and demand balance
between the main network and users, a pricing mechanism should be designed with
reference to market prices. The intraday average price Mavg of the microgrid should be

below 10% of the market price on that day, which can be expressed as Mavg−Mmarket
Mmarket

< 10%.
Mmarket represents the market price; the price can be described as follows:

Pt = Mmarket + µt ∗ w (19)
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where w represents the price increase or decrease constant.

2.3. Interaction Mechanism between Main Network and Microgrid

The main grid can supply power to the microgrid immediately when its energy is
insufficient, or the main grid can receive excess power when the microgrid has excess
energy. Transactions between the main grid and the microgrid take place in real-time using
price up PU

t and price down PD
t . δt represents buying or selling to the main grid; positive

values represent energy purchased, and negative values represent energy sold.

3. Microgrid Management Reinforcement Learning Scheme

The microgrid energy management in this paper is actually a sequential decision-
making problem in an uncertain environment. Adopting a model-free or data-driven
approach can better adapt to environmental uncertainties.

The reinforcement learning algorithm M-A3C achieves parallel operation in multiple
environments by using threads, allowing multiple agents with substructures to update
the parameters in the main structure in these parallel environments at the same time. In
parallel, the agents do not interfere with each other. After the environment interacts with a
certain amount of data, the gradient is updated in its own thread. However, these gradients
do not update the neural network in its own thread but update the neural network of
the main structure. Therefore, the correlation of the algorithm update is reduced, and the
convergence is greatly improved.

3.1. Markov Decision Problem

The deep reinforcement learning microgrid energy scheduling problem is modeled as
an MDP.

3.1.1. State Space

In this microgrid model, the state information in the environment includes the state of
charge of TCLs SOCt, residential load Pt, temperature Tt, real-time power generation Gt,
state of charge of the energy storage system BSCt, market price Ct and daily consumption
load value Lt; therefore, the state space at time t is expressed as follows:

S = {Lt, Ct, BSCt, SOCt, Pt, Tt, Gt, Lt} (20)

3.1.2. Action Space

Each time the agent obtains the state information, it makes a selection in the action
space according to the strategy. For the actions of many devices in the microgrid, please
refer to the components in the first section. There are mainly five possible actions for the
residential load based on the price, so as to formulate the price level Aload; the constant
temperature control load has four actions Atcl to ensure that each TCL action is carried
out through their respective priorities for the energy storage equipment at t. The action
at a time is the input AD and output AE of energy. Therefore, the discretized action has
80 possibilities, which can be expressed as follows:

A = {Aload, Atcl , AD, AE} (21)

3.1.3. Reward Function

In reinforcement learning, the reward value is used to map the quality of the strategy,
and the management goal of the microgrid is to minimize the cost. On the one hand, this
paper regards the minimization of the system operating cost of the microgrid as a form
of reward value maximization in reinforcement learning. On the other hand, in order to
ensure that the algorithm framework has good convergence, a profit function is also added
as another part of the reward. It can be expressed as follows:

R = Cpro f ile − Ccos t (22)
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where Cpro f ile and Ccos t represent the revenue of the microgrid and the cost of the
microgrid, respectively;

Cpro f ile = Pt ∗ (
N

∑
n=1

Lt
i +

I

∑
i=1

Ptcl ∗ St
b,t) + PD

t ∗ |δt|+ (23)

Ccos t = CESS + PU
t ∗ | − δt|+ (24)

where CESS represents the depreciated cost of the battery.

3.2. M-A3C Network Structure

The A3C algorithm is a multithreaded online learning algorithm based on the actor–
critic (AC) framework, which combines the evaluation method of policy and value. It is also
an improvement and upgrade of the AC algorithm. The A3C algorithm model combines
two parts, actor and critic. Actors are responsible for generating actions and participating
in real-time interactions with the environment, while critics evaluate and direct the actions
of actors. The input state of the actor environment is S, and the action policy in the current
environment is output π(S). The input state of the critic environment is S, and the output
is the evaluation value v(S) of the current state S, and v(S) represents the value of the
expected mean state S. The A3C algorithm uses the difference between the action value
function and the state value function (optimization function) as the criterion for evaluating
the critic, combined with the value accumulation of the N part, as shown in Equation (25),
where A(S, t) is the optimization function, representing the value of the current state S,
where γ is the attenuation factor.

A(S, t) = Rt + γRt+1 + · · · γn−1Rt+n−1 + γnv(S′)− v(S) (25)

The critic network in the A3C algorithm uses the TD-error value of δ and uses the mean
square error as the loss function to update the parameters of its own network parameters
of ω. The calculation formula is shown in Equation (26).

δ = R + γv(S′)− v(S)
loss = ∑ (R + γv(S′)− v(S, ω))2 (26)

The evaluation of the critic network directly affects the update of the actor network
parameters, and the policy entropy term is added to the policy loss function. Then the
parameter θ of the actor network is updated as shown in Equation:

θ = θ + α∇θ log π(st, at)A(S, t) + c∇H(π(St, θ)) (27)

The objective function of the model under maximum entropy can be expressed
as follows [20]:

π∗ = argmax
θ

E(st ,at)→ρθ

{
∑ r(st, at) + τH[θ(•|st)]

}
(28)

where H is the entropy term taken in state st and τ represents the weight of exploration
ability. The goal is to ensure that the entropy of the resulting action is as large as possible
in a state st. While maximizing the reward of the agent, the model should also make the
agent have more space for exploration. The optimal target of the agent is represented by
Q∗(st, at); that is, the optimal value represents the maximum cumulative reward that can
be obtained by st, and Q∗(st, at) can be obtained through the Bellman maximum. The
optimal equation calculation is as follows:

Q∗(st, at) = E[rt+1 + λmaxat+1Q(st+1, at+1)|st, at] (29)

where λ is the reward discount factor.
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The actor makes an action based on the current state of the simulated environment,
and the critic gives a reward for the actor’s performance based on the state and action [21].
Actors adjust their strategies based on critics’ rewards. Finally, the actor learns the optimal
policy from the environment, and the critic also gives the optimal reward value.

In the A3C algorithm, the actor network and the critic network can generally take
the form of a fusion network and a separation network for practical tasks. Based on the
reinforcement learning A3C algorithm, this paper introduces an experience playback pool
in the reference deep Q-learning algorithm. The experience playback mechanism obtains
historical data. Relevant information breaks the correlation between data, and the reuse of
experience also increases the efficiency of data usage. The M-A3C interactive environment
and training process are shown in Figure 2.
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Figure 2. M-A3C microgrid management structure.

Each substructure network accepts the state of charge from TCL, residential load,
temperature, real-time power generation, state of charge of the energy storage system,
market price and load value of daily consumption from the environment. In each time
period t, each substructure evaluates and updates the state, and at the same time, the
learned strategies are unified by the main structure to gather experience and finally update
the strategy. The experience of each episode in the training process will be stored in the
experience pool to improve the speed of update and the efficiency of learning.

4. Results
4.1. Basic Data

In order to verify the effectiveness of the improved M-A3C algorithm based on Al-
gorithm 1 proposed in this paper and the energy scheduling of the proposed model,
Appendix A lists the parameters of each component of the microgrid. Twenty-four hours
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of the day will be used as the time period for microgrid energy scheduling optimization.
The main power grid, residential houses, energy storage systems and thermostatic control
systems are set up in the environment, and the residential houses and thermostatic control
systems are presented in a cluster.

Algorithm 1. Pseudocode for each thread learning in A3C

Assume globally shared parameter vectors θv and θ global shared count T = 0
Assuming thread-specific parameter vectors θv

′ and θ′

Initialize thread steps t←1
Repeat

Reset gradient: dθv ← 0 and dθ ← 0 ;
Synchronized thread parameters: θv

′ = θv and θ′ = θ;
tstart = t;
Get the state at this time t st;
Repeat

According to strategy π(at|st; θ′) , get the state at at this time t
At time t reward value rt and new state st+1
t← t + 1
T ← T + 1
if st or t− tstart = tmax terminate

R =

{
0, st → terminate

V(st, θv
′)st, st → non− terminating and starting f rom the last state

For i ∈ {t− 1, · · · · · · tstart}
R← ri + γR ;
Calculate about the gradient θ′: dθ ← dθ +∇θ′ log π(ai|si; θ′)(R−V(si; θ′))

Calculate about the gradient θ′v: dθv + ∂(R−V(si; θ′))2/∂θ′v
End.
Use dθ to perform asynchronous updates of θ and θv and dθv;
only T > Tmax

The simulation environment in this paper considers the addition of wind turbines
and takes into account the uncertainty of wind power fluctuations. However, in the end,
the generator model was not used, but the power generation data of the Finnish wind
power plant in [22] were used, and the data resolution was 1 h. Figure 3 shows the sample
wind power data, and Figure 4 shows the basic data of components in the microgrid for
one day. In the selection of the hyperparameters of the algorithm M-A3C, after many
running comparisons, this paper sets the experience sample playback capacity in the M-
A3C algorithm to 500; the smallest batch is 200, the update batch is 100 and the learning
rate is 0.001. The training iteration is 1, and ε− decay is set to 0.00005.
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On the basis of basic data, the microgrid performs energy dispatching optimization
among components. The agent directly controls the TCLs and residential loads. In the
microgrid environment, the number of TCLs is set to 150. The agent allocates a certain
amount of energy to the TCLs and determines the priority according to each SOC. Reason-
able switching action is performed to stabilize the temperature in the range of 18 to 28 ◦C.
The residential load is set to 150, and each load has two parameters. Due to the fluctuation
of the electricity market price, the increase or decrease in the load will be compensated
accordingly in the later stage. For the energy surplus and energy shortage of the energy
storage system, the main network participates in the interactive response for a reasonable
distribution of energy.

4.2. Analysis of Results

The microgrid environment is trained by M-A3C and PPO, and the convergence results
are shown in Figure 5. Each epoch corresponds to each day of training in the environment.
At the beginning of training, the agent does not obtain the corresponding environmental
information, so it obtains a relatively small reward value after executing the scheduling
decision. However, with the accumulation of the training process, the reward value is also
continuously accumulated, and the agent continues to learn the scheduling strategy, so the
overall trend of the reward value increases and finally tends to converge. From Figure 5, the
M-A3C and PPO are compared and analyzed, and the two converge in about 30 episodes;
that is, after training for 30 days, both can explore the optimal scheduling strategy, but the
final reward value for convergence of M-A3C is obviously higher than that of PPO. M-A3C
has a certain fluctuation in the final convergence, but it has a high reward value, which
means that the profit is relatively large; meanwhile, the performance of PPO is limited.
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In order to illustrate the effectiveness of the M-A3C algorithm in decision-making,
a certain day from the 40th to the 120th in Figure 5 is selected for analysis at an hourly
optimization interval. As can be seen in Figure 6, at 11:00–12:00, the market electricity
selling price is the highest and the microgrid sells a lot of energy. While the market electricity
selling price is relatively low at 22:00–24:00, the microgrid buys a large amount of energy.
At the same time, as shown in Figure 7, the ESS will buy the storage at 5:00–12:00, and
the amount of charge gradually increases and tends to be saturated, which can effectively
relieve the power supply pressure of peak electricity, but after 15:00, the microgrid system
is in rapid energy consumption. In this stage, the charge of the ESS decreases significantly,
which indicates that the ESS continues to supply energy for the microgrid and ensures the
stability of the load power consumption. In summary, under the influence of real-time
electricity price, M-A3C realizes the optimal dispatching strategy of microgrid energy, and
the microgrid obtains better economy.
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Finally, comparing the daily electricity production charts of the microgrid in
Figures 6 and 8, it can be seen that the large-scale distribution and consumption of energy
in a day basically correspond to the low market price of electricity in a day, which can
greatly reduce the cost of investment. As shown in Figure 9, the distribution of TCL energy
in a day is around 00:00–8:00 to ensure the supply of subsequent energy in the day; a large
amount of energy is purchased in the main network to ensure sufficient allocation of early
loads, which can be very stable during peak electricity prices.
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4.3. Comparison of Algorithms

In order to further verify the superiority of the M-A3C algorithm in microgrid energy
scheduling, the input dimension of the neural network is set to a 7-dimensional state vector,
and the output is the state-relative action value st → at ; there is a hidden full connection
in the neural network layer, the number of neurons is 100 and the activation function is
ReLU. We compared the PPO and M-A3C algorithms in the same microgrid environment
and selected the cost of each day for 10 days from the 40th to 120th day of training and the
retailer’s cost for these 10 days for comparative analysis.

As shown in Figure 10, the cost of M-A3C for 7 of the 10 days showed a good low cost
due to PPO. The data show that the standard deviation of the 10-day cost for M-A3C is
0.526, the standard deviation for PPO is 0.681 and the standard deviation for the retailer’s
10-day cost is 0.73. The cost output under the reinforcement learning algorithm achieves
a cost reduction of 37.8% compared to the retailer’s planned output. Compared with
the PPO algorithm, the cost input is reduced by 34%. It can be seen that M-A3C can
efficiently handle the energy dispatching optimization problem of the microgrid. Figure 11
shows the optimization results of the main microgrid energy dispatching under the PPO
algorithm. The data in the figure are selected for 24 h on the same day as in Figure 6. It
can be seen from the comparison chart that under the same intraday electricity market
buying and selling price, the microgrid sells more electricity on that day. Purchase prices
in the electricity market peaked at 11:00–12:00. During the 22:00–24:00 and 00:00–6:00
periods of the electricity price valley, the microgrid also purchased a larger amount of
electricity. Therefore, compared with the M-A3C optimization under the same conditions
within 24 h, the PPO-optimized microgrid energy interaction output is relatively small, and
the corresponding purchase volume is larger. Although they are all at the bottom of the
electricity price in the electricity market, the cost is far greater than the optimization result
of M-A3C, which is also reflected in Figure 10.
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Table 1 further compares the reward value of DQN and double DQN under different
experience pools and batch sizes of training batches. In the same environment, the test uses
different algorithms to optimize the policy for the environment objective function. The
results show that the final scores of PPO and M-A3C are greater than those of DQN and
double DQN in training batches of 200 and 500 with the same size of experience replay pool.
The final score of M-A3C is due to the PPO algorithm, and it can be seen that adding M-A3C
is the best choice. Table 2 compares the score levels of the offline–online-based strategy
PPO algorithm and the improved M-A3C when parameter 5 is changed. From Table 2, on
the one hand, it can be clearly seen that the PPO score based on offline and online strategies
is significantly weaker than the score of M-A3C at the same ε− decay during the learning
process. On the other hand, the PPO algorithm’s scoring ability fluctuates greatly under
different ε− decay, while M-A3C can show stable scoring ability under different changes in
ε− decay and obtain a more stable solution. Therefore, it can be seen from the synthesis
that the improved M-A3C is better than DQN, double DQN, etc. in the algorithm’s scoring
ability. At the same time, it has a good generalization ability for parameter changes and
shows better performance.
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Table 1. Comparison of reinforcement learning algorithms based on different experience pools.

Mmax Batch Size DQN Double DQN PPO M-A3C

300
200 0.080 0.166 0.213 0.246
500 0.140 0.154 0.310 0.243

700
200 −0.270 0.162 0.11 0.245
500 0.123 0.151 0.09 0.250

Table 2. Comparison of reinforcement learning algorithms based on different ε− decay.

ε−decay PPO M-A3C

5× 10−5 −0.921 0.106
1× 10−5 −0.396 −0.082
1× 10−4 −0.152 0.286

5. Discussion

In this paper, a model-free reinforcement learning method is proposed for the uncer-
tain real-time scheduling problem of multiple loads in microgrids. Reinforcement learning
establishes the MDP decision-making component. The proposed improved M-A3C algo-
rithm based on actor–critic is a relatively complete method for solving the microgrid energy
optimization problem proposed in the article. The following conclusions can be drawn
regarding the use of this method in microgrid optimization:

(1) The application of reinforcement learning M-A3C to the proposed system with the
integration of TCL cluster, residential load, energy storage system and external power grid
results in good adaptability.

(2) The algorithm training results show that the used M-A3C algorithm shows better
convergence than the PPO algorithm and obtains higher profit rewards. Through multi-
threaded synchronous training, M-A3C can not only improve the training speed, but also
update certain parameters from each thread at the same time and return the parameters to
the experience pool and the main network at the same time for collection and optimization,
and the experience pool is fully updated. The new and old strategies of parameters are
used, which reduces the correlation between strategies and improves the convergence
speed. Although the PPO algorithm combines offline–online sampling, the sampling of
the PPO algorithm has a certain correlation and cannot fully learn random strategies to
improve optimal scheduling.

(3) In the analysis and comparison of the results of the M-A3C algorithm, it is con-
cluded that the intraday optimization cost is better than that of the retailer, and the cost
reduction ratio in 10 days reaches 0.36. In the future, further discussion and research
are needed on the generalization ability of the model and how to use more advanced
algorithms and more flexible loads to participate in collaborative optimization.
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Appendix A

Table A1. Equipment operating parameters.

Device Parameters Value

DER

Pwind
t

Hourly real-time power generation records
(KW)

ρwind 0.55

price Pw,cos t 3200 (RMB/kw)

ESS Parameters

Pcha
bat 300

Pdis
bat 300

ηb 0.9

Bsoc(t) [0,1]

Sbat(t) 600

Battery Loss Factor 0.001

TCL Parameters

Number of TCLs 150

Tmax.i 28

Tmin.i 18

Hair [0.005,0.006]

Ht
in [0,0.03]

SOCt
i [0,1]

Ptcl 1.5

TCL Electricity Selling Price 3.2

Resident Load Parameters

ρ [0.3,0.5]

α 0.6

Number Of Basic Residential Dwellings [25,150]

w 2

µt [−2,−1,0,1,2]

Main-Grid Model Parameters

PU
t

Real-time record of grid price increase
(RMB/kwh)

PD
t

Real-time record of grid price reduction
(RMB/kwh)

MDP Parameters

Aload {−2,−1,0,1,2}

Atcl {50,100,150,200}

AD {0,1}

AE {0,1}
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