
materials

Article

Scaled Approach to Designing the Minimum Hybrid
Reinforcement of Concrete Beams

Andrea Gorino 1 and Alessandro P. Fantilli 2,*
1 Rete Ferroviaria Italiana S.p.A., Via Nizza 2, 10125 Torino, Italy; a.gorino@rfi.it
2 Department of Structural Geotechnical and Building Engineering, Politecnico di Torino-DISEG,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
* Correspondence: alessandro.fantilli@polito.it; Tel.: +39-011-090-4900

Received: 23 September 2020; Accepted: 11 November 2020; Published: 16 November 2020 ����������
�������

Abstract: To study the brittle/ductile behavior of concrete beams reinforced with low amounts of rebar
and fibers, a new multi-scale model is presented. It is used to predict the flexural response of an ideal
Hybrid Reinforced Concrete (HRC) beam in bending, and it is validated with the results of a specific
experimental campaign, and some tests available in the technical literature. Both the numerical and
the experimental measurements define a linear relationship between the amount of reinforcement
and the Ductility Index (DI). The latter is a non-dimensional function depending on the difference
between the ultimate load and the effective cracking load of a concrete beam. As a result, a new
design-by-testing procedure can be established to determine the minimum reinforcement of HRC
elements. It corresponds to DI = 0, and can be considered as a linear combination of the minimum
area of rebar (of the same reinforced concrete beam) and the minimum fiber volume fraction (of the
same fiber-reinforced concrete beam), respectively.

Keywords: reinforced concrete (RC); fiber-reinforced concrete (FRC); hybrid-reinforced concrete
(HRC); rebar; fibers; bending moment; minimum reinforcement; ductility index

1. Introduction

In the technical literature, there is a strong interest in the use of Hybrid Reinforced Concrete (HRC)
structures, reinforced by both steel bars and discrete fibers randomly dispersed in the cementitious
matrix [1–5]. In addition to rigid pavements [6], HRC is often adopted in massive concrete members
(e.g., precast and cast-in-situ tunnel linings) with the aim of reducing the amount of traditional
rebar [7–11]. This is possible in structural elements containing low amounts of reinforcement, because
the increment in strength provided by the fibers is comparable to that of rebar [12].

In concrete beams in bending (Figure 1a), having a massive cross-sectional area, the curve load P
vs. midspan deflection δ (Figure 1b) can show an ultimate load Pu smaller than the effective cracking
load Pcr* [8,9]. To be more precise, Pu corresponds to the failure of the reinforcing system (made of
rebar and/or fibers), whereas Pcr* is the load that produces the first crack [13]. In the post-cracking stage
of load controlling tests, if the reinforcement cannot bear the load carried by concrete, brittle failure
occurs, as showed by the dashed curve (i) in Figure 1b. On the contrary, ductile failure of lightly
reinforced concrete beams is guaranteed (see the curves (ii), (iii) of Figure 1b) when

Pu ≥ Pcr∗ (1)

In Lightly Reinforced Concrete (LRC) beams, the brittle failure is avoided by introducing a
minimum reinforcement As,min, defined as the amount of steel rebar which guarantees the condition
Pu = Pcr* [14–17]. The minimum reinforcement of LRC members should also ensure crack control
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in service [18], hence As,min provided by building codes generally fulfill both the ultimate (static)
and the serviceability limit states [18–20]. Similarly, in Fiber-Reinforced Concrete (FRC) beams,
the minimum fiber volume fraction Vf,min can be defined as As,min in LRC beams [21–23]. In other
words, when the content of fiber is Vf,min, the transition from deflection-softening (i.e., the brittle
response) to deflection-hardening (i.e., the ductile response) occurs [23,24].
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Figure 1. Flexural behavior of concrete beam reinforced with rebar and/or fibers: (a) three point bending
test; (b) applied load vs. midspan deflection curves in the cases of (i) brittle response, (ii) brittle/ductile
transition, and (iii) ductile response.

If the minimum reinforcement of HRC beams is evaluated as in those LRC are, the resisting
contribution of fibers is not exploited, making the use of fiber-reinforcement useless. This is particularly
true in the case of massive structures, when the computation of As,min, performed in accordance with
building code rules, leads to a large amount of steel rebar [8].

Even in several projects focused on the flexural behavior of HRC members, little research
has been devoted, to date, to studying the problem of minimum hybrid reinforcement.
For instance, the experimental campaigns performed by Barros et al. [25], Blanco et al. [26],
Meda et al. [27], and Ning et al. [28] involved only beams with deflection hardening. On the other
hand, Carpinteri et al. [29], Dancygier and Berkover [30], di Prisco et al. [31], Dupont [32], Falkner and
Henke [33] and You et al. [34] analyzed under-reinforced concrete beams, without focusing on the
minimum hybrid reinforcement.

The transition from the brittle to ductile behavior of HRC members was investigated deeply by
Chiaia et al. [35], Liao et al. [3] and Mobasher et al. [36]. Although they demonstrated the possibility
of reducing the amount of steel rebar in presence of fibers, a simple and univocal criterion for
evaluating the minimum reinforcement of HRC beams cannot be found in the current literature. Thus,
the introduction of a criterion for evaluating the minimum amount of hybrid reinforcement, made with
rebar and fibers, is of practical interest. To fill this research gap, both numerical and experimental
investigations on lightly reinforced HRC beams are performed herein. In particular, an approach
to evaluate the minimum reinforcement ratio of HRC beams is described in the following sections.
It can be considered as an extension to HRC of the design-by-testing procedure already proposed by
Fantilli et al. [15,21,37] for LRC and FRC beams. The effectiveness of this new approach is corroborated
not only by the experimental data measured by other authors, but also by new tests performed on
30 concrete beams reinforced with low amounts of rebar and/or fibers.

2. Multi-Scale Model for HRC Beams

A new general model is introduced herein to predict the flexural behavior of HRC beams.
Specifically, both the bridging effects on crack surfaces given by rebar and fibers are analyzed through
ideal ties (Figure 2), composed by the reinforcement and the surrounding cementitious matrix. This tie
has a single orthogonal crack in the midsection (Figure 3a). At the micro scale (Figure 2a), the pull-out
mechanism of the fiber (i.e., the solution of the tension-stiffening problem) provides the cohesive
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stress vs. crack width relationship of FRC. This relationship represents the response of cracked FRC
surrounding the rebar of the HRC beam. The tension-stiffening problem can also be solved at the scale
of the beam, in the rebar–FRC tie (Figure 2b), obtaining the flexural response of this structural element.
Different from other approaches (see, for instance, Barros et al. [38]), in the proposed multi-scale model
the strain localization of concrete in compression is neglected, because it generally does not occur in
the presence of a low amount of reinforcement.
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beam under bending actions: (a) the ideal tie representing the fiber and the surrounding cementitious
matrix; (b) the ideal tie representing the rebar surrounded by Fiber-Reinforced Concrete (FRC).
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2.1. Formulation of the Tension-Stiffening Problem

To evaluate the post-cracking behavior of the reinforced concrete tie depicted in Figure 3a,
a portion of this element, delimited by the cracked cross-section and the so-called Stage I cross-section,
is investigated [15]. To be more precise, the cracked cross-section, labelled as 0-0 in Figure 3a, is assumed
to be in the midspan of the tie and orthogonal to the reinforcement. Moreover, in the Stage I cross-section
(i.e., the cross-section 1-1 in Figure 3a) the perfect bond between reinforcement and cementitious matrix
is re-established. Within ltr (= transfer length, which the distance between the cross-sections 0-0 and
1-1), as the horizontal coordinate z increases, tensile stresses (and strains) transfer from reinforcement
to the matrix, due to the bond-slip mechanism acting at the interface of the materials. The slip s
between reinforcement and matrix vanishes in the Stage I cross-section (Figure 3b), where the strains
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of reinforcement εr and of matrix εm are both equal to that computed with the linear elastic theory
(εr,1 = εm,1 in Figure 3c). At the scale of fiber (Figure 2a) and of beam (Figure 2b), the subscripts r = f =

steel fiber and r = s = steel rebar, respectively. Similarly, m = t = cement-based matrix surrounding the
fiber in tension and m = c = FRC matrix surrounding the rebar.

When 0 ≤ z < ltr, the interaction between reinforcement and matrix is described by the following
equilibrium and compatibility equations

dσr

dz
= −

pr

A r
· τ[s(z)] = −

4
φ r
· τ[s(z)] (2)

ds
dz

= −[εr(z) − εm(z)] (3)

where σr = stress in the reinforcement; pr, Ar, φr = perimeter, area, and diameter of the reinforcement
cross-section;τ = bond stress corresponding to the slip s between reinforcement and matrix.

Equations (2) and (3) are the equations of the tension-stiffening problem, which can be solved by
introducing the following boundary conditions:

• In the cracked cross-section (at z = 0), the slip s0 = w/2, where w = crack width at level
of reinforcement;

• At z = ltr < Lr/2 (where Lr = reinforcement length), s = 0 and ds/dz = 0 have to be imposed.

Moreover, both at the scale of fiber and at that of the beam, the bond-slip between reinforcement
and cementitious matrix and the fracture mechanics of concrete in tension need to be considered [39].

2.1.1. At the Scale of Fiber

According to Fantilli et al. [21], in the ideal tie reproducing FRC (Figure 2a), fiber-reinforcement is
a single straight steel fiber surrounded by the cross-sectional area of concrete matrix At, which, is in
turn, a function of the fiber volume fraction Vf

A t =
A f

Vf
=
π ·φ f

2

4 ·Vf
(4)

where Af, φf = area and diameter of the fiber cross-section, respectively.
Both steel fiber and uncracked matrix are assumed in the linear elastic regime, whereas the

cohesive stresses on the crack surfaces of the ideal tie are defined by the fictitious crack model shown
in Figure 4. It consists of a bilinear stress vs. crack width relationship, σt-w, as proposed by Model
Code 2010 [20]

σt = fct ·

(
1.0− 0.8 ·

w
w1

)
for 0 < w ≤ w1 (5a)

σt = fct ·

(
0.25− 0.05 ·

w
w1

)
for w1 < w ≤ wc (5b)

where w1 = GF/f ct; wc = 5 · GF/f ct; GF = 0.073 × f c
0.18 = fracture energy of concrete in tension in N/mm

(f c = compressive strength of concrete in MPa); and f ct = tensile strength of concrete (in MPa).
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Model Code 2010 [20] also suggests the mean value of f ct, which can be estimated from the
compressive strength (expressed in MPa)

fct = 0.3 · ( fc − 8 )2/3 for f c ≤ 58 MPa (6a)

fct = 2.12 · ln( 1 + 0.1 · fc) for f c > 58 MPa (6b)

Moreover, the interaction between fiber and concrete matrix is modelled with a bond-slip
τ s relationship. For the sake of the simplicity, the model proposed by Fantilli and Vallini [40],
originally developed for smooth steel fibers in a cementitious matrix, is adopted herein

τ = τmax ·

(
s
s1

)α
for 0 ≤ s < s1 (7a)

τ = τf + (τmax − τf) · eβ·(s1−s) for s1 ≤ s (7b)

where τmax = maximum bond stress; τf = residual bond stress; s1 = 0.1 mm; α = 0.5; and β = 2/mm.
The values of τmax and τf can be computed with the following formulae [40]

τmax =
1.572√

12.5 +φ f
·

√
fc (8a)

τf = 0.1 ·
√

fc (8b)

where the compressive strength of concrete is in MPa and the diameter of fiber is in mm.
With all these data, the tension-stiffening problem is solved within the domain 0 ≤ z < ltr, by using

the iterative procedure summarized in the following points [21]:

1. Assign a value to the crack width w in the midsection of the ideal tie (Figure 3a);
2. Compute the slip s0 in the midsection (at z = 0 in Figure 3b)

s0 =
w
2

(9)

3. By means of Equation (5), calculate the tensile stress of the matrix in the midsection σt,0;
4. Under the hypothesis of linear elastic behavior of the concrete matrix, calculate the strain in

midsection εt,0 (with Et = modulus of elasticity of concrete matrix)

εt,0 =
σt,0

Et
(10)
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5. Assume a trial value to the axial load N (Figure 3a);
6. By imposing the equilibrium in the cracked cross-section, the stress in the fiber σf,0 can be

evaluated with the following equation

σf,0 =
N − σt,0 ·A t

A f
(11)

7. Assuming the linear elastic behavior of the fiber (σf,0 has to be lower than f u, where f u = strength
of fiber), calculate the strain in midsection εf,0

εf,0 =
σf,0

Ef
(12)

where Ef = modulus of elasticity of the fiber.
8. Considering ∆l as a small portion of the unknown ltr, define zi = i · ∆l (where i = 1, 2, 3, . . . );
9. For each i (or zi) calculate:

- The bond stress τi, related to the slip si-1 [Equation (7)];
- The strain of the fiber εf,i, based on Equation (2)

εf,i = εf,i −1 −
4

φ f · Ef
· τi · ∆l (13)

- The strain εt,i of the matrix

εt,i =
N − εf,i · Ef ·A f

Et ·A t
(14)

- The slip si by means of the finite difference form of Equation (3):

si = si −1 − (εf,i − εt,i) · ∆l (15)

10. When si � 0, if εf,i , εt,i change N and go back to step 6;
11. Calculate the tensile stress σc referred to the cross-sectional area of the tie (i.e., At + Af)

σc =
N

A t + A f
(16)

For a given w, such a procedure calculates the corresponding stress of the cracked FRC.
The complete σc-w curve can be obtained by varying the assigned crack width.

2.1.2. At the Scale of Beam

As in the case of LRC members [15], a block of HRC beam in three-point bending, which fails in
the presence of a single flexural crack, is modelled. Within such a block, an ideal tie including the steel
rebar in tension and the surrounding FRC can be identified (Figure 2b). In analogy with the fiber scale,
this tie is delimited by the cracked cross-section (i.e., the midsection 0-0 in Figure 3) and the Stage I
cross-section (i.e., the cross-section 1-1 in Figure 3), in which the perfect bond between rebar and FRC
in tension is present.

In accordance with Chiaia et al. [35], strain decrements in rebar and strain increments in concrete
at level of reinforcement can be assumed as

εs(z) = εs,0 − χ(z) · (εs,0 − εs,1) (17a)

εc(z) = εc,0 − χ(z) · (εc,0 − εc,1) (17b)
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where εs and εc = strains in steel rebar and concrete at level of reinforcement; εs,0 and εc,0 = values
of εs and εc in the cracked cross-section; εs,1 and εc,1 = values of εs and εc in the Stage I cross-section
(evaluated according to the linear elastic theory); and χ = coefficient of similarity.

In uncracked concrete, linear elastic constitutive law is assumed in tension, whereas the ascending
branch of the Sargin’s parabola [20] is the σc-εc relationship in compression (Figure 5a)

σc = − fc ·
[

k · η− η2

1 + (k− 2) · η

]
for εc1 < εc ≤ 0 (18)

where k = Ec/Ec1 = plasticity number; Ec = 21,500 × (f c/10) 1/3 = tangent modulus of elasticity of concrete,
at the origin of the stress (f c in MPa); Ec1 = f c/εc1 = secant modulus from the origin to the peak in
compressive stress; εc1 = strain at the peak in stress; η = εc/εc1 = normalized compressive strain.
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The stress vs. strain relationship σs-εs of the steel rebar is modeled with the elastic-perfectly
plastic constitutive law illustrated in Figure 5b [20]

σs = E s · εs for 0 ≤ εs < εy = f y/Es (19a)

σs = fy for εy = f y/Es ≤ εs < εu (19b)

where Es, f y, εy and εu are the modulus of elasticity, the yielding strength and strain, and the ultimate
strain of steel rebar, respectively.

To describe the interaction at the interface between rebar and concrete, the bond–slip relationship
proposed by Model Code 2010 [20] for ribbed bars is used (see Figure 6a)

τ = τmax ·

(
s
s1

)α
for 0 ≤ s < s1 (20a)

τ = τmax for s1 ≤ s < s2 (20b)

τ = τmax − (τmax − τf) ·
s− s2

s3 − s2
for s2 ≤ s < s3 (20c)

τ = τf for s3 ≤ s (20d)

where τmax = 2.5 × f c
0.5 (f c in MPa); τf = 0.4 · τmax; α = 0.4; s1 = 1.0 mm; s2 = 2.0 mm; and s3 = cclear =

clear distance between the ribs of rebar.
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Finally, the fictitious crack model obtained with the procedure described at fiber scale, and depicted
in Figure 6b, is adopted to model the behavior of the cracked FRC.

What follows is the procedure used to solve the tension-stiffening problem at level of rebar [15]:

1. In the cracked cross-section, assign a value to the crack width at the bottom level w (Figure 2);
2. Assume a trial value for the crack depth hw (c < hw < H in Figure 2, where c = concrete cover,

and H = beam depth);
3. Assuming a linear crack profile (Figure 2), calculate the slip s0 in the cracked cross-section

(where zi = 0)

s0 =
w
2
·

hw − c
hw

(21)

4. Calculate the cohesive stress σc,0(w) in cracked FRC at z = 0 by means of the stress vs. crack
opening relationship obtained by modelling the ideal tie at the scale of the fiber (Figure 6b);

5. In cross-section 0-0, assume a plane state of strain for uncracked FRC, and calculate εc,0 and εs,0;
6. In the same cross-section, define the state of stress of uncracked FRC, σc,0, and of steel rebar, σs,0,

by means of Equations (18) and (19);
7. Calculate the result of axial stresses R in the cracked cross-section;
8. If R , 0, then change the state of strain and go back to step 6;
9. Compute the internal bending moment M in the cracked cross-section;
10. Considering ∆l as a small portion of the transfer length, define zi = i · ∆l (where i = 1, 2, 3, . . . );
11. For each i (or zi), calculate:

- The bond stress τi, related to the slip si-1 (Equation (20));
- The strain εs,i in the reinforcement, by using Equation (2) written in the finite difference form

(where φs = diameter of rebar)

εs,i = εs,i −1 −
4

φ s · E s
· τi · ∆l (22)

- The similarity coefficient χi, by inverting Equation (17a)

χi =
εs,0 − εs,i

εs,0 − εs,I
(23)

- The strain of concrete εc,i at level of rebar with Equation (17b);
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- The slip si by means of the finite difference form of Equation (3)

si = si −1 − (εs,i − εc,i) · ∆l (24)

12. When si � 0, if εs,i , εc,i, change hw and go back to step 3.

The previous procedure calculates the internal moment M corresponding to a given w and,
consequently, the complete M-w by varying the assigned crack width.

3. Numerical Investigation

In what follows, the M-w curves of several ideal HRC beams in bending are numerically computed.
The aim is to evaluate the effects of reinforcement (i.e., rebar and/or fibers) on the brittle/ductile behavior
of some hybrid beams, in order to identify the condition of minimum reinforcement. More precisely,
108 ideal HRC beams in three-point bending are taken into consideration. They are divided into
36 groups of three beams, having the same geometrical and material properties, but with different
amounts of rebar or fibers. In particular, in 18 groups the area of rebar changes and the fiber volume
fraction is constant, whereas in the remaining 18 groups As is the same and Vf varies. For all the
groups, the width B and the span L of the beams are 0.5 and 6 times the depth H (which is equal to 200
and 400 mm), respectively. Three compressive strengths of concrete are considered (i.e., f c = 30, 45,
and 60 MPa), and Et = Ec in all the beams. The same properties of steel rebar are assumed in all the
groups (i.e., f y = 450 MPa, and Es = 210 GPa), whereas steel fibers (with Lf = 60 mm, f u = 1000 MPa,
and Ef = 210 GPa) have the aspect ratio Lf/φf = 40, 60, and 80. Hence, for each group of HRC members,
the minimum amount of reinforcement As,min, and of Vf,min, defined by Equation (1) in the presence of
sole rebar, or sole fibers, are known. They are computed by applying the design-by-testing procedure
proposed by Fantilli et al. [15,21,37] for LRC and FRC elements.

Table 1 summarizes the characteristics of all the beams, which are labeled with the acronym
SX_CYY_AZZ_φW_K, where X depends on the beam depth (X = 1 for H = 200 mm, and X = 2 for
H = 400 mm), YY is the concrete strength in MPa, ZZ is the fiber aspect ratio, W is the rebar diameter
in mm, and K is a number (1, 2, or 3) associated with the different amounts of hybrid reinforcement in
each of the 36 groups.

Table 1. Properties of the ideal HRC beams of Groups 1–36.

Group Beam H
(mm)

f c
(MPa) Lf/φf

φs
(mm)

As
(mm2)

Vf
(%)

1

S1_C30_A80_φ4_1

200 30

80

4

13 0.15

S1_C30_A80_φ4_2 25 0.15

S1_C30_A80_φ4_3 38 0.15

2

S1_C30_A80_φ5_1

5

20 0.05

S1_C30_A80_φ5_2 20 0.20

S1_C30_A80_φ5_3 20 0.35

3

S1_C30_A60_φ4_1

60

4

13 0.25

S1_C30_A60_φ4_2 25 0.25

S1_C30_A60_φ4_3 38 0.25

4

S1_C30_A60_φ5_1

5

20 0.15

S1_C30_A60_φ5_2 20 0.30

S1_C30_A60_φ5_3 20 0.45

5

S1_C30_A40_φ4_1

40 4

13 0.30

S1_C30_A40_φ4_2 25 0.30

S1_C30_A40_φ4_3 38 0.30
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Table 1. Cont.

Group Beam H
(mm)

f c
(MPa) Lf/φf

φs
(mm)

As
(mm2)

Vf
(%)

6

S1_C30_A40_φ5_1

200

30 5

20 0.10

S1_C30_A40_φ5_2 20 0.40

S1_C30_A40_φ5_3 20 0.70

7

S1_C45_A80_φ5_1

45

80

5

20 0.15

S1_C45_A80_φ5_2 39 0.15

S1_C45_A80_φ5_3 59 0.15

8

S1_C45_A80_φ6_1

6

28 0.10

S1_C45_A80_φ6_2 28 0.25

S1_C45_A80_φ6_3 28 0.40

9

S1_C45_A60_φ5_1

60

5

20 0.10

S1_C45_A60_φ5_2 39 0.10

S1_C45_A60_φ5_3 59 0.10

10

S1_C45_A60_φ6_1

6

28 0.05

S1_C45_A60_φ6_2 28 0.25

S1_C45_A60_φ6_3 28 0.45

11

S1_C45_A40_φ5_1

40

5

20 0.15

S1_C45_A40_φ5_2 39 0.15

S1_C45_A40_φ5_3 59 0.15

12

S1_C45_A40_φ6_1

6

28 0.10

S1_C45_A40_φ6_2 28 0.40

S1_C45_A40_φ6_3 28 0.70

13

S1_C60_A80_φ5_1

60

80

5

20 0.15

S1_C60_A80_φ5_2 39 0.15

S1_C60_A80_φ5_3 59 0.15

14

S1_C60_A80_φ6_1

6

28 0.10

S1_C60_A80_φ6_2 28 0.25

S1_C60_A80_φ6_3 28 0.40

15

S1_C60_A60_φ5_1

60

5

20 0.25

S1_C60_A60_φ5_2 39 0.25

S1_C60_A60_φ5_3 59 0.25

16

S1_C60_A60_φ6_1

6

28 0.10

S1_C60_A60_φ6_2 28 0.35

S1_C60_A60_φ6_3 28 0.60

17

S1_C60_A40_φ5_1

40

5

20 0.30

S1_C60_A40_φ5_2 39 0.30

S1_C60_A40_φ5_3 59 0.30

18

S1_C60_A40_φ6_1

6

28 0.10

S1_C60_A40_φ6_2 28 0.50

S1_C60_A40_φ6_3 28 0.90
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Table 1. Cont.

Group Beam H
(mm)

f c
(MPa) Lf/φf

φs
(mm)

As
(mm2)

Vf
(%)

19

S2_C30_A80_φ8_1

400 30 80

8

50 0.10

S2_C30_A80_φ8_2 101 0.10

S2_C30_A80_φ8_3 151 0.10

20

S2_C30_A80_φ10_1

10

79 0.05

S2_C30_A80_φ10_2 79 0.20

S2_C30_A80_φ10_3 79 0.35

21

S2_C30_A60_φ8_1

400 30 60 8

50 0.15

S2_C30_A60_φ8_2 101 0.15

S2_C30_A60_φ8_3 151 0.15

22

S2_C30_A60_φ10_1

400

30

10

79 0.05

S2_C30_A60_φ10_2 79 0.20

S2_C30_A60_φ10_3 79 0.35

23

S2_C30_A40_φ8_1

40

8

50 0.35

S2_C30_A40_φ8_2 101 0.35

S2_C30_A40_φ8_3 151 0.35

24

S2_C30_A40_φ10_1

10

79 0.10

S2_C30_A40_φ10_2 79 0.50

S2_C30_A40_φ10_3 79 0.90

25

S2_C45_A80_φ8_1

45

80

8

50 0.15

S2_C45_A80_φ8_2 151 0.15

S2_C45_A80_φ8_3 251 0.15

26
S2_C45_A80_φ10_1

10
79 0.10

S2_C45_A80_φ10_2 79 0.35

S2_C45_A80_φ10_3 79 0.60

27

S2_C45_A60_φ8_1

60

8

50 0.10

S2_C45_A60_φ8_2 151 0.10

S2_C45_A60_φ8_3 251 0.10

28

S2_C45_A60_φ10_1

10

79 0.10

S2_C45_A60_φ10_2 79 0.45

S2_C45_A60_φ10_3 79 0.80

29

S2_C45_A40_φ8_1

40

8

50 0.10

S2_C45_A40_φ8_2 151 0.10

S2_C45_A40_φ8_3 251 0.10

30

S2_C45_A40_φ10_1

10

79 0.10

S2_C45_A40_φ10_2 79 0.60

S2_C45_A40_φ10_3 79 1.10
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Table 1. Cont.

Group Beam H
(mm)

f c
(MPa) Lf/φf

φs
(mm)

As
(mm2)

Vf
(%)

31

S2_C60_A80_φ8_1

60

80

8

50 0.25

S2_C60_A80_φ8_2 151 0.25

S2_C60_A80_φ8_3 251 0.25

32

S2_C60_A80_φ10_1

10

79 0.10

S2_C60_A80_φ10_2 79 0.35

S2_C60_A80_φ10_3 79 0.60

33

S2_C60_A60_φ8_1

60

8

50 0.10

S2_C60_A60_φ8_2 151 0.10

S2_C60_A60_φ8_3 251 0.10

34

S2_C60_A60_φ10_1

10

79 0.10

S2_C60_A60_φ10_2 79 0.50

S2_C60_A60_φ10_3 79 0.90

35

S2_C60_A40_φ8_1

40

8

50 0.10

S2_C60_A40_φ8_2 151 0.10

S2_C60_A40_φ8_3 251 0.10

36

S2_C60_A40_φ10_1

10

79 0.10

S2_C60_A40_φ10_2 79 0.75

S2_C60_A40_φ10_3 79 1.40

As an example, the M-w curves of the three beams of Group 9 are reported in Figure 7a.
Two stationary points, concerning the effective cracking moment (Mcr*) and the ultimate bending
moment (Mu), are clearly evident in each curve. The curve of the beam S1_C45_A60_φ5_1 shows a
brittle response, because Mu < Mcr*, whereas the reinforcement of S1_C45_A60_φ5_2 is close to the
minimum value as Mu � Mcr*. Finally, the M-w curve of S1_C45_A60_φ5_3 describes a typical ductile
behavior with Mu > Mcr*. The same behavior can also be observed in the beams of Group 10, which are
reported in Figure 7c,d.
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Numerical Brittle/Ductile Assessment

As in the case of LRC and FRC beams [15,21,37], the brittle/ductile behavior of HRC beams can be
evaluated by means of the following ductility index (DI)

DI =
Mu −Mcr∗

Mcr∗
=

Pu − Pcr∗

Pcr∗
(25)

Based on Equation (1), DI assumes positive values for lightly reinforced beams, showing a ductile
response (i.e., when the failure of reinforcement does not occur), whereas under-reinforced concrete
members exhibit DI < 0. Accordingly, the minimum amount of hybrid reinforcement (or, equivalently,
the brittle/ductile transition) can be identified by imposing DI = 0.

Since both Mu (or Pu) and Mcr* (or Pcr*) depend on the amount of reinforcement in HRC beams,
DI should be in turn a function of As and Vf. In this regard, the following reinforcement ratio r can be
introduced as the parameter governing the brittle/ductile transition [41]

r =
As

As,min
+

Vf

Vf,min
(26)
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Specifically, the area As and the fiber content Vf of HRC beam are linearly combined with the
minimum amounts As,min and Vf,min, coming from the corresponding LRC and FRC beams. In other
words, As,min is the area of rebar defined by the brittle/ductile transition of the concrete beam, when it
is reinforced with only steel rebar. Analogously, Vf,min is the fiber volume fraction necessary to satisfy
the requirement of Equation (1) in fiber-reinforced concrete beams. As As,min and Vf,min are defined
for the specific type of beam, all the related parameters are automatically taken into account within
r. In such a way, the non-dimensional variable r is normalized with respect to any geometrical and
mechanical property. In particular, r = 1 for LRC beam reinforced with As = As,min [15], as well as for a
FRC beam containing a quantity of fibers Vf = Vf,min [21]. Thus, in concrete beams, under-bending
actions, As,min and Vf,min assume the same mechanical function, according to Fantilli et al. [37].

The definition of r given by Equation (26) is also in agreement with the findings of Falkner and
Henke [33], who demonstrated that the effects produced by rebar and fibers in HRC members can be
superposed at ultimate limit state. Hence, Mu (or Pu), and DI as well, can be considered a function of r,
if Mcr* (or Pcr*) does not vary with the amount of reinforcement.

As in the case of LRC and FRC beams, within each group of beams (e.g., those of Group 9 in
Figure 7), a linear relationship between DI and r is attained (see Figure 7b) and the intersection between
the line DI-r and the horizontal axis (i.e., DI = 0) occurs when r � 1, corresponding to the minimum
hybrid reinforcement. Thus, the following symbolic equation can be written

DI = ζ · (r− 1) (27)

where the slope ζ is equal to 1 in the presence of only rebar [15], and ζ = 0.7 in FRC beams [21].
If LRC and FRC beams are considered as two limit cases, a range delimited by two lines of

Equation (27) (i.e., with ζ = 1 and ζ = 0.7) defines the DI-r relationships of HRC beam (Figure 8a).
Indeed, by reporting in a single diagram all the [DI, r] couples computed in the ideal HRC beams of
Table 1, almost all of them fall within this range (Figure 8b). The slope ζ of the least square regression
line of all the numerical data is equal to 0.8, and, therefore, it is comprised between the values computed
for LRC and FRC beams [15,21].
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4. Experimental Investigation

To check the effectiveness of the range depicted in Figure 8, an experimental campaign was carried
out, in cooperation with Cemex Research Group, with the aim of studying the flexural behavior of
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HRC beams. Several combinations of rebar and fibers were adopted to reinforce 30 concrete beams.
As for conventional reinforcement, steel rebar having φs = 6 mm, f y = 527 MPa, and f u = 623 MPa
were used. Moreover, two types of steel fibers with hooked-ends were used in six different concrete
mixtures: short fibers-Type 1 (φf = 0.38 mm, Lf = 30 mm, and f u = 3070 MPa), and long fibers-Type 2
(φf = 0.71 mm, Lf = 60 mm, and f u = 2600 MPa). The compositions of the mixtures (labelled with the
letters from A to F) are reported in Table 2. In particular, for both the types of fiber, a reference plain
concrete and two FRC mixtures (with Vf = 0.50 and 0.75%) were tailored by mixing the components in
100 L planetary mixer for 180 s.

Table 2. Material components (in 1 m3) of the concrete mixtures used in this research project.

Mixture CEM I 52.5R
(kg) Water (l)

Sand
0–4 mm

(kg)

Gravel
4–8 mm

(kg)

Gravel
8–11 mm

(kg)

Super-plasticizer
(kg)

Vf
Type 1

(%)

Vf
Type 2

(%)

A

400 200 864 346 519

3.2 0.00 0.00

B
4.0

0.50 0.00

C 0.75 0.00

D 3.2 0.00 0.00

E
4.0

0.00 0.50

F 0.00 0.75

As reported in Table 3, LRC beams were cast for the two mixtures without fibers (i.e., series A
and series D), whereas both FRC and HRC beams were made with all the other mixtures (i.e., series B,
C, E, and F). With these mixtures, 10 series of three un-notched prismatic beams, having a length of
700 mm and a square cross-section of 150 × 150 mm, were cast (Figure 9). Such beams are equal to
those tested by Falkner and Henke [33] in four-point bending. Each series of beams was labelled by
two letters, referred to the concrete mixture and to the presence (R), or the absence (P), of a single rebar
(As = 28 mm2).

Table 3. Amounts of rebar and fibers used to reinforce the beams tested in this research project.

Mixture Beam As
(mm2)

Vf
(%)

A A_R 28 0.00

B
B_P 0

0.50
B_R 28

C
C_P 0

0.75
C_R 28

D D_R 28 0.00

E
E_P 0

0.50
E_R 28

F
F_P 0

0.75
F_R 28

The beams were tested in three-point bending by using an MTS testing machine. As linear
supports (at a distance of 600 mm), and for the application of load as well, steel cylinders were used
(see Figure 9). A load cell of 100 kN was used to apply the load P, and two LVDTs measured the
midspan deflection δ on the two sides of the beam (depurated by the support settlements). The bending
tests were performed under displacement control, at a velocity of 0.08 mm per minute up to the
maximum load. Afterword, the velocity increased to 0.20 mm per minute.
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To measure the compressive strength of the mixtures, cylindrical specimens (with a diameter of
150 mm and a height of 300 mm) were also tested in uniaxial compression. The cylinders were tested
28 days after casting with a Galdabini testing machine, having a load capacity of 5000 kN. During all
the test, the velocity of the stroke was kept constant, at 0.60 mm per minute. The P-δ curves of the
30 concrete beams are illustrated in Figure 10, where they are grouped in the 10 series of beams as
described in Table 3.
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Specifically, Figure 10a represents the curves of the LRC beams cast with mixture A, whereas the
curves of the beams containing short fibers (i.e., mixtures B and C), with and without rebar, are shown
in Figure 10b–e. Similarly, Figure 10f illustrates the P-δ curves of the LRC beams made with the mixture
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D, and in Figure 10g–j the mechanical responses of the beams containing long fibers (i.e., mixtures E
and F), with and without rebar, are shown.

Concerning the LRC beams (i.e., A_R and D_R), a ductile behavior can be observed in the diagrams
of Figure 10a,f, because the beams were able to bear the maximum load after cracking. For the FRC
beams with short and long fibers (i.e., B_P, C_P, E_P and F_P), the softening branch after the cracking is
followed by an hardening stage, as depicted in the P-δ curves of Figure 10b,d,g,i, respectively. On the
other hand, when a rebar is added to the previous elements, the HRC beams (i.e., B_R, C_R, E_R
and F_R) exhibit a clear deflection hardening (post-cracking load is greater than cracking load in
Figure 10c,e,h,j). A certain dispersion of the experimental data can be noticed in the diagrams of
Figure 10, especially in the beams B_P, C_P, E_P, and F_P. In these beams, due to the absence of rebar,
the random dispersion and orientation of fibers play a fundamental role on the post-cracking bearing
capacity. Such a dispersion is larger in beams having a small width and depth (only 150 mm in this case).

Experimental Brittle/Ductile Assessment

According to Fantilli et al. [37], the minimum amount of reinforcement of both LRC and FRC
beams can be determined by applying the same design-by-testing approach, summarized by the
following formulae

As,min =
ζ ·As

DI + ζ
(28)

Vf,min =
ζ ·Vf

DI + ζ
(29)

where As and Vf are the amounts of rebar and fibers in the tested beam, and ζ can be assumed, for the
sake of the simplicity, 0.8 for both LRC and FRC beams. Hence, the values of As,min and Vf,min can be
determined for the LRC and FRC beams associated to the HRC beam, making, in turn, the evaluation
of r (with Equation (26)) be possible.

In addition to the specimens tested herein, this procedure is also applied to the results of some
experimental campaigns on HRC elements in bending performed by Carpinteri et al. [42], Dancygier and
Berkover [30], di Prisco et al. [31], Dupont [32], Falkner and Henke [33], and You et al. [34]. With the
exception of the three-point bending tests carried out by Carpinteri et al. [42], in all the other
experimental investigations, the beams were tested in four-point bending. For each beam, DI is
calculated with Equation (25) and, after computing As,min and Vf,min for HRC beams (Equations (28)
and (29)), r is also evaluated (Equation (26)). The values of DI and r are reported in Table 4.

Table 4. Evaluation of r and DI in the HRC beams tested in this research project and in other
experimental campaigns.

Beam As,min
(mm2)

Vf,min
(%) r Pcr*

(kN)
Pu

(kN) DI Ref.

A_R_1

29 0.66

0.99

20.09 17.70 −0.12

Tested
herein

A_R_2 16.52 17.71 0.07

A_R_3 17.02 18.51 0.09

B_P_1

0.76

15.44 13.27 −0.14

B_P_2 18.26 20.39 0.12

B_P_3 17.84 16.17 −0.09

B_R_1

1.75

17.84 30.44 0.71

B_R_2 19.44 30.79 0.58

B_R_3 19.92 31.31 0.57

C_P_1

1.14

20.06 17.82 −0.11

C_P_2 21.90 22.58 0.03

C_P_3 23.67 24.10 0.02
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Table 4. Cont.

Beam As,min
(mm2)

Vf,min
(%) r Pcr*

(kN)
Pu

(kN) DI Ref.

C_R_1

2.13

18.78 35.24 0.88

C_R_2 17.91 39.65 1.21

C_R_3 22.72 41.76 0.84

D_R_1

0.71

0.99

19.84 21.14 0.07

D_R_2 MISSING

D_R_3 25.26 22.99 −0.09

E_P_1

0.70

17.37 22.70 0.31

E_P_2 20.79 20.72 0.00

E_P_3 26.17 35.83 0.37

E_R_1

1.69

18.82 27.17 0.44

E_R_2 18.86 41.55 1.20

E_R_3 19.08 30.69 0.61

F_P_1

1.05

23.69 24.01 0.01

F_P_2 24.47 12.93 −0.47

F_P_3 26.31 36.70 0.39

F_R_1

2.04

26.11 42.13 0.61

F_R_2 26.45 54.27 1.05

F_R_3 22.63 38.94 0.72

0−1φ8

41 0.53

1.23 16.31 19.33 0.19

[42]

40−0φ0 0.96 16.05 15.47 −0.04

10−1φ8 1.47 16.70 21.48 0.29

20−1φ8 1.71 16.64 25.52 0.53

40−1φ8 2.19 14.35 27.22 0.90

NF−0−015
40 6.66

2.52
17.25

38.24 1.22
[30]

NF−1−015 2.63 43.24 1.51

Slag
106 3.88

0.31 31.12 13.93 −0.55

[31]
Slag R/C 1.37 35.39 48.88 0.38

Filler
101 5.80

0.21 32.64 11.93 −0.63

Filler R/C 1.33 31.07 46.88 0.51

1 + 2
52 0.43

0.74 27.22 21.62 −0.21

[32]

13 + 14 2.67 26.55 68.50 1.58

3 + 4
54 0.65

0.98 27.56 27.22 −0.01

25 2.83 32.51 77.60 1.39

7 + 8
47 0.71

0.45 10.32 5.77 −0.44

20 2.60 11.33 26.56 1.34

9 + 10
92 0.54

1.17 14.84 16.90 0.14

27 2.27 16.40 33.74 1.06

RC

24 0.88

1.18

3.77

4.32 0.15

[33]SFRC 0.58 2.51 −0.33

RC/SFRC 1.76 5.72 0.52

A

48

0.00 2.08 54.09 100.90 0.87

[34]ASF50LD80 1.88 2.42 57.40 127.17 1.22

ASF40LD65TF4 1.12 2.81 58.76 145.27 1.47
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The experimental values of DI, obtained for 25 HRC beams, are plotted in Figure 11 as a function
of r. In this figure, experimental data are compared to the range defined by Equation (27) when ζ = 0.7
and ζ = 1. According to the numerical results, as most of the points representing the experimental data
fall within the range, the brittle/ductile transition (i.e., DI = 0) really occurs when r � 1. Therefore,
the simplified hypotheses used in the general model (fiber symmetrically and orthogonally positioned
with respect to crack surfaces, linear crack profile in HRC beam, etc.) seem to be irrelevant to assess the
brittle/ductile behavior of HRC beams, as already found by Fantilli et al. [15,21] in LRC and FRC beams.
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From a practical point of view, it is useful to analyze all the ways to reinforce HRC beam in order
to satisfy the requirement Pu = Pcr* or DI = 0. Indeed, it is sufficient to impose r = 1 into Equation (26),
as revealed by both numerical and experimental results (Figures 8b and 11, respectively). Accordingly,
the minimum reinforcement to be used in HRC members is given by any linear combination of As,min

and Vf,min (Figure 12)
As

As,min
+

Vf

Vf,min
= 1 (30)
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Hence, by combining rebar and fibers, it is possible to reduce the minimum amount of reinforcement
As,min traditionally required by building codes for LRC beams [18–20]. This is in accordance with the
results of some previous theoretical models [35,36] and with the recommendations given by Model
Code 2010 [20]. In addition, Equation (30) is similar to the formulation proposed by Liao et al. [3],
even if the terms As,min and Vf,min are herein evaluated by testing LRC and FRC full-scale members,
rather than small beam specimens. On the other hand, the use of non-dimensional parameters in
Equations (25)–(30) makes the geometrical dimensions of the beam irrelevant. This is a novelty of the
proposed approach, which correctly predicts the experimental results without including any size-effect
law [42,43]. As a consequence, in design-by-testing approaches, used to evaluate the minimum hybrid
reinforcement of real structures [44], the transition between small specimens and real structures is
automatically included within the ductility index.

5. Conclusions

The numerical and experimental analyses reported in this paper lead to the following conclusions:

1. The brittle/ductile flexural behavior of hybrid reinforced concrete beams HRC can be described
by the ductility index DI, which, in turn, depends on the difference between the ultimate load
and the effective cracking load of a beam;

2. The hybrid reinforcement of lightly reinforced concrete beams can be quantified by means of r,
which is a linear combination of the area of rebar and the volume of fibers, both normalized with
respect to the minimum reinforcement of LRC and FRC beams, respectively;

3. Both numerical and experimental investigations performed on HRC beams reveal the existence
of a range in the DI vs. r diagram. The borders of this range are two linear DI-r functions
reproducing the behavior of LRC and FRC beams, respectively;

4. The minimum hybrid reinforcement, corresponding to DI = 0, is a linear combination of the
minimum amount of rebar and the minimum fiber volume fraction required for LRC and FRC
beams, separately. Accordingly, the minimum reinforcement of LRC beams can be reduced by
the presence of fibers.

Further theoretical and experimental studies will be devoted to extending the current approach to
HRC beams under shear and bending actions, and to the brittle/ductile response of other structures
(e.g., slabs on ground).
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