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Background: Neural impairments that follow hemiparetic stroke may negatively affect

passive muscle properties, further limiting recovery. However, factors such as hypertonia,

spasticity, and botulinum neurotoxin (BoNT), a common clinical intervention, confound

our understanding of muscle properties in chronic stroke.

Objective: To determine if muscle passive biomechanical properties are different

following prolonged, stroke-induced, altered muscle activation and disuse.

Methods: Torques about the metacarpophalangeal and wrist joints were measured

in different joint postures in both limbs of participants with hemiparetic stroke. First,

we evaluated 27 participants with no history of BoNT; hand impairments ranged from

mild to severe. Subsequently, seven participants with a history of BoNT injections were

evaluated. To mitigate muscle hypertonia, torques were quantified after an extensive

stretching protocol and under conditions that encouraged participants to sleep. EMGs

were monitored throughout data collection.

Results: Among participants who never received BoNT, no significant differences in

passive torques between limbs were observed. Among participants who previously

received BoNT injections, passive flexion torques about their paretic wrist and finger

joints were larger than their non-paretic limb (average interlimb differences = +42.0

± 7.6SEM Ncm, +26.9 ± 3.9SEM Ncm, respectively), and the range of motion for

passive finger extension was significantly smaller (average interlimb difference = −36.3◦

± 4.5◦SEM; degrees).
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Conclusion: Our results suggest that neural impairments that follow chronic,

hemiparetic stroke do not lead to passive mechanical changes within the wrist and

finger muscles. Rather, consistent with animal studies, the data points to potential

adverse effects of BoNT on passive muscle properties post-stroke, which warrant

further consideration.

Keywords: stroke, joint biomechanics, hand, botulinum toxin, muscle, soft tissue mechanics

INTRODUCTION

Following a hemiparetic stroke, induced damage to corticofugal

motor (i.e., corticospinal and corticobulbar) pathways
result in an increased reliance on indirect contralesional
corticoreticulospinal (CRS) pathways (1–5). This loss of

corticofugal input have been shown to be linked to muscle
weakness (6–8), whereas the increase reliance on CRS pathways

is postulated to result in a loss of independent joint control, or
abnormal limb synergies (9–13), and motor neuron hyperactivity
(14) manifesting as hypertonia (increased muscle tone due to
constant neural drive) and spasticity (hyperactive muscle stretch
reflexes) (15–19). This altered motor drive and associated limb
use, over time, may change muscle structure and function,
further amplifying the brain injury induced motor impairments.
Botulinum neurotoxin (BoNT) chemical denervation, which
is widely used to treat muscle hypertonia and spasticity (20–
22), may also alter muscle properties (23–30). One particularly
detrimental sequelae of thesemuscle adaptations are that muscles
can become increasingly stiff, making movement progressively
more difficult.

There is not a clear consensus regarding how prolonged
exposure to altered neural inputs following a stroke affects
muscle structure and its associated passive mechanical properties
(i.e., muscle properties absent of any neural activity). Previous
studies quantifying muscle adaptions following a stroke
have demonstrated decreased fascicle lengths (31–33), often
accompanied by increased joint torques and stiffness (i.e., change
in force or torque over displacement) (7, 31, 32, 34–38). Such
data has been interpreted as evidence of muscle contractures and
mechanical property adaptations. However, conflicting evidence
also suggests that passive mechanical properties are not different
between the paretic and non-paretic limbs of stroke survivors
(34, 39).

Abnormal muscle hypertonia and spasticity increase the
chance of muscle activity, even in conditions intended to
be “passive” or “relaxed.” Thus, conflicting results could be
a consequence of differences in how effectively abnormal
muscle hyperactivity was controlled among different studies.
For example, some studies utilized continuous motion to
collect passive torques (7, 36, 37). However, even low constant
velocities elicit hyperactive stretch reflexes that substantially
increased paretic finger torques (8). In other studies, EMGs
were not recorded to confirm muscles were passive during
data collection (31, 39). Additionally, some methods involved
dynamic analytical models to decompose active torques and
estimate passive torques from muscle activity and EMGs rather

than directly measuring passive torques (7, 35, 37). Finally,
while pre-stretching attenuates hyperactive motoneurons and
the stretch reflex (40), few studies discuss whether stretching
prior to data collection was utilized (7, 31, 36, 37, 39). Such
methodological differences among previous studies obfuscate
our understanding of muscle passive properties following
chronic stroke.

An additional confounding factor, neither discussed nor
reported in the context of the inclusion/exclusion criteria in
previous studies, is the potential effects of BoNT on passive
muscle properties. BoNT chemical denervation is included in
neurological clinical practice guidelines for treatment of adult
spasticity (20); it is a common treatment for muscle hypertonia
and spasticity (20–22) within the ∼45% of stroke survivors
who have spasticity (41, 42). Presumably, the short term,
BoNT-induced reduction of muscle hyperactivity (21) improves
function by increasing range of motion (ROM) and reducing
overall hypertonicity. Yet, evidence of these beneficial effects is
limited and based largely on acute, subjective clinical assessments
of muscle hyperactivity and ROM without demonstrating
improvements in either active function or quality of life (22, 43,
44). In contrast, both acute and chronic structural changes in
rodent muscles have been observed following BoNT injections,
including increased intramuscular connective tissue and passive
mechanical stiffness (23–27, 29, 30). If BoNT administration
imposes the same effects within human muscle, it is critical to
understand both how these structural changes are distinct from
stroke-induced alterations and the extent to which the induced
structural changes may effect optimal functional recovery.

The overall objective of this study is to determine the extent
to which muscle passive biomechanical properties in the paretic
limb differ from non-paretic limb given prolonged, stroke-
induced, altered muscle activation and use; as well as potential
effects of BoNT administration. To do so, we compared the
passive torques collected about the paretic and non-paretic wrist
and finger joints of individuals with chronic hemiparetic stroke,
while controlling for muscle hyperactivity and accounting for
BoNT use. We chose to study wrist and finger muscles because
they are affected by the longest lasting and most severe motor
impairments following a stroke (45–48) and are a frequent
site of BoNT treatment. To evaluate the effects of prolonged
stroke-induced neural impairments, we recruited individuals
with mild to severe hand impairments with no history of BoNT
injections. To understand the effects of BoNT and resulting
chemical denervation on passive muscle properties, we recruited
additional chronic stroke participants with a history of BoNT
treatment. Based on the prevailing findings of previous literature
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TABLE 1 | Table of inclusion/exclusion criteria for participants.

Subject Inclusion Criteria

Stroke occurred at least 1 year prior to participation in the study

Paralysis confined to one side of the body

Ability to give informed consent

Mobility status of a community ambulator

BoNT Group Only: History of BoNT injection in the paretic forearm

Subject Exclusion Criteria

Multiple strokes

Stroke occurred in the cerebellum or brainstem

Impairment or injury in the unimpaired limb

Severe atrophy of the impaired limb

Severe concurrent medical problems

No-BoNT Groups: History of BoNT injection in the paretic forearm

and the common clinical presentation of stiff, flexed wrists
and fingers in the paretic limb following stroke, our primary
hypothesis is that passive biomechanical torques in the paretic
hand, measured in the absence of neural drive, are greater than
those in the non-paretic hand.

MATERIALS AND METHODS

Participants
The Clinical Neuroscience Research Registry from Northwestern
University and the Shirley Ryan Ability Lab was used to
pre-screen individuals with chronic hemiparetic stroke based
on set inclusion/exclusion criteria (Table 1). Hundred five
individuals whose registry-based, prior clinical assessments of
upper limb impairment fit the screening criteria were contacted;
68 individuals responded. In this screening (no-BoNT), previous
history of BoNT injections in their arms was an exclusion criteria.
After registry-based stratification into different impairment
levels (mild, moderate, and severe) and further verification that
inclusion/exclusion criteria were met, 39 individuals were invited
and 28 agreed to participate and were enrolled. Once enrollment
of the no-BoNT participants was complete, we contacted 23
individuals with a previous history of BoNT injections. Eleven
individuals met our enrollment criteria for the BoNT-injected
group; 10 were enrolled. Each of these participants received
BoNT injections within their forearm flexor compartment. A
single enrollee in the BoNT group was subsequently excluded due
to also having received BoNT injections in the forearm extensor
compartment. The 9 remaining individuals were at least 1-year
post-BoNT injection. After testing was completed on all enrolled
participants, the data from three additional enrollees (2, BoNT-
injected; 1, no-BoNT) were excluded from the analysis due to the
inability to relax during testing, as determined by EMG activity.

Demographic data and clinical measurements were gathered
from all participants on the 1st day of testing prior to data
collection by a licensed physical therapist. Enrolled study
participants were stratified by hand impairment using the
Chedoke McMaster Stroke Assessment Hand Score (CMSA-
HS) (49) obtained on the 1st day of testing (Table 2). Severe
impairments were defined as CMSA-HS scores of 1–3 (n =

9 no-BoNT; n = 7 BoNT-injected), moderate impairments as

4–5 (n= 9 no-BoNT), and mild impairments as 6–7 (n = 9
no-BoNT). Wrist flexor Modified Ashworth Scale (MAS) was
also assessed on the 1st day prior to data collection. Clinical
scores (both CMSA-HS and MAS) for all seven participants
with a history BoNT injections indicated severe impairment;
scores were not significantly different (p = 0.196 and p = 0.158,
respectively) from those with severe impairments and no history
of BoNT (Table 2).

Initial enrollment targets (n = 9 per group: no-BoNT mild,
moderate, severe, and BoNT-injected) were defined to surpass the
conditions needed to detect a large effect size (Cohen’s d = 1.1),
based on a priori power analyses of a one-tailed, within-subject t-
test for the hypothesis that passive torques in the paretic limb are
greater than the non-paretic limb. Due to the lack of appropriate
passive torque data, we powered the study based on the detectable
interlimb differences in the passive range of motion limits for
MCP extension. Specifically, Cohen’s d was calculated from the
angular resolution of the device used to measure MCP torque
(15◦) and inter-subject variability at the limit of MCP extension
in non-impaired participants (50). The analysis indicated that
with our large, standardized effect size, a power of 0.8 would
be achieved with α = 0.05 and seven participants (51). With
the same assumptions, an a priori power analysis for one-way
(between groups) ANOVA indicated that a total of 16 participants
were needed (51). The total participant numbers for the results
presented here (n = 34) are more than double the total specified
via the a priori ANOVA analysis. Participant numbers within
each of the 4 distinct groups either meet or exceed the number
specified via the a priori analysis for a single t-test (n= 7).

The study protocol was developed in compliance with the
Declaration of Helsinki and approved by the Institutional
Review Board (IRB) of Northwestern University (IRB Study:
STU00203691). Participants gave informed consent prior to
participation and all patients signed a Patient Consent-to-
Disclose form prior to any images being taken.

Experimental Set-Up
A custom built device (52) was used to collect torques produced
about the wrist and fingers. The device allows the experimenter
to position the wrist and metacarpophalangeal (MCP) joints
separately, in discrete 15◦ increments, while simultaneously
collecting torques about each joint. Participants were seated
in an upright position with their hand secured in the device
(Figure 1). The participant’s arm was positioned comfortably
at their side with the forearm parallel to the ground and
palm facing medially following stretching and implementation
of a muscle hyperactivity inhibition protocol described below
(Figure 1). The two distal finger joints were splinted. Muscle
activity was monitored throughout each trial using surface
electrodes (16-channel Bagnoli EMG System, Delsys Inc., Boston,
MA; 1000 x gain, 20–450Hz bandpass) placed over four muscles;
Flexor Digitorium Superficialis, Flexor Carpi Ulnaris, Extensor
Digitorium Communis, and Extensor Carpi Radialis Longus.

Muscle Hyperactivity Inhibition Protocol
Muscle hyperactivity was reduced and quieted during data
collection by providing conditions that encouraged participants
to sleep. This relaxed state reduces reticulospinal tract activity
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TABLE 2 | Subject demographics. (CMHS, Chedoke McMaster Stroke Assessment Hand Score, MAS, Modified Ashworth Scale).

Subjects by impairment level Sex Age in years

(SD)

Time since

stroke in

years (SD)

Age at time

of stroke in

years (SD)

Paretic side CMHS MAS Time since

last BoNT injection

in years (SD)

BoNT-Injected Severe (n = 7) 6-M, 1-F 56.7 (8.3) 10.7 (5.3) 46.0 (5.1) 4-L,3-R 2.85 (0.38) 2.71 (0.48) 4.5 (2.8)

BoNT Sev 1 M 71.0 22.6 48.4 R 3 3 4.7

BoNT Sev 2 M 61.2 10.2 51.0 L 3 3 8.7

BoNT Sev 3 F 57.3 7.4 49.9 L 2 3 1.8

BoNT Sev 4 M 46.7 9.2 37.5 L 3 3 6.8

BoNT Sev 5 M 57.7 9.2 48.5 L 3 3 1

BoNT Sev 6 M 47.3 7.1 40.2 R 3 2 2.9

BoNT Sev 7 M 55.7 9.5 46.2 R 3 2 5.8

No-BoNT Severe (n = 9) 6-M, 3-F 60.3 (10.4) 17.1 (7.91) 43.2 (13.6) 5-L, 4-R 2.44 (0.73) 2.17 (0.87) n/a

No- BoNT Sev 1 M 49.2 16.9 32.3 L 1 3

No- BoNT Sev 2 M 49.4 17.7 31.6 R 2 3

No- BoNT Sev 3 M 74.7 15.2 59.5 R 2 3

No- BoNT Sev 4 F 50.1 6.5 43.6 L 2 3

No- BoNT Sev 5 M 69.0 13.5 55.6 L 3 2

No- BoNT Sev 6 F 64.0 8.9 55.1 R 3 1

No- BoNT Sev 7 M 50.9 28.5 22.4 L 3 1

No- BoNT Sev 8 F 63.9 30.3 33.6 R 3 1+

No- BoNT Sev 9 M 71.3 16.5 54.9 L 3 2

Moderate (n = 9) 5-M, 4-F 64.3 (8.0) 13.2 (8.0) 51.1 (12.5) 6-L, 3-R 4.22 (0.44) 1.78 (0.94) n/a

Mod 1 F 64.6 29.0 35.6 R 4 1.5

Mod 2 M 51.3 18.3 33.1 L 4 2

Mod 3 M 75.5 7.1 68.4 L 4 2

Mod 4 F 71.4 18.5 52.9 L 4 2

Mod 5 F 60.0 5.1 54.9 L 4 0

Mod 6 M 62.3 5.7 56.6 L 4 3

Mod 7 M 73.8 6.8 67.1 R 4 3

Mod 8 F 57.8 15.1 42.8 L 5 1

Mod 9 M 62.0 13.2 48.8 R 5 1+

Mild (n = 9) 5-M, 4-F 56.9 (12.2) 8.41 (3.71) 48.5 (9.8) 1-L, 8-R 6.44 (0.53) 0.28 (0.57) n/a

Mild 1 M 70.0 7.2 62.7 R 6 1

Mild 2 M 59.4 13.5 45.9 R 6 0

Mild 3 F 58.0 8.3 49.7 R 6 0

Mild 4 F 75.5 12.6 63.0 R 6 0

Mild 5 M 42.8 3.3 39.5 R 6 1+

Mild 6 F 38.4 4.2 34.2 L 7 0

Mild 7 F 65.0 12.0 53.0 R 7 0

Mild 8 M 51.2 5.6 45.6 R 7 0

Mild 9 M 52.1 9.0 43.1 R 7 0

resulting in decreased spinal motoneurons excitability and
muscle hyperactivity (53–55). We encouraged sleep by creating
a dark atmosphere and playing relaxing videos or music. Each
session began with 10–15min of stretching of the shoulder,
elbow, wrist, and fingers muscles. Participants were then
positioned into the device. The lights were turned off, the video

or music was turned on, and these conditions remained in
effect for the remainder of the protocol. An additional 10min
of 90 s sustained stretches of the wrist and fingers muscles
were performed, accommodating the individual to the device.
Decreases in EMG activity and measured torques were observed
at this point (Figure 2). The device’s MCP and wrist restraints
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FIGURE 1 | Image of experimental set up with participant seated upright and

hand secured within the custom built device, positioned so the effect of gravity

is eliminated at both the wrist and metacarpophalangeal (MCP). Distal finger

joints were splinted within the device to prevent movement. Muscle activity

was monitored throughout trials using surface EMGs electrodes placed over

four muscles: Extensor Digitorium Communis and Extensor Carpi Radialis

electrodes are visible, electrodes for the Flexor Digitorium Superficialis and

Flexor Carpi Ulnaris on anterior forearm are not visible.

were unlocked, allowing the wrist and fingers to move and rest
at their equilibrium postures. Three 15-s baseline trials with no
evidence of EMG activity were then collected to zero the device
and define passive EMG baseline.

Experimental Procedure
The protocol for each limb was completed on 2 consecutive
days, if possible. Data collection took 4–6 h per limb. Data from
the non-paretic hand was collected on the 1st day to acclimate
the individual to the procedure. Because of the sensitive nature
of muscle hyperactivity in the paretic limb, we felt the benefits
of testing that limb after the participant was fully comfortable
with the full protocol and able to maximally relax outweighed
any costs associated with not randomizing for limb across
days. Passive torques were collected from a maximum of 108
combinations of wrist and MCP joint postures, depending on
the individual participant’s available ROM. MCP and wrist ROM
were determined within the device; we recorded the largest 15◦

increment reached for each degree of freedom. The most extreme
postures that could be reached by each participant within the
device were determined by the individual’s comfort level or the
device’s limits.

Torques were collected at static postures to prevent muscle
hyperactivity by eliminating the Ia afferent velocity dependent
component of the stretch reflex that may be elicited even during
slow continuous motions within the chronic hemiparetic stroke
population (8).Wrist posture was randomly set in 15◦ increments
between 60◦ of flexion and 60◦ of extension (nine wrist postures).
One participant (BoNT-injected) had limited wrist extension in

the paretic limb and could only be positioned in six postures.
At each wrist posture, the MCP joints were passively extended to
the subject’s in full extension ROM and held in that posture until
all evidence of muscle activity stopped. Following the cessation
of muscle activity, data were collected for 15 s and visually
inspected. Trials for which there was clear evidence of muscle
activity and corresponding torque deviations during testing were
discarded and repeated. This procedure was repeated as the MCP
joint posture was moved in discrete static 15◦ increments from
full extension to full flexion, and then back to full extension.

Data Processing
Raw torque (two channels: wrist and MCP) and EMGs (four
channels: Flexor Digitorium Superficialis, Flexor Carpi Ulnaris,
Extensor Digitorium Communis, and Extensor Carpi Radialis
Longus) were collected and digitized (CED Micro 1401 MkII,
Cambridge Electronic Design, Cambridge, UK) at a 1 kHz
sampling frequency using Spike2 software (Cambridge Electronic
Design, Cambridge, UK). The torque and rectified EMG data
were then digitally filtered using a zero-phase infinite impulse
response 4th-order Butterworth low-pass filter with a 4Hz corner
frequency within MATLAB.

The processed baseline trials defined the torque offset and
EMG threshold. Torque offset was defined as the average torque
measured during the three baseline trials. EMG threshold, EMGt ,
was set to detect the onset of muscle activation above the noise of
the system (56, 57) and defined as:

EMGt = xEMG_base + 3 · σEMG_base

where xEMG_base is the average of the three EMG baseline trials
and σEMG_base is the average EMG standard deviation over the
three baseline trials.

For each static trial (i.e., the torque produced in a single
combination of wrist and MCP joint positions), the processed
torque and EMG data were divided into 1-s bins, resulting in
15 bins per trial. The average torque and EMG values were
first calculated for each of the 15 bins. For a given 1-s bin in
any trial, the bin was discarded if the average EMG signal from
any muscle exceeded EMGt , indicating muscle activity, or if the
torque deviated ≥5% from the mode across the entire trial in an
effort avoid any effect of the stress-relaxation of muscle (58, 59).
The average of the remaining bins within each trial were used
to create the total torque vs. wrist and MCP posture data set for
each subject.

Differences in torques between limbs were calculated by
subtracting non-paretic torque from paretic torque at each
posture. Differences in MCP extension passive ROM (ePROM)
between hands were calculated at each wrist posture. When data
were missing or discarded, the difference was only calculated
for postures where data was available in both paretic and non-
paretic hands.

Data Analysis
To test our primary hypothesis that passive torques in the paretic
hand are greater than the non-paretic hand within each group
(severe BoNT-injected, severe no-BoNT, moderate, and mild),
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FIGURE 2 | Representative plots, from three separate individuals (A–C), of EMG and torque traces over 90 s within one of the initial stretches accommodating the

participant to the device and reducing muscle hypertonia. Displayed are raw rectified unfiltered data (blue lines), rectified and filtered EMG (red lines), processed 1 s

(Continued)
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FIGURE 2 | binned data (black lines), with EMG threshold cutoff for active muscle (magenta lines). Though the participant was “relaxed” at the beginning of each

stretch there is significant EMG activity initially with subsequent EMG and torque reduction within each. Example A demonstrates Flexor Digitorium Superficialis (FDS)

and Flexor Carpi Ulnaris (FCU) EMG initially firing at a low levels with activity decreasing and a corresponding decrease in wrist torque that continues throughout the

trial. Example B demonstrates EMG activity reducing across all muscles with a corresponding decrease in finger and wrist torque that continues throughout the trial.

Example C demonstrates low levels of FDS and high levels of FCU EMG hyperactivity initially with hyperactivity stopping within 15 s and a corresponding decrease in

wrist extension torque that continues throughout the trial.

we compared the differences between the participants’ paretic
and non-paretic hands for MCP joint torques and wrist joint
torques. Secondarily, we compared torque differences across
groups and evaluated the interlimb differences for ePROM
across all wrist postures. A distinct linear-mixed model (LMM)
was implemented in SPSS (v26.0 IBM Corp Armonk, NY) for
each parameter of interest (i.e., three models). LMMs allow
for within-participant experimental designs by correcting for
repeated measurements within participants while allowing for
missing data points (60).

When interlimb difference in MCP or wrist torques was the
dependent variable, the linear-mixed model fixed effects included
group, MCP position, wrist position, and their interactions.
When interlimb difference in ePROM was the dependent
variable, fixed effects included group, wrist position, and their
interaction. An intercept random effect for participant was
included in all models to account for random differences
across participants.

Within each of the four impairment groups, post-hoc t-
tests were used to test if the within-subject, interlimb torque
differences were significantly different from zero. Significance
was calculated using the T.DIST.RT function in Microsoft Excel
(2020); inputs were the ratio of the marginal mean and standard
error for each group and the degrees of freedom, all outputs
from the LMM model in SPSS. To determine between group
differences, post-hoc pairwise comparisons among the groups
were performed. Significance of the pairwise comparisons were
also calculated using the T.DIST.RT Excel function and outputs
from the LMM models. To maintain p < 0.05 as threshold of
significance globally, the threshold for individual t-tests in the
post-hoc analyses was reduced using the Bonferroni correction
for multiple comparisons to p = 0.005 (p = 0.05/10). Across
each dependent variable there were 10 post-hoc comparisons: the
within-subject, different from zero comparison for each of the
four groups, and six between group comparisons. Results are
reported as average ± one standard deviation unless otherwise
noted. Finally, to assess whether the differences in observed,
mean within-subject interlimb differences met our a priori
assumptions, we calculated the Cohen’s d effect size achieved
for each combination of wrist and MCP joint posture from the
experimental data.

RESULTS

Passive Torque About the Wrist and MCP
Joints
Interlimb differences in MCP joint torques were small and were
not significantly different for the mild (p = 0.188), moderate
(p = 0.046), or severe (p = 0.017) impairment groups without

a history of BoNT injections (cf., rows 1–3, Figure 3A, p <

0.005 is the threshold for significance for post-hoc t-tests). In
contrast, the BoNT-injected group had significantly greater MCP
joint torques in their paretic vs. non-paretic hands (Figure 3;
p < 0.001). The observed effects in interlimb differences for
the BoNT group were consistent with the large effect sizes
(Cohen’s d = 1.1) we powered the study to detect. For example,
the average of the achieved standardized effect size within
the BoNT-injected group for all postures was 1.24 ± 1.09
(range = 0.10–8.64), with effect sizes generally increasing with
wrist and MCP extension. Effect sizes observed for interlimb
MCP torque differences for the impairment groups without a
history of BoNT were smaller, with mean Cohen’s d across
all postures of 0.77 ± 1.2, 0.49 ± 0.33, and 0.47 ± 0.63 for
the severe, moderate, and mild groups, respectively. Interlimb
differences in MCP torque increased with wrist and MCP
extension for the BoNT group only (Figure 3B). The interlimb
difference in MCP torques observed in the BoNT group were
significantly greater than each no-BoNT group (p < 0.001
for all, Figure 3B).

Passive torques at the wrist replicated the findings at the
MCP joints. Specifically, significant differences in passive wrist
torques between limbs were only observed in the BoNT
group (p < 0.001; Figure 4A). The distinction in standardized
effect sizes observed in the BoNT group compared to the
3 no-BoNT groups was even greater for wrist torques than
for MCP torques. The average achieved standardized effect
size (Cohen’s d) for interlimb wrist torque differences across
all postures was 1.65 ± 1.28 (range = 0.35–8.38) for the
BoNT group compared to 0.30 ± 0.35, 0.33 ± 0.25 and
0.32 ± 0.34 for the mild, moderate, and severe no-BoNT
groups, respectively. Between groups, the interlimb difference
in wrist torques observed in the BoNT group was significantly
greater than each of the no-BoNT groups (p < 0.002
for all; Figure 4B).

Impact on Passive Range of Motion
In general, the observed effects for passive MCP extension
ROM in the three no-BoNT groups were small, especially
when compared to the BoNT group. For the severe and
mild no-BoNT groups, the passive limits of MCP extension
were not significantly different between limbs; with ePROM
differences of −3.15◦ ± 19.02◦ (p = 0.216) and 2.47◦ ± 9.12◦

(p = 0.274) and standardized effect sizes of 0.24 ± 0.23 and
0.30 ± 0.24 averaged across the nine wrist postures tested,
respectively. For the moderate no-BoNT group, the limit of
passive MCP extension was 12.0◦ ± 3.9◦ less extended in
the paretic limb than the non-paretic limb (p < 0.002), a
significant interlimb difference that was on the same order
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FIGURE 3 | Average metacarpophalangeal (MCP) torques measured in the paretic (red) and non-paretic (blue) limbs over MCP joint range of motion for the (A)

no-BoNT mildly, moderately, and severely impaired and BoNT-injected groups. Data are shown for 3 of the 9 wrist postures tested, including locked in 60 (left), 0

(middle), and−60 degrees flexion (right). Negative angles and torques indicate extension, positive indicates flexion. (B) Average interlimb difference in MCP torques

(paretic torque minus non-paretic torque) for the same locked wrist postures in (A), for each group (shaded gray bars). * denotes significant difference (p < 0.005) in

torques measured between paretic and non-paretic limbs within the group. ** denotes significant difference (p < 0.005) from all other groups. Only the BoNT-injected

torque differences were significantly different between limbs and greater than the other groups. Error bars indicate one standard error of measurement.

as the measurement resolution for ePROM in this study
(15◦). In contrast, for the BoNT-injected group, the interlimb
difference in ePROM across all wrist angles was much larger
(−36.3◦ ± 4.5◦; p < 0.001).

DISCUSSION

The main objective of this study is to determine the extent to

which the prolonged changes in neural input and muscle use

Frontiers in Neurology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 687624

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Binder-Markey et al. Passive Hand Properties Post Stroke

FIGURE 4 | Average wrist torques measured in the paretic (red) and non-paretic (blue) limb over the wrist’s range of motion for the (A) no-BoNT mildly, moderately,

and severely impaired and BoNT-injected groups. Metacarpophalangeal (MCP) posture was locked in 75 (left), 0 (middle), and −60 degrees of flexion (right). Negative

angles and torques indicate extension and positive flexion. (B) Average interlimb difference in wrist torques (paretic torques minus non-paretic torques) for each group

(shaded gray bars), at each locked MCP posture. * denotes significant difference (p < 0.005) in torques measured between paretic and non-paretic limbs within the

group. ** denotes significant difference (p < 0.005) from all other groups. Only the BoNT-injected torque differences were significantly different between limbs and

greater than the other groups. Error bars indicate one standard error of measurement.

experienced by individuals with a chronic hemiparetic stroke
are associated with differences in muscle passive biomechanical
properties between limbs. To this purpose, we evaluated a

cohort of 27 individuals with chronic hemiparetic stroke,
with no history of BoNT injections, spanning mild to severe
hand impairments and an additional seven individuals who
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had previously received BoNT injections, all with severe hand
impairments. Our primary hypothesis was that passive torques
in the paretic hand are greater than in the non-paretic hand.
Strikingly, in the participants without BoNT, we did not observe
significant interlimb passive torque differences at either the wrist
or the MCP joints. Rather, our primary hypothesis was only
confirmed within the BoNT group, comprised exclusively of
individuals with severe impairments. Importantly, we powered
the study to detect large effect sizes, and the significant results
observed for the BoNT group demonstrate that we did enroll
sufficient participant numbers to detect the large standardized

effect sizes we expected to observe. However, the standardized
effect sizes observed in the no-BoNT groups were much smaller

than we anticipated. Overall, the small absolute magnitude of
the interlimb torque differences (c.f. Figures 3B, 4B) paired with

the small absolute magnitude of interlimb ePROM differences
observed (c.f. Figure 5) among the no-BoNT groups suggest that
the observed torque differences in the paretic limb are not a
critical impediment to passive ROM after a stroke.

Unlike many previous studies following chronic hemiparetic

stroke (7, 31, 32, 34–38), we did not observe greater passive
torques in the paretic limb among the participants who had never
received BoNT. Most of the previous studies evaluated lower
extremity (ankle) (31, 32, 34, 35, 38) or more proximal (elbow)
(34, 36) joints; we studied distal wrist and finger joints. Following

a stroke, the loss of corticospinal projections has a significantly

greater impact on distal wrist and finger function than
more proximal upper extremity joints (61). Following stroke-

induced loss of corticobulbar projections, there is evidence of

an upregulation of the neuromodulatory component of the
reticulospinal track which results in an increased release of
monoamines (serotonin and norepinephrine) at the spinal cord
affecting spinal motoneurons excitability levels (14, 62). This
increase of monoamines causes motoneuron hyperexcitability
and increased involuntary muscle activation or hypertonia,
which especially effects the distal wrist and finger muscles (16,
62, 63). This increased hypertonia and continuous activationmay
cause greater impairments of these more distal muscles during
movement but it also may serve a protective effect on the muscle
structure preventing significant atrophy and passive mechanical
changes. This is an area that should be further explored and is
currently under investigation within our lab.

Another factor contributing to the differences between our
study and previous studies is the great care we took to reduce
muscle hyperactivity during data collection. Inconsistencies
between our results and previous studies may underscore
the importance of this factor. Especially at the wrist and
fingers, simple instructions to relax are likely insufficient.
Many individuals with chronic stroke are unable to fully
relax while awake due to reticulospinal mediated motoneuron
hyperexcitability and muscle hypertonia. Decreasing hypertonia
of muscles may require a significant reduction in CRS tract
activity (53–55), that we addressed by encouraging participants
to sleep during testing. A decrease in muscle activity was
observed during test preparations (Figure 2), activity levels were
strictly monitored throughout data collection. These critical
steps should be considered when attempting to quantify passive

FIGURE 5 | Limits of the metacarpophalangeal (MCP) passive range of motion

(ROM) in extension throughout the custom device’s nine available wrist

postures for the no-BoNT (A) mildly, (B) moderately, and (C) severely impaired

(Continued)
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FIGURE 5 | and (D) BoNT-injected groups groups. All, but one BoNT-injected

subject (limited to−15 degrees), could be positioned in all nine wrist postures,

limits of ROM for MCP presented are the average for the paretic (red) and

non-paretic (blue) hands. MCP extension of the paretic hand in the

BoNT-injected and moderate groups were significantly less than the

non-paretic hand (*denotes p < 0.005 between paretic v non-paretic hands).

** denotes significant difference (p < 0.005) from all other groups. Deficits in

passive extension increased with wrist extension. No significant loss of passive

MCP extension was observed in the severe or mild groups. Error bars indicate

one standard error of measurement.

muscle mechanics in vivo within any future study within a
“spastic” population.

This study is also unique because we explicitly stratified
participants based on prior clinical history of BoNT. Clinically,
BoNT injections are frequently administered to alleviate
muscle hyperactivity or hypertonia within the wrist and
finger muscles. Approximately 45% of stroke survivors have
spasticity (41, 42) and BoNT is the preferred treatment for
decreasing muscle hyperactivity and increasing ROM. Our
participants’ final BoNT injection was an average of 4½
years prior to our data collection (Table 2). Within our
BoNT-injected group, we observed interlimb torque differences
that were significantly larger than those observed in the
no-BoNT groups. The BoNT-injected group was also the
only group where we observed interlimb torque differences
that systematically increased with wrist and MCP extension
(Figures 3B, 4B). Extended postures lengthen the wrist and
finger flexor muscles, which are the muscles that were
injected with BoNT. Thus, our results suggest the muscles
injected with BoNT have substantially increased passive muscle
stiffness compared to those who had not been injected
with BoNT.

The increased passive joint torques we observed in the paretic
limb in the BoNT group was also associated with substantial
deficits in passive MCP extension of the paretic limb relative
to the non-paretic limb (Figure 5). This chronic limitation in
ROM contrasts with acute increases in passive ROM, observed
1–2 months following BoNT injection (64). Importantly, the
deficits in passive ROM we observed likely underestimate the
extent that active ROMwould be affected. We would expect even
larger losses in active ROM as active finger extensor strength
decreases by as much as 90% (6–8) and therefore would likely
be unable to overcome the increased passive torques about
the fingers.

Previous animal studies demonstrate increased collagen
content in the muscle following BoNT injections; these increases
were observed within 6 months and lasted the animal’s lifespan
(23, 24, 27). The underlyingmechanism of this increased collagen
content is unknown. Because BoNT chemically denervates a
muscle the resulting adaptation may be similar to traditional
muscle denervation. Denervated muscle has been shown to
demonstrate increases in collagen content within a month after
denervation (65, 66) and a recent study comparingmuscle treated
with BoNT and a denervated muscle demonstrated similar
patterns of progressive atrophy and collagen content increases

(Richard L. Lieber, personal communication of unpublished data,
2019). Consequently, these animal studies in combination with
our results suggest the possibility of a long-lasting negative effect
of BoNT: substantially increased passive muscle stiffness.

Because we quantified joint properties, we are unable to
discern how mechanisms at the muscle level, such as atrophy
(loss of contractile material), adaptations of muscle extra-
cellular matrix (ECM), tendon compliance, or their combination)
contribute to our results. In general, no study quantifying joint
properties can distinguish between effects due to adaptations
in muscle architecture, ECM, or tendon compliance. Future
work could incorporate muscle imaging and tissue analyses to
further quantify the impact of potential muscle volume and
structural changes.

Another important limitation of this study is that it is a cross-
sectional study. While we report striking differences between
interlimb differences in passive joint torques and the range of
motion between the BoNT group and the no-BoNT groups, our
data does not establish causality between the BoNT injections
and increased muscle or joint stiffness. Similarly, because this
is not a prospective, longitudinal study we are not reporting
observations of adaptations in chronic stroke muscle over time.
Despite these limitations, the within subject control provided
by the non-paretic limb provides a valuable comparison in our
retrospective study.

Finally, based on our a priori expectations for interlimb
differences, we powered the study to detect changes of large effect
sizes. For the participants in our study without a previous history
of BoNT, we generally observed effects that were smaller than
our expectations. The data we present here could be leveraged
to design future studies that would allow more robust statistical
conclusions about such smaller effects. In general, despite this
limitation, the smaller effects we observed lead us to conclude
that the passive torque differences we observed in the paretic limb
did not substantially limit passive ROM in these participants.

CONCLUSIONS

To the best of our knowledge, the current study is the most
thorough investigation of in vivo passive elastic torques at the
hand in the chronic hemiparetic stroke population. Our findings
indicate that, after stroke, prolonged altered use and neural
inputs to muscle do not substantially increase or negatively
impact the passive torques about either the wrist or fingers,
nor significantly limit passive extension at the fingers, unless
an individual has received BoNT. This suggests that clinically
observed stiffness and loss of ROM is likely due to either neurally
driven muscle hypertonia or long-lasting detrimental increases
in muscle stiffness following BoNT injections. Additionally, this
provides further evidence that in the absence of mechanical
muscle alterations, the loss of hand function post-stroke is
primarily due to weakness from voluntary activation deficits
(6) and impaired control of the muscles of the hand (11, 61)
following disruptions of corticofugal motor pathways (67, 68).
Future rehabilitation techniques should therefore focus onmotor
deficits post stroke to achieve improved hand function rather
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than preventing passive mechanical changes. Furthermore, the
potential adverse effects of BoNT that our data highlights should
be explored to determine if the positive effects of reduced muscle
hypertonia and spasticity outweigh potential negative side effects
of increased muscle stiffness in order to maximize recovery
of individuals following a hemiparetic stroke. Finally, if BoNT
is going to continue to be the “go to” treatment to combat
muscle hypertonia, further studies into the mechanism by which
BoNT affects muscle, along with longitudinal studies tracking
the biomechanical changes, are also necessary to enhance our
understanding of its long-term effects and to optimize recovery
post stroke.
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