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MicroRNAs act posttranscriptionally to suppress multiple target genes within a cell

population. To what extent this multi-target suppression occurs in individual cells and how it

impacts transcriptional heterogeneity and gene co-expression remains unknown. Here we

used single-cell sequencing combined with introduction of individual microRNAs. miR-294

and let-7c were introduced into otherwise microRNA-deficient Dgcr8 knockout mouse

embryonic stem cells. Both microRNAs induce suppression and correlated expression of their

respective gene targets. The two microRNAs had opposing effects on transcriptional

heterogeneity within the cell population, with let-7c increasing and miR-294 decreasing the

heterogeneity between cells. Furthermore, let-7c promotes, whereas miR-294 suppresses,

the phasing of cell cycle genes. These results show at the individual cell level how a

microRNA simultaneously has impacts on its many targets and how that in turn can influence

a population of cells. The findings have important implications in the understanding of how

microRNAs influence the co-expression of genes and pathways, and thus ultimately cell fate.
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M
icroRNAs (miRNAs) are short non-coding RNAs that
arise through the biogenesis of long pri-miRNA
transcripts1. Pri-miRNAs undergo an initial processing

step by a complex consisting of the RNA-binding protein DGCR8
and the RNaseIII enzyme DROSHA, resulting in a hairpin
structure called the pre-miRNA. The pre-miRNA is then
processed by Dicer to form a short double-stranded RNA, a
single strand of which is loaded into an Argonaute (Ago) to form
the miRNA ribonucleoprotein effector complex. A predominance
of miRNAs, called canonical miRNAs, follows this sequence of
biogenesis events. A small number of non-canonical miRNAs
bypass DGCR8-DROSHA processing, although these miRNAs are
rare in comparison with the canonical miRNAs in mouse
embryonic stem cells (mESCs)2. Thus, the deletion of the Dgcr8
gene in mESCs results in essentially miRNA-deficient cells.

Dgcr8-null ESCs have a slower proliferation rate, with an
extended G1 phase, relative to their wild–type (WT) counterparts
when retained in self-renewal growth conditions (plus leukaemia
inhibitory factor, LIF)3. Dgcr8-null ESCs are also unable to
silence the pluripotency programme when placed under various
differentiation conditions and thus remain locked in a
self-renewing state3. Screens reintroducing individual miRNAs
into these otherwise miRNA-deficient cells have been used to
uncover the miRNAs responsible for these phenotypes. A family
of miRNAs, called the ESC-enriched cell cycle regulating (ESCC)
miRNAs can rescue the cell cycle defect in Dgcr8-null ESCs4.
Another family of miRNAs, the let-7 family, can rescue the ability
to silence the pluripotency network in Dgcr8-null ESCs5. miRNA
families are defined by sharing a common seed sequence, a short
six to eight nucleotide sequence near the 50-end of the miRNA,
which has been shown to play a central role in determining the
downstream miRNA targets6. Thus, members of a miRNA family
share largely overlapping messenger RNA targets.

Determining the targets of miRNAs and the impact of miRNAs
on those targets is essential to understanding their mechanism of
action7. To date, experimental identification and evaluation of
target mRNAs, including those of the ESCC and let-7 family
miRNAs5,8,9, has been limited to cell population studies.
Therefore, resulting findings are based on the averaged effect of
the miRNAs across millions of cells. On the contrary, single-cell
sequencing enables the measurement of miRNAs’ effects within
and across individual cells10. Single-cell sequencing can address
several important roles of miRNAs that cannot be discerned from
previous population studies. First, it can address transcriptional
heterogeneity among cells in a population, thus assessing a
miRNA’s role in buffering gene expression variability at the
genome-wide level11,12. Second, it can uncover coordinated
fluctuations in gene expression across cells (that is, gene
co-expression) that could reveal regulatory influences of a
miRNA on specific sets of genes. Indeed, whether co-expression
among direct and/or indirect miRNA targets across single cells
occurs, and if so by which mechanisms, is still unclear. Here
we use single-cell sequencing and reintroduction of individual
miRNAs into Dgcr8� /� ESCs, to evaluate the impact of the
ESCC and let-7 miRNAs on both of these phenomena.

Results
Reintroduction of miRNAs into miRNA-deficient cells.
To study the impact of one miRNA at a time without the
complication of competing endogenous miRNA function, we
introduced single miRNAs into otherwise miRNA-deficient
Dgcr8 knockout mESCs (Dgcr8� /� mESCs)3. To suppress
differentiation and minimize cell-state heterogeneity among
mESC, cells were grown in the presence of LIF and inhibitors
to GSKb and MEK (LIF þ 2i) (see Methods), conditions

that maintain a stable pluripotent state by inhibiting
autocrine differentiation cues13–16. To determine the efficiency
of transfection, Dgcr8� /� cells were transfected with a
fluorophore-conjugated control small RNA. Flow cytometry
analysis of transfected cells showed a shift in fluorescence for
the vast majority of cells (Supplementary Fig. 1a). Using identical
conditions, cells were transfected with a representative let-7
family member let-7c and a representative ESCC family member
miR-294. Resulting cells were dissociated and introduced into a
Fluidigm C1 chip and analysed under a microscope, to confirm
the presence of single cells in individual wells. We noticed that
miR-294 induced an increase in cell size relative to Dgcr8� /� or
let-7c-transfected cells. Quantitative analysis showed this effect
across a vast majority of the cells (Supplementary Fig. 1b),
confirming not only efficient introduction, but also function of
the exogenously introduced miRNA.

Single-cell sequencing of cells. To understand how these
miRNAs influence mRNA levels within and across cells, captured
cells were lysed and mRNA was retrotranscribed into
complementary DNA libraries. Sequencing adapters were
introduced using a transposon-based fragmentation and
sequenced on Illumina Ultra-High-Throughput sequencer.
Sequencing reads were processed by a bioinformatics pipeline
summarized in Fig. 1a (see Methods). Samples were filtered based
on library depth, diversity and evidence of miRNA transfection
(Supplementary Figs 2–4 and Methods). Evidence of miRNA
transfection in each cell was determined by performing a gene set
enrichment analysis (GSEA)17, to assess the downregulation of
previously defined targets (Supplementary Data set 1) of miR-294
and let-7c (ref. 5) (Fig. 1b). This analysis confirmed efficient
transfection of cells with only a small number of cells having to be
removed for lack of evidence for targets’ downregulation (one for
miR-294 and five for let-7c; Supplementary Fig. 4b). Of note,
the GSEA analysis for miR-294 targets in miR-294-transfected
Dgcr8� /� cells showed an identical enrichment score (ES) as
that of WT cells, suggesting physiological function of the miRNA
(Fig. 1b). In contrast, GSEA analysis of let-7c targets showed
highly distinct ES in let-7c-transfected Dgcr8� /� cells relative to
WT, which is expected as WT mESCs do not express let-7c
(Fig. 1b). The numbers of samples remaining after each filtering
step (see Methods) are summarized in Table 1. Genes were
filtered based on a minimal average read count across samples
(see Methods).

Principal component analysis (PCA) of the resulting matrix of
samples and genes showed separation into three groups across
PC1 consisting of let-7, Dgcr8� /� and WT/miR-294-transfected
cells (Fig. 1c). Again, miR-294-transfected Dgcr8� /� cells
overlapped with WT mESC in the PCA, suggesting not only
physiological function of the exogenously introduced miRNA but
also confirming the dominant role of the ESCC miRNA family in
WT mESCs. The miR-294 and let-7c mimics led to shifts in
opposite directions along the first principal component. GSEA
using the loading values in PC1 revealed a strong enrichment for
cell cycle-related gene sets (Supplementary Data set 2 and
Methods). These single-cell data are consistent with previous
population data, showing opposing roles for the ESCC and let-7c
miRNAs in mESCs5.

Let-7c induces the differentiation of Dgcr8� /� cells grown
ESC media plus LIF5. However, 2i conditions blocks let-7c-
induced differentiation14. We confirmed a lack of differentiation
under any of the miRNA conditions, which were all performed in
LIFþ 2i, by evaluating six pluripotency markers (Pou5f1, Nanog,
Sall4, Esrrb, Klf4 and Rex1) and ten early differentiation markers
(Sox17, Brachyury, Fgf5, Sox1, Pax6, Grhl2, Mixl1, Gata4, Gata6
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and Foxa1). None of these markers showed a significant change
across the four conditions (Fig. 1d). Therefore, the downstream
transcriptional effects of these miRNAs could not be ascribed to
secondary effects associated with differentiation.

Differential expression across conditions. Next we performed
differential gene expression analysis, to determine whether single-
cell data could recapitulate bulk population findings across
differing conditions. Previously, Affymetrix array studies had
been performed on Dgcr8� /� ESCs plus or minus miR-294 or
let-7c, revealing hundreds of downregulated genes containing a
seed match corresponding to the corresponding to transfected
miRNA, which were identified as probable targets of that
miRNA5. Analysis of the single-cell data showed a very similar
effect to that of the bulk studies (Fig. 2a and Supplementary Data
set 3). Not a single target from the bulk population study showed

a significant opposite effect in the single-cell data (Fig. 2a).
However, fewer targets were found to be significantly
downregulated following miRNA introduction in single-cell
data, which probably reflects the reduced sensitivity of this
method. As expected, the miR-294 targets were similarly
downregulated in WT mESCs, where the ESCC miRNAs make
up a majority of the miRNA pool2,18. In contrast, the let-7c
targets were not, which is also expected, as let-7 family members
are not expressed in ESCs. The previous bulk population study
had shown that miR-294 and let-7c had opposing effects on the
Myc pathway. Here we asked whether the Myc pathway and/or
alternative pathways could distinguish individual cells in each of
the four conditions. Machine learning was used to determine
the predictive power of 50 hallmarks gene sets annotated in the
MsigDb database that describe genes with coordinated expression
levels in a variety of tissues involved in specific biological
processes19 (Supplementary Fig. 5 and Methods). This analysis
uncovered the Myc pathway as having the highest predictive
power, identifying miR-294 and let-7c cells with a 490%
accuracy (Fig. 2b). Therefore, our single-cell data, when
considered as a group, correlate well with previous bulk
population studies. In contrast to these studies though, the
single-cell data enabled us to next ask how the miRNAs have an
impact on transcript levels within and across individual cells.

Effects of miRNAs on transcriptional heterogeneity. Single-cell
transcriptome data enables the analysis of transcriptional
heterogeneity within a population of cells14. WT ESCs grown in

Table 1 | Number of samples under each condition following
each filter.

4500,000 reads Median read count 40 GSEA filter

Dgcr8� /� 61 60 60
WT 17 16 16
let-7c 56 53 48
miR-294 61 59 58

GSEA, gene set enrichment analysis; WT, wild type.
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Figure 1 | Single-cell sequencing of mESC transfected with either miR-294 or let-7c. (a) Scheme of the bioinformatics and statistical pipeline for single-

cell sequence analysis. Briefly, (i) reads are aligned with TopHat software and then (ii) cells with low coverage or with no evidence of miRNA transfection

are removed and (iii) finally non-expressed genes are filtered out. Remaining genes are used (iv) for downstream analysis. Details provided in material and

methods section. (b) ES distribution of miR-294 target genes across miRNA transfected, Dgcr8� /� or WT cells. (c) PCA analysis on filtered and

normalized data showing individual cells colour coded by condition. The PCA analysis separates cells according to their condition. (d) Average expression

of 16 pluripotency/differentiation markers in each condition.
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LIFþ 2i are highly transcriptionally homogenous, whereas
miRNA-deficient cells show an increase in heterogeneity
compared with their WT counterparts14. The effect of
individual miRNAs on the transcriptional heterogeneity of cell
populations remains unknown. To address this question,
we evaluated all potential pairwise correlations between the
transcriptional profiles of single cells within each of the three cell
populations: Dgcr8� /� cells, miR-294-transfected Dgcr8� /�

cells and let-7c-transfected Dgcr8� /� cells (Fig. 3a). Compared
with the Dgcr8� /� cells, the addition of miR-294 increased
the correlation between cells (one-tailed Mann–Whitney test
Po2.2e� 16), implying a reduction in cell-to-cell transcriptional
variability (Fig. 3a, inset in upper panel). In contrast, compared
with Dgcr8� /� cells, the introduction of let-7c decreased
the correlation between cells (one-tailed Mann–Whitney test
Po2.2e� 16), implying an increase in cell-to-cell transcriptional
variability (Fig. 3a, inset in upper panel). These effects were
even greater when specifically focusing on the cell-to-cell
transcriptional variability of pluripotency regulators (Fig. 3a,
lower panel). Furthermore, these effects were largely driven by the
highly expressed genes as intermediate and lowly expressed genes
showed little correlation between cells in any condition, likely due
to poor read coverage for these genes with the single cell
sequencing method (Supplementary Fig. 6). These results show
that individual miRNAs can either reduce or enhance
transcriptional heterogeneity across cells.

Although transfection of let-7c resulted in increased variation
between cells of the population as a whole, hierarchical clustering
of single-cell profiles showed the formation of clusters of cells
where transcriptionally heterogeneity appears to be lower,
effectively structuring the cell population into distinct

subpopulations (Fig. 3b). In contrast, miR-294-transfected
Dgcr8� /� cells did not form subpopulations and as a whole
were highly transcriptionally homogenous. Non-transfected
Dgcr8� /� cells also formed subpopulations, but were less
discrete than those seen with the addition of let-7c (Fig. 3b).
Inter-cluster distance analysis confirmed the greater distinctness
of subpopulations within the let-7c-transfected versus non-
transfected Dgcr8� /� cells (Fig. 3c, two tailed Mann–Whitney
test P¼ 1.94e� 8). PCA analysis confirmed that the let-7c
subpopulations could be separated on the first principal
component, whereas the Dgcr8� /� subpopulations separated
on the third principal component, albeit less distinctively, in
agreement with the inter-cluster distance analysis (Supplementary
Fig. 7 and Supplementary Data set 2). These findings show that
the increase in transcriptional heterogeneity seen in let-7c-
transfected cells is largely the result of the production of
subpopulations rather that increased stochastic noise between
cells.

Source of transcriptional heterogeneity. Next, we asked what
genes/pathways are driving the formation of these subpopula-
tions. We thus performed GSEA for the 50 hallmark gene sets
within each subpopulation of let-7c-transfected cells and non-
transfected Dgcr8� /� cells. We thus obtained an ES for each
gene set in each cell in each subpopulation. We then performed
an analysis of variance (ANOVA) test, to determine gene sets
with an ES significantly different across the subpopulations
within each condition. This analysis uncovered 13 and 9 sig-
nificant gene sets (false discovery rate (FDR)o10%) driving the
formation of let-7c and Dgcr8� /� subpopulations, respectively
(Fig. 3d and Supplementary Data set 4). Interestingly, there was a
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highly significant enrichment for gene sets related to cell cycle in
let-7c cells including E2f targets and G2/M checkpoint (Fig. 3d
and Supplementary Data set 4).

These data suggested that the transcriptional heterogeneity
among cells observed following let-7c transfection may be
associated with the regulation of cell cycle. Therefore, we used
the single-cell data to ask how the cells were distributed across the
cell cycle phases in each condition. To do this, we used a recently
developed bioinformatics tool, Cyclone, which can predict cell
cycle phase based on transcriptional markers, which were
uncovered in mouse ESCs and thus well suited for our data20

(see Methods). Cyclone showed distinct cell cycle distributions
between miR-294-transfected, let-7c-transfected and Dgcr8� /�

cells (Fig. 3e). Consistent with previous data using DNA content
to measure the cell cycle phases4,21, miR-294 decreased (exact
Fisher’s test P¼ 0.009), whereas let-7c increased (exact Fisher’s
test P¼ 0.03) the number of cells in G1 relative to the Dgcr8� /�

control cells. Let-7c also decreased the number of cells in S phase
(exact Fisher’s test P¼ 0.008), whereas miR-294 increased the
number of cells in G2/M (exact Fisher’s test P¼ 0.025). We next
applied the Cyclone tool to the subpopulations identified in
the let-7c-transfected Dgcr8� /� cells. The first subpopulation
(alpha) of let-7c-transfected cells consisted of mostly G1 cells, the

second subpopulation (beta) had cells in all three phases and the
third subpopulation (gamma) consisted of G1 and S cells (Fig. 3b,
top middle panel). In contrast, all three subpopulations of
Dgcr8� /� cells showed cell cycle heterogeneity (Fig. 3b, top right
panel). Together, these data show the changes in transcriptional
heterogeneity, especially with let-7c-transfected cells, are
associated with changes in distribution of cells across the
different phases of cell cycle. This change could not be ascribed
to the induction of differentiation, as analysis of the
let-7c-transfected subpopulations showed no change in the
expression of pluripotency and differentiation markers (Fig. 3f).

Impact of miRNAs on gene co-expression. The changes in
cell cycle distribution alone cannot explain the changes in
transcriptional heterogeneity. That is, although the cell cycle
distribution changed, each condition still had some fraction
of cells in each phase of the cell cycle, yet it was only in the
let-7c-transfected cells where distinct transcriptional subpopula-
tions formed around the different phases of the cell cycle,
especially G1 and G1/S. Therefore, we next asked how let-7c and
miR-294 affect co-expression of genes. Gene co-expression refers
to how similar the expression of two (or more) genes is in terms
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Figure 3 | Cell-cell correlations within Dgcr8� /� and Dgcr8� /� transfected with either miR294 or let-7c. (a) Density plots of distances (|1–|PCC|)
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subpopulation of cells identified with Dynamic tree cut method (see Methods). Above each heatmaps the percentage of cells in each of the cell cycle

phases is reported for each identified sub-population of cells as defined by Cyclone. (c) Inter-cluster distance distribution between clusters (that is,

subpopulations) of cells shown in b. Inter-cluster distance for a cell x was defined as its average distance from all the other cells, expect the ones in the

same subpopulation as cell x. Let-7c inter-cluster distance is significantly higher than Dgcr8� /� inter-cluster distance (two tailed Wilcoxon test

P¼ 1.94e�8), meaning that let-7c is producing more distinct and better separated sub-populations of cell compared to the ones identified in Dgcr8� /�

cells. (d) Identification of pathways driving the formation of subpopultions of cells within let-7c or Dgcr8 knockdown conditions. Pathways are sorted

according the corrected P-value (that is, FDR) returned by the ANOVA. Only top five significant pathways are shown. (e) Percentage of cells in each of the

cell cycle phases for miRNA-transfected and Dgcr8� /� -deficient cells. Exact Fisher’s test is used to the compare number of cells in each cell cycle stage

between miRNA-transfected versus Dgcr8-knockdown cells. (f) Average expression of six pluripotency and ten differentiation markers across the three

identified subpopulations of let-7c-transfected cells.
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of correlated changes in their expression across single cells, such
that the level of one gene in a cell is predictive of the level of the
other gene in the same cell. The induction of gene co-expression
among genes that vary across cell cycle could explain the
formation of the distinct transcriptionally homogenous
subpopulations of cells observed in let-7c-transfected cells.

Co-expression among a set of genes can be quantified by
computing the pair-wise correlation coefficients between all
possible gene pairs in the set and then performing a summary
statistic on those correlation coefficients22. An alternative and
more robust approach is to compute the Rényi multi-information
(RMI), where the co-expression of all the genes in a
set is quantified at once in a ‘set-wise’ manner, as opposed to
‘pair-wise’23. We applied both pair-wise correlation and set-wise
RMI approaches to evaluate the effects of miR-294 and let-7c on
their respective high-confidence target sets (Supplementary
Data set 5, Supplementary Fig. 8 and Methods). The pair-wise
correlation analysis showed that, within each condition, the
introduced miRNA increased the co-expression of its targets
relative to the other miRNA’s target set (Supplementary Fig. 9).

This effect was even stronger when using the set-wise correlation
analysis (RMI; Fig. 4a,b, upper panels). The significance of these
effects was confirmed by performing permutation tests on
randomly selected genes of equivalent expression levels
(Fig. 4a,b, lower panels). Furthermore, this finding was
extended to a larger set of predicted targets of each miRNA
(Fig. 4c and Supplementary Fig. 10). These data show that both
miR-294 and let-7c increase the co-expression of their targets,
despite the expression of their targets being downregulated
(Figs 1b and 2a).

Given the impact of these miRNAs on cell cycle, we next asked
how they influence the co-expression of a set of 36 well-annotated
cell cycle phase genes (Supplementary Data set 6) including one
direct target (Cdkn1a) of miR-294 and two targets (Ccnf and
Rrm2) of let-7c (high-confidence targets in Supplementary Data
set 5). Previous single-cell expression analysis had shown that
these genes are well correlated according to cell cycle phase in
somatic cells, but not ESCs24. Analysis of our data showed a
similar lack of correlation between genes within each cell cycle
phase among the miR-294-transfected cells (Fig. 4d). This effect
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Figure 4 | Gene co-expression across cells in Dgcr8� /� and Dgcr8� /� transfected with either miR294 or let7c. (a) RMI for a set 33 of high-

confidence miR294 targets in miR294-transfected (blue), let-7c-transfected (red) and Dgcr8� /� cells (yellow). Histograms show permutation test for

random sets of genes expressed at the same levels as the targets under each condition. Green dotted line represents RMI of the targets themselves with

associated p-values. (b) Same as a, except for a set of 41 high-confidence let-7c targets. (c) RMI distribution for each of the three conditions using larger

sets of miRNA targets (defined as down with addition of miRNA and predicted by Targetscan, miRanda-miRSVR or previous population array data).

As power of RMI is reduced by the larger size of these target sets, a distribution of RMIs was computed by randomly extracting a subset of 10 genes with

replacement 10,000 times from the corresponding list of targets. (d) Spearman’s correlations among 36 cell cycle-regulated transcripts in miRNAs

transfected and Dgcr8� /� cells show an increase of cell cycle-dependent transcription in let-7c-transfected cells. Genes are grouped by cell cycle phases

(squares) and ordered in the same way across conditions. Above each heatmap the average expression of each gene and its standard deviation is reported.

(e) Differential RMI among 36 cell cycle-regulated transcripts (Supplementary Data set 7) in miRNAs transfected versus Dgcr8� /� cells show an increase

of cell-cycle-dependent transcription in let-7c transfected cells. Genes are grouped by cell cycle phases and their RMI value was compared in miRNA

transfected cells versus Dgcr8� /� cells. The number of genes used for each cell cycle phase is reported in the upper part of the plot. Significant changes of

RMI determined by permutation test are indicated with asterisks (let-7c G1/S P¼0.026, G2 P¼0.04, G2/M P¼ 3e� 3; miR-294 G2/M P¼0.016).

(f) Differential RMI among hallmark gene sets from MSigDb in miRNAs transfected versus Dgcr8� /� cells. For each hallmark gene set we computed RMI

across the three conditions (miR-294, let-7c and Dgcr8� /� ) and then computed the RMI fold-change (miR-294 versus Dgcr8� /� and let-7c versus

Dgcr8� /� ) and its significance determined by permutation test. Only genes set with significant changes are shown.
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was enhanced relative to the miRNA-deficient Dgcr8� /� cells,
suggesting that miR-294 plays a central role in this phenomenon
of lost correlation among cell cycle phase genes in ESCs. In stark
contrast, let-7c caused an increased correlation among genes of
each phase of the cell cycle relative to the miRNA-deficient
Dgcr8� /� cells (Fig. 4d). These effects were also confirmed by
RMI analysis (Supplementary Fig. 11) with 10,000 permutations
to assess significance (Fig. 4e).

These changes in correlation among cell cycle genes cannot be
simply ascribed to changes in fraction of cells in each phase of the
cell cycle: miR-294 increased the number of cells in G2/M, yet
decreased the co-expression of the G2/M phase genes, whereas
let-7c increased the number of cells in G1 and increased the
co-expression of both G1 phase genes and G2/M phase genes
(Figs 3e and 4d,e). One way in which miR-294 could lead to a loss
of co-expression of cell cycle phase genes is through (direct or
indirect) downregulation of their expression, leading to a loss of
correlation. We quantified the gene expression of the 36 cell cycle
phase genes across the three conditions (let-7c, Dgcr8� /� and
miR-294) and found genes to be similarly expressed (Fig. 4d,
upper panels). These results show that let-7c and miR-294 have
opposite effect on the co-expression of cell cycle phase genes that
are not simply secondary to their effects on the distribution of
cells across the cell cycle or to overall changes in gene expression.

To detect other sets of genes that become co-expressed in the
presence of either miR294 or let-7c, we applied RMI analysis
(Supplementary Fig. 11) to the 50 hallmark gene sets (see
Methods). For each hallmark gene set, we computed RMI across
the three conditions (miR-294, let-7c and Dgcr8� /� ) and then
computed the RMI fold change (miR-294 versus Dgcr8� /� and
let-7c versus Dgcr8� /� ) and its significance (FDRo10%) with a
permutation test (see Methods). In agreement with our results on
cell-cycle genes, miR-294 reduced the co-expression of genes in
hallmark gene sets related to G2/M checkpoint and E2f targets
(Fig. 4f and Supplementary Data set 7). In contrast, let-7c
increased co-expression of genes in these hallmark gene sets and
mitotic spindle (Fig. 4f). MiR-294 did increase co-expression of
genes in other gene sets relevant to ESC biology such as Stat3
signalling and epithelial–mesenchymal transition. These effects
cannot simply be explained by enrichment of direct targets in
these pathways, as the effects were present even after removing
known targets of each miRNA from the gene sets (Supplementary
Figs 12 and 13).

Discussion
In this study, we provide the first genome-wide analysis of how a
single miRNA impacts the transcriptome of individual cells. We
use single-cell transcriptome sequencing together with the
reintroduction of individual miRNAs in an otherwise miRNA-
deficient cellular background. The use of miRNA-deficient cells
removes the potential noise created by the impact of competition
of miRNAs. That is, the addition of small RNA can compete out
endogenous miRNAs for binding to Ago and thus formation of a
functional silencing complex25. Similarly, removal of an
individual miRNA can allow other endogenous miRNAs to fill
Ago enhancing their function. Thus, the Dgcr8-null ESC model
essentially provides a clean slate to study the impact of individual
miRNAs on the cellular transcriptome. The unnaturally high
levels of the exogenous introduced small RNAs into the miRNA-
deficient background could in theory lead to non-physiological
targeting and downstream impacts of the miRNA. However, that
is unlikely a concern with either of the two miRNAs studied here.
miR-294 and let-7c are both members of large families of
miRNAs that have been shown to already exist at saturating levels
in their respective WT cell contexts26. Importantly, we show at

the single-cell level, the introduction of exogenous miR-294 alters
the transcriptome of Dgcr8-null cells to one very similar to WT.
Furthermore, it reduces its known targets to a similar degree.
These findings are consistent with fact that the ESCC miRNAs
constitute over 50% of the total miRNA pool in ESCs2,18. Let-7
similarly constitutes a high fraction of the miRNA population in
downstream differentiated somatic lineages18.

Our approach enabled us to study the impact of the individual
miRNAs on cell-to-cell transcriptome variability and gene
co-expression across cells. Previously, it has been shown by
single-cell sequencing that the Dgcr8-null ESCs show greater
transcriptional heterogeneity than their WT counterparts14.
However, it was unclear how individual miRNAs would
influence transcriptional heterogeneity between cells. Here we
show very different effects of the two miRNAs, miR-294 and
let-7. The introduction of miR-294 into the Dgcr8� /� induces a
highly transcriptionally homogenous population, essentially
the same as described for WT ESCs grown in similar culture
conditions14. In contrast, let-7 increased transcriptional
heterogeneity. However, a closer evaluation of that
heterogeneity showed that this increase could be largely
ascribed to the formation of subpopulations of cells. Analysis
of the underlying genes driving the formation of these
subpopulation uncovered a strong enrichment for cell cycle
genes, especially G1 phase genes mostly included in the E2f target
hallmark gene set. Interestingly, previous work had shown that
the ESCC and let-7 miRNAs have opposing effects on the fraction
of ESCs in the G1 phase. This result was confirmed here using the
Cyclone tool on our single cell profiles to assign cells to the
proper cell cycle phase.

Previous single-cell sequencing showed poor correlation
among cell cycle phase genes in WT ESCs, but strong correlation
in somatic K562 cells, suggesting a highly distinct structure of cell
cycle gene expression in somatic versus ESCs24. We found that
the introduction of miR-294 and let-7 induced distinct outcomes
on the correlation of the cell cycle phase genes used in the
previous study. Specifically, miR-294 induced a loss of gene
co-expression very similar to WT ESCs, whereas let-7 induced a
gain in gene co-expression similar to that of the K562 cells.
Interestingly, let-7 is highly expressed in K562 cells27. This effect
on cell cycle phase gene co-expression cannot be solely ascribed
to changes in number of cells in each phase of the cell cycle.
Indeed, miR-294 increased the number of cells in G2/M, but
reduced the co-expression of G2/M cell cycle phase genes,
whereas let-7c increased co-expression of G2/M genes, despite
exhibiting a much smaller number of cells in G2/M. Let-7
normally increases as ESCs differentiate down somatic lineages
and the introduction of let-7 in Dgcr8� /� ESCs grown in LIF
alone induces differentiation of ESCs. Therefore, it is plausible
that the let-7 effect on co-expression of cell cycle phase genes
could be an indirect result of its impact on differentiation.
However, in the studies presented here, the cells are grown in
LIFþ 2i conditions and we show that let-7 does not induce
differentiation under these conditions. This finding is consistent
with previous work showing that under 2iþ LIF conditions, let-7
may actually reduce differentiation14. Therefore, the effect of let-7
on cell cycle gene phasing is likely to be due to be a more direct
effect on the cell cycle pathways, although the mechanism
remains to be revealed.

Single-cell sequencing following introduction of a miRNA in
an otherwise miRNA-deficient background also allowed us to also
study the impact of each miRNA on its downstream targets.
Although it is well appreciated that miRNAs can bind and
suppress multiple targets it is unclear whether it does so equally
in each cell as all previous studies measured a population of cells.
Our GSEA analysis confirmed that both miR-294 and let-7c
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induce downregulation of their targets in individual cells.
Another open question is whether miRNAs induce expression
covariation among their targets, similar to that seen with
transcription factors28–30. Using both pair-wise and set-wise
correlation measures, we found that both let-7 and miR-294 led
to significant increases in co-expression among their respective
targets across individual cells. That is, the targets varied together
from one cell to the next. The reason for induction of
co-expression is unclear. It is unlikely to be due to varying
amounts of the miRNAs as both exogenously introduced levels in
Dgcr8� /� cells and endogenous levels in WT ESCs (for
miR-294) are very high and likely to be saturating26. One
possible explanation is that there is a rate-limiting factor in each
cell that determines how much the targets can be degraded (for
example, varying levels of Ago from one cell to the next). This can
lead to the development of ‘waiting lines’ for biochemical
processing, as recently shown in the case of two unrelated
proteins tagged for degradation by the proteasome31. A similar or
related mechanism may be occurring with miRNAs, although it
requires further investigations.

In summary, we have used single-cell sequencing together with
individual miRNA manipulation, to assess the impact of miRNAs
on shaping the transcriptional profiles in individual cells. We find
that miR-294 and let-7 are able to induce co-expression of their
target genes, while having opposing effects on the co-expression
of cell cycle phase genes and cellular heterogeneity in ESCs
(Supplementary Fig. 14). Our work more broadly provides an
approach to better understand the impact of miRNAs on their
targets and ultimately on the biology of a population of cells.

Methods
Cell culture and transfections. Dgcr8-knockout and WT parental cells were
previously derived in the Blelloch lab (ref. 3) and can be obtained from Novus
biologicals. Cells were maintained in knockout DMEM medium (Invitrogen)
supplemented with 15% fetal bovine serum, LIF and 2i (PD0325901 and
CHIR99021) as per standard techniques32. Cells were transfected with miRNA
mimics (MIRIDIAN, GE Dharmacon) using Dharmafect 1 as previously
described33. A fluorescence tagged (Dy547) control mimic was used to evaluate
transfection efficiency (Supplementary Fig. 1a). Flow cytometry (LSRII) and
microscopic analysis of transfected cells was performed 24 h post transfection.
Mock-transfected control was treated under identical conditions, with the
exception of the absence of the mimic.

Analysis of cell size. Images of Dgcr8� /� and miR-294 cells stained with the
LIVE/DEAD Cell Staining Solution size were processed in ImageJ34. Colour images
were converted to greyscale, then an automated threshold was set and the plugin
Analyze particles was used to measure cell area in the segmented images
(Supplementary Fig. 1b).

Single-cell sequencing. Twenty-four hours post transfection, cells were loaded
and single-cell libraries prepared following the Fluidigm C1 protocol (version PN
100-7168 G1). One C1 integrated fluidic circuit (small cell size, PN 100-5759) was
used for each condition. LIVE/DEAD Cell Staining solution (ThermoFisher) was
included. Each cell capture site was visually inspected and photographed on an
inverted fluorescent microscope. Each site was manually scored for cell number
and viability. All multi-cell and dead cell sites were discarded from further
downstream analysis. Sequencing libraries were produced using the Illumina
Nextera XT DNA Sample Preparation kit following the manufacturer’s guidelines.
Libraries were quality control tested on a combination of Agilent Bioanalyzer and
Tape Station and quantified using Qubit (ThermoFisher). Libraries were sequenced
on Illumina HiSeq 2500 Ultra-High-Throughput Sequencing System.

Given the goal of identifying cellular gene networks, we reasoned it would be
important to have significant sequencing depth of all genes evaluated. Initial
sequencing depths ranged from o1,000 to over 2.5 million reads (Supplementary
Fig. 2a). Plotting per cent of genes with at least 10 reads to read depth showed a
plateau at B500,000 reads (Supplementary Fig. 2b). Therefore, samples under
500,000 and above 100,000 reads were resequenced to insure statistical robustness
of downstream network analysis. Resequencing showed no evidence of batch effect
as evidenced by PCA and thus were directly added to reads of first sequencing run
resulting in a majority of samples ranging from 900,000 to 2 million reads
(Supplementary Fig. 2c,d).

Read mapping and normalization. Reads were aligned and assigned to Gencode
Mouse released M4 transcripts and genes by using RSEM version 1.2.19 with
standard parameters35. Similar to previous studies, there was not a strong
correlation between gene length and number of reads (Supplementary Fig. 3)24.
Reads were normalized for sequencing depth using the method developed in
DESeq36.

Sample and gene filters. To reduce extraneous noise that would negatively
impact network analyses, we established sample and gene filters based on number
and diversity of reads, as well as evidence of introduced miRNA function. First, we
evaluated library complexity based on median and spread of read counts across
genes. A small number of cells showed a median equal to 0 with a majority of
counts coming from a small number of genes (Supplementary Fig. 4a). These cells
were removed from further analysis. Even though transfection efficiencies were
very high, it is likely to be that a small number of cells did not receive the
introduced miRNAs. To identify these cells, gene set enrichment analysis17 was
perfomed using the respective targets for miR-294 and let-7c identified in Melton
et al.5 Cells receiving the miRNA are expected to have an overall reduction in
enrichment for the corresponding miRNA targets. One cell among the miR-294
and five cells from the let7-c cohort were removed, as unlike most of their cohorts
they did show a negative enrichment (Supplementary Fig. 4b). Following above
filters, 16 WT, 60 Dgcr8� /� , 58 miR294-transfected and 48 let7-c-transfected
samples remained (Table 1). To remove noise from lowly expressed genes, we
performed a Kolmogorov–Smirnov test, to measure the distance between samples
that were re-sequenced along different cutoffs for minimal number of reads per
gene. Minimal distance was found at a cutoff of five reads and thus all genes with
average read count of less than five reads across samples were removed from
further analysis.

PCA and differential expression. PCA analysis was performed on the normalized
counts using the prcomp function of the ‘stats’ package in R environment. Figure 1c
shows PCA based on 11,182 genes that passed filtering by average read counts
greater than five reads across samples, whereas Supplementary Fig. 2c shows PCA
based on 24,142 genes having at least one read in at least on sample. Supplementary
Fig. 7 shows PCA based on the same genes as in Fig. 1c, but performed on either
let-7c or Dgcr8� /� cells. Differentially expressed genes among conditions (Let-7c
versus Dgcr8� /� , miR-294 versus Dgcr8� /� and Dgcr8� /� versus WT) were
detected using a Bayesian approach to single-cell differential expression analysis
method37. To compare expression of a given gene between two groups, we used
maximum likelihood estimate for the expression fold change on log2 scale. P-value
was corrected for multiple hypothesis testing using Holm procedure. The
differentially expressed genes (adjusted P-valueo0.1) are listed in Supplementary
Data set 3, whereas the miRNA target genes from previous population study used
in Fig. 2a are reported in Supplementary Data set 1.

Hallmark gene sets. Hallmark pathways for human species were first downloaded
from the MSigDb repository17, version 5, and then converted to Mus musculus
using HomoloGene database (release version 68) (ftp://ftp.ncbi.nih.gov/pub/
HomoloGene/build68/).

Recursive feature elimination. A machine-learning approach based on
recursive feature elimination (RFE) and support vector machines (SVMs) was
used to identify the pathways that were best at discriminating miR-294- and
let-7c-transfected cells by their gene expression profiles (GEPs).

The RFE algorithm couples feature selection with SVMs38. Feature selection was
used, to identify a minimal informative set of features, discarding uninformative or
redundant ones. For SVMs with a linear kernel, as the ones used in this
manuscript, RFE uses ||w||2 as a ranking criterion for the importance of a feature.
The features with the smallest impact on the norm of w were then removed.
Finally, the optimal number of features was found by training SVMs on subset of
features, using the theoretical concept span estimate39,40. We used linear SVMs
that were trained and tested using the R kernlab package41. For RFE, we used the
function fit.rfe as implemented in the pathClass package42. Everything was
performed in R version 3.2.3.

The application of this strategy to identify pathways that discriminate single
cells receiving miR-294 or let-7c is outlined in Supplementary Fig. 5. GEPs of
miRNA-transfected cells were first converted to a list of pathways (that is, features)
by computing the ES of each pathway by means of a GSEA approach. Then, 1,000
different instances of the training set were randomly built by selecting five cells
repeatedly from miR-294- and let-7c-transfected cells. RFEþ SVM was performed
for each instance of the training set, to select the most informative pathways able to
discriminate the two types of cells. Finally, pathways were ranked according to the
number of times they were selected by the RFE-SVMs algorithm (that is, predictive
capacity). Enrichment Score (ES) and the corresponding P-value were computed by
using the KS test function as in Napolitano et al.43

To validate the pathways identified by RFE algorithm, four different subset
of discriminant pathways were generated based on different cutoffs of relevance
(that is, 10, 25, 50 and 75%). Nested subsets of pathways of increasing informative
density were thus obtained. The quality of these subsets of pathways was then
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assessed by first training a classifier based on a linear SVM and then estimating its
area under the receiver operating characteristic curve by a tenfold cross-validation
model. Supplementary Fig. 5b summarizes the performance of the classifier for
each combination of pathway selection. It is easy to see that the classifier preformed
always better when a subset of relevant pathways is used. It is noteworthy that the
best value of area under the curve is obtained when the four pathways with
predicted relevance 475% are used.

Correlation and distance analyses. The distance among cells showed in the main
Fig. 3a was quantified as 1—the absolute value of Pearson’s correlation coefficient
(PCC). PCC was computed using the cor function of the R statistical environment.
Density plots were finally produced with the function geom_desity present in the
ggplot package of the R statistical environment. Subpopulations of cells were
identified with Dynamic tree cut package44 in R statistical environment with
default parameters and using the ‘hybrid’ mode with dissimilarity information
among cells defined as |1�PCC|.

Cell subpopulation analysis. The ANOVA was performed to identify differences
among groups of cells within let-7c or Dgcr8 knockdown conditions. GEPs of
miRNA-transfected cells were first converted to a list of pathways (that is, MsigDb
hallmark gene sets) by computing the ES of each pathway by means of a GSEA
approach. Thus, each gene set had a ES distribution across cells. Finally, ANOVA
test among subpopulation of identified cells was performed for each gene set.
Obtained P-values were finally corrected for multiple hypothesis testing using
Benjamin and Hochberg procedure. ANOVA tets swere performed using aov
function in the R statistical environment. ES and the corresponding P-values were
computed by using the KS test function as in Napolitano et al.43

GSEA with PCA loading values. To find the sources of the majority of the
variance among groups revealed in Fig. 1c and Supplementary Fig. 7, GSEA using
MSigDb hallmark gene sets was performed ranking the genes according to their
descending loadings in the principal component that shows the separation.
In detail, we used PC1 loadings to explain the variance shown in Fig. 1c and
Supplementary Fig. 7a, whereas we used PC3 loadings to explain the variance
shown in Supplementary Fig. 7b. For each pathway the ES and the corresponding
P-value were computed by using the KS test function as in Napolitano et al.43

P-values were corrected for multiple hypothesis testing using Benjamini and
Hochberg procedure. As positive ES corresponds to pathways containing the
best discriminant genes only pathways with positive ES value and FDRo10%
were considered. Significant pathways were than ranked according to their
P-values.

Defining miRNA targets. The miRanda-miRSVR (August 2010 release) mouse
miRNA target predictions were obtained from http://microrna.org45. The
TargetScan46 version 7.1 mouse miRNA target predictions were obtained from
http://targetscan.org. The Melton et al.5 miRNA target predictions were defined as
downregulated genes in the population of cells receiving the corresponding miRNA
and matching the miRNA seed complement on their the 30-untranslated region
sequences. Throughout the manuscript, unless otherwise stated, predicted miRNA
targets were defined by the intersection of the downregulated genes in the
population of individual cells receiving the corresponding miRNA (versus Dgcr8
knockout, adjusted P-valueo0.1) and the ones predicted by Targetscan, miRanda
or Melton et al.5 (that is, union of all three; Supplementary Fig. 8 and
Supplementary Data set 5). To obtain the smaller set of ‘high confident’
transcriptional targets, only target genes supported by at least two sources were
considered. The number of miR-294 ‘high confident’ targets was further reduced
retaining only the ones downregulated (adjusted P-valueo0.1) also in the WT
versus Dgcr8-knockout conditions. This reduction in number was essential for
RMI analysis.

Estimation of RMI. An information-theoretic approach based on RMI was used to
quantify the statistical dependency (that is, co-expression) among a predefined
set of genes23. Specifically, given a set of d real-valued random variables
X¼ (X1,X2,y,Xd) with joint probability density function f : Rd ! R and
marginal densities fi : R! R; 1 � i � d, the RMI was defined for any real
parameter a, assuming the underlying integrals exist, as:

Ia Xð Þ ¼ Ia fð Þ ¼ 1
a� 1

Z

Rd

f a x1 . . . xd
� �

Qd
i¼1 fi xið Þ

� �a� 1 d x1 . . . xd
� �

ð1Þ

when a¼ 1, Ia(X) was defined in the limit I1 ¼ loga!1 Ia . Indeed, the classical
multi-information across d variables is just a special case of RMI with a ¼ 1 and
can be easily approximated with a¼ 0.99 (ref. 47). RMI can be efficiently valued via
a non-parametric estimator based on the generalized k nearest-neighbour graph
and copula transformation47,48. Briefly, that non-parametric estimator works
as follow: given a collection of independent and identically distributed random
variables X1:n¼ (X1, X2,y, Xn), where each Xj ¼ ðX1

j ;X2
j ; . . . ;Xd

j Þ, the algorithm

estimates the entropy Ha(f) for aA(0, 1) as follows:

Ĥa X1:nð Þ ¼ 1
1� a

log
LpðX1:nÞ
gn1� p=d

where p ¼ d 1� að Þ ð2Þ

where Lp( � ) equals to the sum of the p-th power of Euclidian distance of the nodes
in the nearest-neighbour graph NNS( � ) for some finite non-empty S � Nþ ; g is a
numeric constant dependent on d; p and S that can be estimated empirically from a
large sample (nc1. Finally, the RMI Ia of the d variables X¼ (X1, X2,y, Xd) from
a sample of independent and identically distributed random variables
X1:n¼ (X1yXn) is computed as

Îa X1:nð Þ ¼ � Ĥa Ẑ1; Ẑ2; . . . ; Ẑn
� �

ð3Þ

where Ĥa is defined as before and the sample Ẑ1; Ẑ2; . . . ;Ẑn
� �

¼ ðF̂ X1ð Þ;F̂ X2ð Þ;
. . . ; F̂ Xnð ÞÞ. F̂ð�Þ is called empirical copula transformation48, where the j-th
coordinate of Ẑi equals:

Ẑj
i ¼

1
n

rankðXj
i ; ðX

j
1;X

j
2; . . . ;Xj

nÞÞ ð4Þ

where rank(x, A) is the number of elements of A rx.
Further tests on the convergence of the nonparametric estimator for RMI used

in this study can be found in the original paper were it was presented for the first
time47 and in our previous work23. Here, the above non-parametric estimator of
RMI has been implemented in the R software environment version 3.2.3 and
always used with the parameter a¼ 0.99 and k¼ 3 (that is, number of k nearest
neighbours to use).

Assessment of RMI significance. To assess whether, in a specific population
of cells, the estimated RMI value across a set d miRNA targets G1

yGd was
statistically significant, a permutation test corrected for the expression levels of the
targets was used. Briefly, we first sorted the genes according to their average value
of expression across cells and then divided the ranked list in expression bins of 500
genes. In this way, each gene is assigned to a specific bin containing genes with
similar expression levels. Finally, to estimate the empirical distribution of RMI and,
from that, the associated P-value, we randomly selected d genes contained in the
same bins as G1

yGd in 10,000 number of trials. For each trial, the RMI value
was computed, thus obtaining its empirical distribution. The P-value was finally
estimated as the percentage of random trials with a value of RMI greater than the
one measured for the G1

yGd target genes.

Assessment of RMI distribution among miRNA targets. RMI estimation could
not converge when the number of genes is too high respect to the number of
samples available23,47. Thus, to show that miRNA targets tend to be co-expressed
in the corresponding miRNA-transfected population, a strategy based on a
bootstrapping procedure was used. Given the larger list of predicted miRNA targets
(in contrast to ‘high confidence’ targets), we randomly extracted a subset of d genes
in 10,000 trials. In each trial, computed the RMI value was computed among the d
genes across the three populations of cells. Different value of d do not affect the
results (Supplementary Fig. 10).

Differential co-expression analysis. Changes in co-expression among a set of d
genes G1

yGd between two population of cells (that is, miR-294 and let-7c) was
assessed by estimating the difference in RMI (or DRMI) between the corresponding
two subsets of GEPs23 (Supplementary Fig. 11). To remove those genes whose
expression was not changing significantly, a pre-filtering step was applied within
each group of GEPs. Specifically, those genes whose entropy was in the fifth-
percentile were excluded from the analysis. To estimate the empirical distribution
of DRMI and, from that, the associated P-value, we performed a permutation test.
Specifically, given a gene set of d genes G1

yGd, the significance of the DRMI for
the gene set was computed by randomly selecting d genes across 1,000 trials. For
each trial, the DRMI value was computed, thus obtaining its empirical distribution.
The P-value was finally estimated as the percentage of random trials with a value of
DRMI greater (or lower if DRMIo0) than the one measured on the gene set being
tested.

Cell cycle gene-to-gene correlation. Cell cycle gene–gene correlation was
estimated by computing the PCC among 36 transcripts previously categorized to a
particular cell cycle phase (Supplementary Data set 6)49. PCC was estimated using
the cor function present in the R software environment 3.2.3 and plotted using
ggplot package.

Cell cycle stage prediction from scRNA-seq data. Cell cycle stage of cells was
predicted using the classification algorithm named ‘pairs’ and previously published
by Scialdone et al.20 This method does not require any further data normalization
to be applied before and was one of the two methods performing best among
the tested in the Scialdone et al.20 The classifier was trained on the published
single-cell RNA-seq data set comprising 182 mESCs with known cell cycle
phase. Similar to our cells, the mESC of this study were cultured in LIFþ 2i
media50 and thus represented a good training set to use. For the training process,
the cell cycle genes used in the original manuscript were used. After the training
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process, the classifier was used to assign each cell to a specific cycle stages among
G1, S or G2/M from our single cell RNA sequencing data.

Data availability. All sequencing data can be found at GEO under the accession
code GSE80168. The software code used in this study is available upon request to
authors. All other data are available from the authors upon reasonable request.
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